
EUROGRAPHICS 2013 / I. Navazo, P. Poulin
(Guest Editors)

Volume 32 (2013), Number 2

Supplemental Material: Path Space Regularization
for Holistic and Robust Light Transport

Anton S. Kaplanyan and Carsten Dachsbacher

Karlsruhe Institute of Technology, Germany

1. Minimalistic Example: Path Tracing with Regularization

Here we show the little modifications required to an existing renderer for the example of a conventional unidirectional path
tracer. This code is self-contained and based on the implementation “SmallPT” by Kevin Beason (which can be found at
http://www.kevinbeason.com/smallpt/explicit.cpp). The changes and additions in the code required for our
regularization method are highlighted in red .

#include <math.h> // smallpt, a Path Tracer by Kevin Beason, 2008
#include <stdlib.h> // Make : g++ -O3 -fopenmp smallpt.cpp -o smallpt
#include <stdio.h>
typedef struct Vec { // Usage: time ./explicit 16 && xv image.ppm
double x, y, z; // position, also color (r,g,b)
Vec(double x_=0, double y_=0, double z_=0){ x=x_; y=y_; z=z_; }
Vec operator+(const Vec &b) const { return Vec(x+b.x,y+b.y,z+b.z); }
Vec operator-(const Vec &b) const { return Vec(x-b.x,y-b.y,z-b.z); }
Vec operator*(double b) const { return Vec(x*b,y*b,z*b); }
Vec mult(const Vec &b) const { return Vec(x*b.x,y*b.y,z*b.z); }
Vec& norm(){ return *this = *this * (1/sqrt(x*x+y*y+z*z)); }
double dot(const Vec &b) const { return x*b.x+y*b.y+z*b.z; } // cross:
Vec operator%(Vec&b){return Vec(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);}

} const cVec;
struct Ray { Vec o, d; Ray(Vec o_, Vec d_) : o(o_), d(d_) {} };
enum Refl_t { DIFF, SPEC, REFR }; // material types, used in radiance()
struct Sphere {
double rad; // radius
Vec p, e, c; // position, emission, color
Refl_t refl; // reflection type (DIFFuse, SPECular, REFRactive)
Sphere(double rad_, Vec p_, Vec e_, Vec c_, Refl_t refl_):
rad(rad_), p(p_), e(e_), c(c_), refl(refl_) {}
double intersect(const Ray &r) const { // returns distance, 0 if nohit

Vec op = p-r.o; // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
double t, eps=1e-4, b=op.dot(r.d), det=b*b-op.dot(op)+rad*rad;
if (det<0) return 0; else det=sqrt(det);
return (t=b-det)>eps ? t : ((t=b+det)>eps ? t : 0);

}
};
Sphere spheres[] = {//Scene: radius, position, emission, color, material
Sphere(1e5, Vec(1e5+1,40.8,81.6), Vec(),Vec(.75,.25,.25),DIFF),//Left
Sphere(1e5, Vec(-1e5+99,40.8,81.6),Vec(),Vec(.25,.25,.75),DIFF),//Rght
Sphere(1e5, Vec(50,40.8, 1e5), Vec(),Vec(.75,.75,.75),DIFF),//Back
Sphere(1e5, Vec(50,40.8,-1e5+170), Vec(),Vec(), DIFF),//Frnt
Sphere(1e5, Vec(50, 1e5, 81.6), Vec(),Vec(.75,.75,.75),DIFF),//Botm
Sphere(1e5, Vec(50,-1e5+81.6,81.6),Vec(),Vec(.75,.75,.75),DIFF),//Top
Sphere(16.5,Vec(27,16.5,47), Vec(),Vec(1,1,1)*.999, SPEC),//Mirr
Sphere(16.5,Vec(73,16.5,78), Vec(),Vec(1,1,1)*.999, REFR),//Glas

