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Figure 1: Equal-time rendering (2 hours) of the BATHROOM scene with a pinhole camera and indoor illumination from an LED
panel. The LED panel showing the EG logo is modelled of 4194 point light sources (not covered by a fixture). The reflection
of these light sources in the mirror is missing with previous methods as neither path tracing, nor Metropolis light transport, nor
progressive photon mapping can handle all light transport paths. With our regularization, applicable to all unbiased methods,
even path tracing can sample such difficult paths in a consistent way – without introducing bias to the rest of the image.

Abstract
We propose a simple yet powerful regularization framework for robust light transport simulation. It builds on
top of existing unbiased methods and resorts to a consistent estimation using regularization only for paths which
cannot be sampled in an unbiased way. To introduce as little bias as possible, we selectively regularize individual
interactions along paths, and also derive the regularization consistency conditions. Our approach is compatible
with the majority of unbiased methods, e.g. (bidirectional) path tracing and Metropolis light transport (MLT), and
only a simple modification is required to adapt existing renderers. We compare to recent unbiased and consistent
methods and show examples of scenes with difficult light paths, where regularization is required to account for
all illumination features. When coupled with MLT we are able to sample all phenomena, like recent consistent
methods, while achieving superior convergence.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

Keywords: global illumination, light transport, regularization, Markov chain Monte-Carlo

1. Introduction

Ever since generating synthetic images with computers be-
came possible, researchers in computer graphics were fasci-
nated by the reproduction of realistic scenes. The key to pho-
torealism is a physically-based global illumination computa-
tion. Although the problem can be formulated as the well-
known rendering equation [Kaj86], not all computational
models provide a full solution. High-quality rendering,
which we target in this work, is nowadays based on Monte-
Carlo or Markov chain Monte Carlo methods. However, it
is often ignored that, as pointed out by Veach [Vea98], there
are configurations of scene geometry, materials, and light-
ing that cannot be handled with existing (unbiased) meth-

ods. In particular, these include reflected caustics (specular-
diffuse-specular chains) or multiple consecutive specular in-
teractions and point light sources as shown in Fig. 1.

Global illumination methods are often used for predictive
rendering in architecture, product concept design, and movie
productions. With these applications, we can nowadays ob-
serve more and more involved scenarios for light transport
simulation, e.g. complex materials or lighting from light-
emitting diodes (LEDs) used in cars and interior lighting.
The emitting surfaces in LEDs have very small area (ranging
from a few square millimeters to a few square micrometers)
and such luminaires are thus often treated as point or almost
point light sources which raises a lot of problems in light
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transport simulation with existing unbiased methods. More-
over, as pointed out by Hachisuka et al. [HOJ08], if a light
source is enclosed in a glass fixture, the majority of unbiased
methods fails to simulate the light transport carried by such
paths in presence of mirrors. Many of these problems stem
from singularities in the integrand of the rendering equation.

In this paper we propose a new regularization framework
for handling this part of the light transport in a consistent
(biased) way, while the remaining transport can still be com-
puted in an unbiased way. The core of our idea is to identify
paths which cannot be sampled because of singularities of
the integrand during construction. We then use regulariza-
tion at a minimum of the vertices of such a path to turn it
into a samplable path, yet with as little bias as possible.

In particular our contributions are:

• A general regularization framework that easily integrates
into existing renderers;
• Robust light transport simulation by selective regulariza-

tion for complex illumination;
• Consistent estimation for paths which cannot be sampled

using unbiased methods.

2. Related Work

Kajiya [Kaj86] formulated the light transport problem as an
integral equation and was the first who proposed an unbi-
ased algorithm for computing a image by sampling paths.
Veach [Vea98] introduced the path integral form for light
transport along with several important methods for variance
reduction and sampling of the path space, e.g. Metropolis
light transport. Important for our work is his observation
that there exist configurations of geometry, light sources, and
sensors, which cannot be sampled by any unbiased method.

Jakob and Marschner [JM12] focused on one type of such
difficult light transport through specular manifolds. They
pointed out that the integrand becomes ill-posed due to the
manifold constraints of specular interactions and proposed a
combination of a local linear solver and ray tracing for walk-
ing along manifolds. They also mentioned that their method
cannot find such paths on itself and only allows for efficient
exploration of the manifold from a known path on it.

Hachisuka et al. [HOJ08] and Hachisuka and
Jensen [HJ09] recently showed that another types of difficult
configurations can be handled by consistent methods, e.g.
by progressive photon mapping, where the systematic error
vanishes in the limit. However, these methods do not address
the problem of difficult paths explicitly, which is usually
done using random walk methods [Vea98]. Following this
idea, Fan et al. [FCL05], Hachisuka and Jensen [HJ11]
and Chen et al. [CWY11] introduced Metropolis sampling
for photon shooting. However, camera subpaths are still
sampled randomly as in path tracing and this, as pointed out
by the authors, causes slow image convergence, e.g. with

glossy surfaces [HJ11]. Kniep et al. [KHM09] considered
difficult configurations of directly visible light sources
and extended photon mapping with angular smoothing in
addition to the spatial density estimation. Our regularization
of pure specular materials is similar to this work, however,
in contrast, we smooth only a fraction of light paths and
only in the angular domain which introduces bias in fewer
places and leads to an overall faster convergence.

In general, photon mapping methods blur the radiance
signal even where it can be well handled by unbiased
methods. This problem was recently addressed by a series
of works, e.g. Vorba [Vor11], Georgiev et al. [GKDS12]
and Hachisuka et al. [HPJ12]. In order to reduce bias
these techniques attempt to combine PPM with bidirec-
tional path tracing (BPT) using multiple importance sam-
pling (MIS) [VG94]. However, both methods have different
convergence rates [KD13] and the unbiased method grad-
ually outweighs the biased one. This might lead to redun-
dant computation on the later stages of image convergence.
The engineering complexity of these approaches is also very
high [HPJ12]. Note that MIS in this case only accounts for
the sampling probability, but not for the absolute amount of
systematic error (bias) admixed. Recently, Kaplanyan and
Dachsbacher [KD13] showed that photon mapping can be
seen as a uniform regularization in path space. Our work
elaborates on this concept, but comprises a general frame-
work for selective regularization in path space.

3. Preliminaries

In this section we review the path integral formulation of
light transport and full-path regular expressions. We also in-
troduce the concept of the regularization with mollification.

3.1. Path Integral of Light Transport

The path integral formulation [Vea98] expresses the function
of camera response measurement in the form of the integral

I =
∫

Ω

f (x̄)dµ(x̄), (1)

where Ω = Ω(M) is the unified space of all possible
light paths of all lengths; x̄ ∈ Ω(M) is a complete path
from light to camera in path space, which is represented
as a vector of points on the scene manifold M, i.e. x̄ =
(x0,x1, ..,xk)k=1...∞; I is a camera sensor measurement;
f (x̄) is a measurement contribution function, which includes
a product of reflection operators at all points of an argument
path x̄ of length k:

f(x̄)=Le(x0→x1)G(x0↔x1)(
k−1

∏
j=1

fs(x j−1→x j→x j+1)G(x j↔x j+1)

)
We(xk−1→xk) (2)

where G(x j ↔ x j+1) is the geometry factor between the
points x j and x j+1; fs(x j−1 → x j → x j+1) is the bidirec-
tional reflectance distribution function (BRDF) at the point
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x j; Le(x0→x1) is the outgoing radiance of the light source
and We(xk−1→xk) the sensor sensitivity. Veach [Vea98] pro-
vides more details on the path integral formulation.

3.2. Full-Path Regular Expressions

We will use Veach’s extended notation [Vea98] of the Heck-
bert notation [Hec90] which also describes the proper-
ties of light sources and sensors: a light path begins with
L(S|D)(S|D), where the first letter after L (indicating the
begin on the light source) denotes a finite-area source D
or source S with zero area, and the second letter denotes
emission over a finite solid angle D or a set of direc-
tions with measure zero S. Analogously, the path ends with
(S|D)(S|D)E where the first letter denotes the directional
sensitivity of the sensor and the second whether the sensor
has a finite area or is a point. Hereafter we denote any of
D or S types with the letter A ≡ (S|D). Letters between this
prefix and suffix correspond to path vertices as in Heckbert’s
original notation. Throughout the paper, we will use high-
lighting to more easily distinguish the vertices correspond-
ing to light sources (green), interactions (black), and camera
(brown). For example, LSD(S)+DDSE describes paths pro-
ducing caustics cast by a point light source, going through
one or more mirrors to a pinhole camera.