Sphere(5e-3,Vec(50,81.6-36.5,81.6),Vec(4,4,4)*1e7, Vec(), DIFF),//Lite

};

double molif_r = 1.; // Global mollification radius, shrinks per sample
double mollify(Vec& l, cVec& rd, Vec& n, Vec& nl, double dist, int type){
double cos_max=1./sqrt(1.+(molif_r/dist)*(molif_r/dist));// Cone angle
double solid_angle=2.*M_PI*(1.-cos_max); // Solid angle of the cone
Vec out = rd -n*2*n.dot(rd); // Reflection vector
if(type == REFR){ // Compute refraction vector

double nc=1,nt=1.5,nnt=n.dot(nl)>0?nc/nt:nt/nc,ddn=rd.dot(nl),cos2t;
if((cos2t=1-nnt*nnt*(1-ddn*ddn))>0) // Refraction vector

out =(rd*nnt-n*((n.dot(nl)>0?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm();
}
return l.dot(out)>=cos_max?(1./solid_angle)/l.dot(out):0.; // Mollify

}

int numSpheres = sizeof(spheres)/sizeof(Sphere);
inline double clamp(double x){ return x<0 ? 0 : x>1 ? 1 : x; }

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell
Publishing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4
2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

http://www.kevinbeason.com/smallpt/explicit.cpp

Anton S. Kaplanyan & Carsten Dachsbacher / Supplemental Material: Path Space Regularization

inline int toInt(double x){ return int(pow(clamp(x),1/2.2)*255+.5); }
inline bool intersect(const Ray &r, double &t, int &id){
double n=sizeof(spheres)/sizeof(Sphere), d, inf=t=1e20;
for(int i=int(n);i--;) if((d=spheres[i].intersect(r))&&d<t){t=d;id=i;}
return t<inf;

}
Vec radiance(const Ray &r, int depth, unsigned short *Xi,int E=1){
double t; // distance to intersection
int id=0; // id of intersected object
if (!intersect(r, t, id)||depth>10) return Vec();// if miss / too deep
const Sphere &obj = spheres[id]; // the hit object
Vec x=r.o+r.d*t, n=(x-obj.p).norm(), nl=n.dot(r.d)<0?n:n*-1,f=obj.c,e;
double p = f.x>f.y && f.x>f.z ? f.x : f.y>f.z ? f.y : f.z; // max refl
if (++depth>5||!p) if (erand48(Xi)<p) f=f*(1/p); else return obj.e*E;
for (int i=0; i<numSpheres; i++){ // Explicit connections

const Sphere &s = spheres[i];
if (s.e.x<=0 && s.e.y<=0 && s.e.z<=0) continue; // skip non-lights
Vec sw=s.p-x,su=((fabs(sw.x)>.1?Vec(0,1):Vec(1))%sw).norm(),sv=sw%su;
double cos_a_max = sqrt(1-s.rad*s.rad/(x-s.p).dot(x-s.p));
double eps1 = erand48(Xi), eps2 = erand48(Xi);
double cos_a = 1-eps1+eps1*cos_a_max;
double sin_a = sqrt(1-cos_a*cos_a), phi = 2*M_PI*eps2;
Vec l = su*cos(phi)*sin_a + sv*sin(phi)*sin_a + sw*cos_a;
if (intersect(Ray(x,l.norm()), t, id) && id==i) // shadow ray

e = e + f.mult(s.e*2*M_PI*(1-cos_a_max)*((obj.refl==DIFF) ?

(l.dot(nl)*M_1_PI) : mollify(l,r.d,n,nl,t,obj.refl)));// BRDF

}
if (obj.refl == DIFF){ // Ideal DIFFUSE reflection

double r1=2*M_PI*erand48(Xi), r2=erand48(Xi), r2s=sqrt(r2);
Vec w=nl, u=((fabs(w.x)>.1?Vec(0,1):Vec(1))%w).norm(), v=w%u;
Vec d = (u*cos(r1)*r2s + v*sin(r1)*r2s + w*sqrt(1-r2)).norm();
return obj.e*E+e+f.mult(radiance(Ray(x,d),depth,Xi,0));

} else if (obj.refl == SPEC) // Ideal SPECULAR reflection
return obj.e+e+f.mult(radiance(Ray(x,r.d-n*2*n.dot(r.d)),depth,Xi));

Ray reflRay(x, r.d-n*2*n.dot(r.d)); // Ideal dielectric REFRACTION
bool into = n.dot(nl)>0; // Ray from outside going in?
double nc=1, nt=1.5, nnt=into?nc/nt:nt/nc, ddn=r.d.dot(nl), cos2t;
if ((cos2t=1-nnt*nnt*(1-ddn*ddn))<0) // Total internal reflection

return obj.e+e+f.mult(radiance(reflRay,depth,Xi));
Vec tdir = (r.d*nnt - n*((into?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm();
double a=nt-nc, b=nt+nc, R0=a*a/(b*b), c = 1-(into?-ddn:tdir.dot(n));
double Re=R0+(1-R0)*c*c*c*c*c,Tr=1-Re,P=.25+.5*Re,RP=Re/P,TP=Tr/(1-P);
return obj.e+e+f.mult(depth>2 ? (erand48(Xi)<P ? // Russian roulette

radiance(reflRay,depth,Xi)*RP:radiance(Ray(x,tdir),depth,Xi)*TP) :
radiance(reflRay,depth,Xi)*Re+radiance(Ray(x,tdir),depth,Xi)*Tr);

}
int main(int argc, char *argv[]){
int w=256,h=256,samps = argc==2 ? atoi(argv[1])/4 : 512; // # samples
Ray cam(Vec(50,52,295.6), Vec(0,-0.042612,-1).norm()); // cam pos, dir
Vec cx=Vec(w*.5135/h), cy=(cx%cam.d).norm()*.5135, r, *c=new Vec[w*h];
for(int y=0; y<h;y++){unsigned short Xi[3]={0,0,y*y*y};// Looping rows

fprintf(stderr,"\rRendering (%d spp) %5.2f%%",samps*4,100.*y/(h-1));
for (unsigned short x=0; x<w; x++) // Loop cols

for (int sy=0, i=(h-y-1)*w+x; sy<2; sy++) // 2x2 subpixel rows
for (int sx=0; sx<2; sx++, r=Vec()){ // 2x2 subpixel cols
for (int s=0; s<samps; s++){

molif_r = 1.*pow(1.+s,-1./6); // Mollification shrinkage

double r1=2*erand48(Xi), dx=r1<1 ? sqrt(r1)-1: 1-sqrt(2-r1);
double r2=2*erand48(Xi), dy=r2<1 ? sqrt(r2)-1: 1-sqrt(2-r2);
Vec d = cx*(((sx+.5 + dx)/2 + x)/w - .5) +
cy*(((sy+.5 + dy)/2 + y)/h - .5) + cam.d;

r = r + radiance(Ray(cam.o+d*140,d.norm()),0,Xi)*(1./samps);
} // Camera rays are pushed ^^^^^ forward to start in interior
c[i] = c[i] + Vec(clamp(r.x),clamp(r.y),clamp(r.z))*.25;

}
}
FILE *f = fopen("image.ppm", "w"); // Write image to PPM file.
fprintf(f, "P3\n%d %d\n%d\n", w, h, 255);
for (int i=0; i<w*h; i++)

fprintf(f,"%d %d %d ", toInt(c[i].x), toInt(c[i].y), toInt(c[i].z));
}

Note: For Windows systems it is necessary to define a few functions and constants. As a simple solution one could add two
following lines in the very beginning of the file:

#define _USE_MATH_DEFINES
#define erand48(dummy) (double(rand()) / RAND_MAX)

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Anton S. Kaplanyan & Carsten Dachsbacher / Supplemental Material: Path Space Regularization

(a) Standard path tracer (b) Path tracer with regularization

Figure 1: Rendering with equal number of samples per pixel (65536 samples) using listing 1 with a very small light source (a)
without regularization and (b) with regularization. Note that with regularization enabled the path tracer can find all transport
paths, even pure specular chains (e.g. glass-mirror-light of which the caustic of the glass sphere seen in the reflection on the
mirror sphere consists). Our algorithm resorts to a consistent estimation only for the paths that it cannot sample in an unbiased
way.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Anton S. Kaplanyan & Carsten Dachsbacher / Supplemental Material: Path Space Regularization

2. Regularization with Monte-Carlo Methods

First, we prove that it is possible to construct a consistent Monte-Carlo estimator with the canonical case of a d-dimensional
delta distribution δ(·) located at the origin of the d-dimensional space Ω.
Lemma 1. Given a d-dimensional integrand of a form f (x) = δ(x)g(x), let fr(x) = ϕr(x)g(x) be a mollification of f (x), where
g(x) is Lebesgue-integrable on Ω; and ϕr(x) is a mollifier function with support on a ball Br ⊂Ω, such that ||Br|| ∝ rd . Then,
given that the random variable X is i.i.d., X ∼ π(Ω), where π(·) is some importance sampling distribution of g(x), such that

∀Xn ∈Ω | g(Xn)> 0 : p(Xn)> 0, then the expectation of the Monte-Carlo estimate F̂N = E
[

1
N

N
∑

n=1

frn (Xn)
p(Xn)

]
is

plim
N→∞

[
F̂N
]
=

∫
Ω

f (x)dx = g(0) = F (1)

for bandwidth sequences {rn} decreasing within the bounds O
(

n−1/d
)
< rn < O(1).