3.3. Paths that Cannot Be Sampled

In his thesis, Veach [Vea98, Theorem 8.2] defines the prob-
lem of samplable paths:
Theorem 1. Let x̄ be a path generated by a local sampling
algorithm for which the measurement contribution function
is non-zero. Then x̄ necessarily has the form LA∗DDA∗E,
i.e. it must contain the substring DD. Furthermore, it is pos-
sible to generate any path of this form using local sampling
strategies.

In other words, the probability of sampling paths differ-
ent from Theorem 1 is zero for unbiased methods with local
sampling, including path tracing (PT) and bidirectional path
tracing (BPT), which are also required to initialize Metropo-
lis light transport (MLT). Note that path tracing can only
sample a subset of the paths which are possible with BPT,
e.g. LSDSD+SDE can only be sampled with a complete set
of bidirectional estimators. The mutation strategies for MLT
proposed by Veach [Vea98] are also based on local sampling
and thus obey this theorem. Important to note that the recent
manifold exploration mutation strategy [JM12] could theo-
retically explore such non-samplable paths. However, the al-
gorithm cannot find such paths on its own, i.e. finding these
paths remains an unsolved problem (see Fig 5 for example).

In contrast, consistent methods, such as photon mapping
and progressive photon mapping [HOJ08, HJ09], relax the
condition of Theorem 1, enabling the sampling of com-
plex paths of the form LAAA∗DA∗AAE. This is achieved
by generating light subpaths LAAA∗D and camera subpaths

DA∗AAE independently, and then merging the D-vertices
based on the spatial proximity condition. That is equiva-
lent to regularizing one connection vertex. However these
methods regularize for each path they sample and yet can-
not construct all potential paths, e.g. paths of the form
LSA(S)+ASE, which correspond to a path going from a point
light source to a pinhole camera through a pure specular
manifold (see Fig. 1).

3.4. Mollification

In this section we discuss the approximation of delta distri-
butions by integrable functions. This process will be used
in our work to enable the sampling of difficult parts of the
path space. The Dirac delta distribution, which introduces
the singularities is zero everywhere except at x = 0, where
δ(0) = +∞, and obeys

∫
R f (x)δ(x)dx = f (0) for any ab-

solutely integrable function f ∈ L1. Throughout the paper,
we distinguish between delta functions in spatial or angular
domain by the argument.

Typically, in order to approximate
a d-dimensional delta distribution δ

by integrable functions, one con-
structs a sequence of smooth positive
functions {ϕr} ⊂ L1, such that

||supp(ϕr)|| ∝ O
(

rd
)

∫
Rd ϕr(x)dx = 1

}
⇒ lim

r→0
ϕr(x) = δ(x), (3)

where ||supp(ϕr)|| is a mass of the function support. In other
words, a normalized sequence of smooth functions, whose
supports are vanishing as O

(
rd
)

, implies that it approxi-

mates the d-dimensional delta function. The sequence {ϕr}
is called a mollifier of the delta function.

It is usually expressed in a form of ϕr(x) = 1/rd
ϕ(x/r),

where ϕ(x) is a smooth normalized canonic kernel. The pa-
rameter r is called the mollification bandwidth and has to be
gradually reduced to zero in the limit. We will discuss the re-
duction condition for the bandwidth for different integration
methods in Sect. 5. Hegland and Anderssen [HA96] provide
further information on mollifiers and their properties.

A simple example of mollification for specular reflections
would be to replace the delta distribution in BSDFs by a
function with finite support (see Sect. 4.2).

4. Path Space Regularization

In this section, we introduce our concept of selective regu-
larization of the path space which will enable us to sample
arbitrary paths with local sampling methods. The core idea
is to turn a path which cannot be sampled into a path of the
type from Th. 1 by selectively mollifying some interactions,
i.e. by turning them from S into D. There are two major rea-
sons for S vertices to occur in a path: (1) irregular sensors
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Figure 2: A path that cannot be sampled in an unbiased way.
Note that a regularization of either of the S-vertices on the
lower blue surface (here illustrated for the right vertex) en-
ables us to sample the path (see Sect. 4).

and light sources; and (2) pure specular materials causing
delta responses in the BRDF.