Proof. In order to prove Eq. 1, we show that the mean squared error (MSE) of the left-side estimate vanishes to zero. Our proof
is based on the results of Tornberg [Tor02]. We split the MSE into an analytical part B[F̂]2 and a stochastic part Var[F̂]:

MSE[F̂] = E[F̂−F]2 = B[F̂]2 +Var[F̂]. (2)

Analytical Error. This mollification error (bias) B[F̂] can be written as follows for a given constant bandwidth r

B[F̂r] =
∫

Ω

ϕr(x)g(x)dx−
∫

Ω

δ(x)g(x)dx =
∫

Ω

ϕr(x)g(x)−g(0). (3)

Denote the k-th moment of the mollifier function ϕr asMk(ϕr) =
∫

Ω
xk

ϕr(x)dx. Next, by expanding g(x) into a d-dimensional
Taylor series around zero in the first term, we obtain:

B[F̂r] =
∞
∑
k=0

(
g(k)(0)

∫
Ω

xk

k!
ϕr(x)dx

)
−g(0)

= g(0)M0(ϕr)+g′(0)M1(ϕr)+
1
2

g′′(0)M2(ϕr)+O(M3(ϕr))−g(0)

=
1
2

g′′(0)M2(ϕr)+O(M4(ϕr)) , (4)

where the multidimensional derivative g(k) is expressed as g(k)(x) = ∇kg(x). The last equality is due to the vanishing odd
moments of ϕr and the normalization property of the mollifier.

Then we insert the mollifier of a form ϕ(x) = r−d
ϕ0(x/r):

B[F̂r] =
1
2

g′′(0)
∫
Br

x2r−d
ϕ0(x/r)dx+O

(∫
Br

x4
ϕr(x)dx

)
=

1
2

g′′(0)r2M2(ϕ0)+O
(

r4
)
, (5)

where the constantM2(ϕ0) =
∫

Ω
x2

ϕ0(x)dx is the second moment of the initial mollifier function ϕ0.

Now we consider the upper bound of the collected average error BN during Monte-Carlo simulation at step N, where rn is
varying at each step:

B[F̂]N =
1
N

N

∑
n=1

B[F̂rn] =
1
N

N

∑
n=1

(
1
2

g′′(0)r2
nM2(ϕ0)+O

(
r4

n

))
. (6)

We need to enforce B[F̂]N → 0 as N →∞ for a consistent estimation. Thus we have the first boundary condition for the
bandwidth shrinkage rate:

rn < O
(

n0
)
= O(1) . (7)

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Anton S. Kaplanyan & Carsten Dachsbacher / Supplemental Material: Path Space Regularization

Stochastic Error. Here we make sure that the stochastic term of the MSE – the variance of the Monte-Carlo integration – also
vanishes. The variance of the estimator F̂ for a single sample with mollification bandwidth r is

Var[F̂r] = E[F̂2
r]−E[F̂r]

2 =
∫

Ω

r−2d
ϕ0(x/r)2g(x)dx−

(
g(0)+B[F̂r]

)2

=
∫

Ω

r−2d
ϕ0(x/r)2

∞
∑
k=0

xk

k!
g(k)(0)dx−

(
g(0)+B[F̂r]

)2

= r−d
(∫

Ω

ϕ0(y)
2dy
)

g(0)2 +O(1) . (8)

The equation in the last line is obtained after the change of variable y = x/r. Also according to Eq. 7 the bandwidth r is
asymptotically r� 1. We then express the average variance of the Monte-Carlo integration as

Var[F̂]N =
1

N2

N

∑
n=1

Var[F̂rn] = g(0)
(∫

Ω

ϕ0(x)
2dx
)

1
N2

N

∑
n=1

r−d
n +

1
N2

N

∑
n=1

O(1). (9)

The first equality is due to the assumption that all samples are i.i.d. Again, we enforce Var[F̂]N → 0 as N →∞ in order to
eventually achieve consistency. This yields the second boundary condition for the bandwidth shrinkage rate

rn > O
(

n1/d
)
. (10)

Theorem 1. Given the unified space of all light transport paths Ω, the Monte-Carlo estimation ÎN = E
[

1
N

N
∑

n=1

frn (x̄n)
p(x̄n)

]
of the

path integral as in Eq. 1 in the paper with a measurement function f (x̄) as an integrand, converges consistently under the
conditions of Lemma 1 with selective regularization of fr(x̄), i.e.

plim
N→∞

[
ÎN
]
= I (11)

only if the sequence of mollification bandwidths {rn} decreases within the bounds O
(

n−1/d
)
< rn < O(1).

Proof. The integrand f (x̄) can be uniquely separated into two integrands: an integrand which consists solely of samplable
(regular) paths g(x̄) and an integrand consisting only of non-samplable (irregular) paths h(x̄) (due to the determinism of the path
classification). Then the path integral can also be decomposed into a regular and an irregular part I = I0 + I1 =

∫
Ω

g(x̄)dµ(x̄)+∫
Ω

h(x̄)dµ(x̄), where fr is a selectively regularized measurement function. The conventional Monte-Carlo proof passes for the
regular integral

∫
Ω

g(x̄)dµ(x̄). Thus we need to prove that the Monte-Carlo estimate of the last integral converges to I1.

Given an i.i.d. random variable on Ω, and the fact that the space Ω is translation invariant, we apply Lemma 1 to the Monte-Carlo
estimator of the regularized integral Î1

r =
∫

Ω
hr(x̄)dµ(x̄), yielding

plim
N→∞

[
Î1
N

]
= I1. (12)

This result implies the bounds for the mollification bandwidth shrinkage rate from Lemma 1.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Anton S. Kaplanyan & Carsten Dachsbacher / Supplemental Material: Path Space Regularization

3. Regularization with Markov Chain Monte-Carlo Methods

In the following we provide a proof for Theorem 3 in the paper.

3.1. Preliminaries

The transition (Markov) kernel K(·, ·) of a Markov chain is a mapping Ω 7→ Ω with source x ∈ Ω and target y ∈ Ω which is
defined as

K(x,y) = P(y|x), (13)

where P(y|x) is the conditional probability of accepting the new state y given that the current state of the Markov chain is x.

The transition kernel is also defined for a set Y ⊂Ω

K(x,Y) =
∫

Y
K(x,y)dy, (14)

denoting the probability of moving to the set Y from the current state x.

A transition kernel K(·, ·) is called Harris-recurrent if, given sets A and B from Ω along with a positive number ε and a
probability measure ρ, the following holds

1. If τA = inf{n≥ 0 : xn ∈ A}, then Pz(τA <∞)> 0 for all z.

2. If x ∈ A and C ⊂ B, then K(x,C)≥ ερ(C).

In essence, this technical definition can be rephrased as follows: given two states x1 and x2 in A, then there is at least an ε chance
that they can be moved together to the same point at the next time step.

A transition kernel Kn(·, ·) is called an n-step transition kernel and is defined recursively as

Kn(·, ·) =
∫
Ω

K(y, ·)Kn−1(·,y)dy, (15)

where K1 = K(·, ·). The term Kn(x0,xn) denotes the probability of landing into the state xn after n moves (mutations) of the
Markov chain initialized with the state x0.

Note that generally the kernel K = Kn depends on the move n. In this case the Markov chain is called a non-homogeneous
Markov chain. The central limit theorems, which provide the ergodicity conditions for non-homogeneous Markov chains, were
developed by Dobrushin [Dob56]. Before introducing the criterion of weak ergodicity, we first define the Dobrushin’s ergodic
coefficient δ(K) as

δ(K(m,k)) =
1
2

sup
x,y∈Ω

∫
Ω

|Km(x,z)−Km+k(y,z)|dz, (16)

which is bounded in the range 0≤ δ(K)≤ 1 and “assesses” the changes in the kernel K(·, ·) from the step m till the step m+ k.

Now we provide the necessary and sufficient criterion for the weak ergodicity of a non-homogeneous Markov chain [Dob56]

∀m≥ 0 : lim
k→∞

δ(K(m,k))→ 0, (17)

which intuitively means that the changes in the transition kernel at every move (iteration) should be small enough to provide a

weak mixing of the Markov chain. Note that δ(K(m,k))≤
k
∏

n=m
δ(K(n,n+1)) for all m and k. Hereafter we will denote the ergodic

coefficient for a single step, with a slight and innocuous ambiguity, as δ(K(n,n+1)) = δ(Kn) for brevity. Alternatively, Eq. 17
can be written in an equivalent way as

∞
∏
n=0

δ(Kn)→ 0. (18)

We refer the interested reader to the corresponding literature on Markov chains for the further reading, e.g. the book of Pierre
Brémaud [Bre99]. We will use the aforementioned results during the proof of the following theorem.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Anton S. Kaplanyan & Carsten Dachsbacher / Supplemental Material: Path Space Regularization

3.2. Main result

Theorem 2. Given the unified space of all light transport paths Ω as a state space, and a Harris-recurrent transition kernel
K(·, ·) on it, the Markov chain Monte-Carlo estimation of an integral

I =
∫

Ω

f (x̄)dµ(x̄) (19)

with selective regularization of the integrand fr(x̄) (as in Sect. 4 in the paper) converges almost surely if the mollification
bandwidth shrinkage rate is O(γn)≤ rn < O(1) for some γ ∈ (0;1).

Proof. Similarly to the proof of Theorem 1, we consider a decomposition of Ω into a subspace of regular paths Ωreg and a
subspace of irregular (non-samplable) paths Ωirreg.

The outline of our proof is as follows: we first use the lower bound of the original Harris-recurrent kernel K(·, ·) (initially
defined for regular paths only) and then show that by adding the regularization of the ill-posed paths, the Markov chain, which
runs on both regular and (regularized) irregular paths, becomes weakly ergodic.

Since the original kernel K is Harris-recurrent, it passes the original Metropolis proof [MRR∗53] and there exists a lower bound
0 < κ < 1 for it, such that for all regular paths on Ωreg the following holds [Bre99]:

δ(Kn)≤ Lκ
n, (20)

for some positive finite constant 0 < L<∞.

The Markov chain running on regularized paths is similar to the simulated annealing process: the target distribution is slowly
“cooled down” throughout the integration. Thus, following Brémaud [Bre99], we first find a lower bound of the regularized
kernel K′rn for the step n. For that, we first assume that the mollification happens in 0 < d <∞ dimensions. By adding the
mollification, we make the transition kernel also non-zero on the target subspace of all irregular paths Ωirreg and its regularized
neighbourhood. It is important to notice that the set of regularized paths, which represent one irregular subpath, should have a
smoothly vanishing mass due to the gradual reduction of the mollification bandwidth (and correspondingly the support of the
regularized set).

Then we recall the property of a d-dimensional mollifier: there is a constant 0 <Mϕ <∞ (usually equal one) that ϕ0 <

Mϕ everywhere, and thus ϕn <Mϕr−d
n . The transition probability for escaping such set of (regularized) irregular paths is

proportional to contribution of regularized paths, which grows as the lower bound of the mollifier. Using this property, along
with the lower bound κ for the non-mollified part of the original transition kernel (we use the regular mutations from the original
kernel K for non-mollified dimensions), we obtain a lower bound for the Dobrushin’s ergodicity coefficient for the transition
kernel K′rn at move n with bandwidth rn (see e.g. [Bre99, Chapter 6] for a more detailed proof of the simulated annealing):

δ(K′rn

n
)≤ δ(Kn)MϕLr−d

n ≤MϕLκ
nr−d

n . (21)

See also Mitra et al. [MRSV86] for similar bounds on simulated annealing with slowly mixing non-homogeneous Markov
chains.

Now we can use Eq. 18 (Dobrushin’s inequality for non-homogeneous Markov chains)

∞
∏
n=1

δ(K′rn

n
)→ 0, (22)

which guarantees the weak ergodicity of the constructed Markov chain.

By inserting the lower bound from Eq. 21 into this equation

∞
∏
n=1

δ(K′rn

n
)≤

∞
∏
n=1

(
MϕLκ

nr−d
n

)
→ 0, (23)

we obtain the final bounds on the shrinkage rate of the mollification bandwidth rn:

O
(
γ

n)≤ rn < O(1) , (24)

where κ≤ γ < 1 should be greater or equal to the spectral gap κ of the original transition kernel K(·, ·).

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Anton S. Kaplanyan & Carsten Dachsbacher / Supplemental Material: Path Space Regularization

Figure 2: An illustration of the convergence of the regularized Metropolis light transport method. The light is coming through a
window from outside. The caustics on the floor are regularized using angular mollification of the specular BRDF on the window
glass for demonstration purposes. Left to right: 1/5/10/20/50 mutations per pixel. Note how the silhouettes of the caustics
become sharper during the integration process, demonstrating the behaviour of the MCMC estimator with regularization in
practice.

3.3. Discussion on the Convergence of the Regularized Markov Chain Monte-Carlo Methods

Selecting the regularization parameters. One practical sequence of bandwidths would be rn = r0γ
n. There are no theoretical

restrictions on the selection of the initial bandwidth r0. However, from practical considerations, we recommend to select it
such that the used set of mutation strategies can easily sample the subset of the path space which is covered by the smallest
regularized feature in the image. According to our experiments, this parameter can be determined using the same heuristic as
the one used for computing the initial global radius in progressive photon mapping (PPM) [HOJ08].

Note that the parameter γ ∈ (0;1) has a different meaning comparing to the Monte Carlo integration. This parameter ideally
should be selected close enough to the kernel spectral gap (the distance between two largest eigenvalues of the transition kernel)
which denotes the base of the geometric convergence rate of the probability measure Kn(x0, ·) with any valid initial state x0
to the target distribution in total variation [Bre99]. It has to be chosen close enough to one to guarantee practical convergence.
Intuitively that means that depending on the mutation strategies used, the parameter γ should be selected such that the regular
part of the integral (the part of the original MLT method) converges faster than the singularities from ill-posed paths start to
appear in the integrand. In case if this value is selected wrongly (smaller than the spectral gap), the practical mixing of the chain
is dominated by the regularized features and eventually lead to a wrong image where regularized features would be oversampled
while the rest of the image would remain undersampled.

Requirements to the MLT mutation strategies. The proof of Th. 2 is based on the assumption that the set of mutation strate-
gies used in some particular implementation of Metropolis light transport meets the practical conditions for Harris recurrence
of the transition kernel. In case of Metropolis-Hastings sampling used in MLT this means that there should be a non-zero
probability (bounded with some positive constant from below) that the chain will return into any current state it can ever land
into.

For the original MLT [Vea98] this is practically achieved by using the bidirectional mutation strategy, which can regenerate the
path from scratch and thus guarantees that the visited path can be sampled again.

In case of Kelemen mutations in the hypercube of random numbers [KSKAC02], this condition is satisfied by the so-called
“large step” mutation, which also regenerates a complete path from scratch, providing the positive probability of returning into
any state.

References
[Bre99] BREMAUD P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, 1999. 6, 7, 8

[Dob56] DOBRUSHIN R. L.: Central limit theorems for non-stationary Markov chains II (Russian). Theory of probability and its applications
1, 4 (1956), 356–425. 6

[HOJ08] HACHISUKA T., OGAKI S., JENSEN H. W.: Progressive photon mapping. ACM Transactions on Graphics 27, 5 (2008), 130:1–
130:8. 8

[KSKAC02] KELEMEN C., SZIRMAY-KALOS L., ANTAL G., CSONKA F.: A simple and robust mutation strategy for the metropolis light
transport algorithm. Computer Graphics Forum 21, 3 (2002), 531–540. 8

[MRR∗53] METROPOLIS N., ROSENBLUTH A. W., ROSENBLUTH M. N., TELLER A. H., TELLER E.: Equation of state calculations by
fast computing machines. The Journal of Chemical Physics 21, 6 (1953), 1087–1092. 7

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Anton S. Kaplanyan & Carsten Dachsbacher / Supplemental Material: Path Space Regularization

[MRSV86] MITRA D., ROMEO F., SANGIOVANNI-VINCENTELLI A.: Convergence and finite-time behavior of simulated annealing. Ad-
vances in Applied Probability 18, 3 (1986), 747–771. 7

[Tor02] TORNBERG A.-K.: Multi-dimensional quadrature of singular and discontinuous functions. BIT Numerical Mathematics 42, 3 (2002),
644–669. 4

[Vea98] VEACH E.: Robust monte carlo methods for light transport simulation. PhD thesis, Stanford University, 1998. AAI9837162. 8

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