4.1. Singularities in the Integrand of the Path Integral

Light transport can exhibit very narrow modes and singular-
ities due to delta, or near-delta, distributions in the integrand
of the path integral in Eq. 2. Some singularities cannot be ex-
plicitly sampled with unbiased integrators (e.g. the double-
reflection in Fig. 2) and thus some parts of the light transport
are not accounted for in the global illumination solution. In
the following we discuss when such modes and singularities
appear during the path construction process.

Singularities in BRDFs. Perfect and almost perfect mir-
rors cause arbitrarily narrow modes or even delta responses,
resulting in configurations that provably cannot be sam-
pled [RTY94]. A perfect specular reflection, for example,
can be formulated as an angular delta distribution [Vea98]:

fs(xk−1→ xk→ xk+1) = δ(ω−ωi)/〈ωi ·n〉, (4)

where ωi = (xk−1− xk)/||xk−1− xk|| is the incident direc-
tion and n is a surface normal at the point xk. The term
δ(ω− ωi) is a two-dimensional delta distribution on the
sphere of directions S2 and is equal to zero everywhere, ex-
cept for the direction of perfect specular reflection ω. The
BSDF of a specular refraction can be described analogously
by taking into account the indices of refraction.

Singularities in Sensors and Emitters. Other models used
in computer graphics also introduce singularities: a pinhole
camera or a point light source, for example, have zero area,
while directional light sources or orthographic cameras have
a fixed direction. This can lead to paths which cannot be
sampled with stochastic light transport methods. Let xi de-
note the vertices of a light path, then a pinhole camera and a
point light source models can be defined as:

W (xk−1→ xk) = δ(xk−xcamera)W0(ω);

Le(x0→ x1) = δ(x0−xlight)L0(ω),

where W (xk−1 → xk) is the sensor response function of a
pinhole camera; Le(x0→ x1) is the radiance distribution of
the point light source; and W0(ω) and L0(ω) are the angular
sensitivity and radiant intensity correspondingly. Both mod-
els have a spatial delta distribution which makes sampling

them stochastically impossible as the probability of hitting a
point (light or pinhole camera) by randomly shooting rays is
zero. Another example is a thin laser beam which could be
modelled as both spatial and angular delta distributions.

4.2. Example: Regularization of Specular Interactions

If a path cannot be sampled due to a delta function in the
BSDF, as in Eq. 4, we can regularize it by applying mollifi-
cation in the angular domain, e.g. for next event estimation
in path tracing on specular surfaces. The simplest mollifier,
meeting the conditions in Eq. 3, to replace δ(ω−ωi) is the
constant angular mollifier:

ϕε

(
ω,ω′

)
=

1
2π(1− cosε)

1](ω,ω′)<ε, (5)

where 1 is an indicator function, i.e. this function takes non-
zero values only if the angle between ω and ω

′ is less than
ε; normalization of the mollifier is achieved using the factor
1/(2π(1− cosε)). Normalized smooth kernels with a van-
ishing first moment can improve the convergence slightly,
but we decided to use indicator for brevity.

Instead of letting the user choose an initial mollification
angle, we opt for making the parameter choice similar to
photon mapping. To this end, we compute ε based on the
distance l between the two involved path vertices and a user-
specified spatial radius r as ε = arctan(r/l) (see Fig. 3, left).
Note that for r� 1 the term arctan(r/l)≈ r/l. That allows
us to use r instead of ε in the asymptotic convergence condi-
tions in Sect. 5.

4.3. Other Types of Regularization

Spatial Regularization can be easily introduced, e.g. using
a spherical spatial mollifier ϕr(x,x0) =

3
4πr3 1‖x−x0‖<r. This

mollifier also obeys the conditions in Eq. 3. Spatial molli-
fication can be useful in participating media rendering, e.g.
in spirit of volumetric photon mapping [JC98]. However, we
recommend to avoid spatial mollification if possible, as the
spatial delta function is 3-dimensional (compared to the 2-
dimensional angular delta function of specular BRDF) and,
as we will see in Sect. 5, the dimensionality of the delta func-
tions directly affects the convergence of the integration.

Near-Singular Interactions. In general, most of the de-
scribed non-samplable paths do not exist in the real world
where no perfect point light sources or pinhole cameras ex-
ist. However, in terms of sampling, near-singular functions,
e.g. highly-glossy BRDFs, are almost as problematic as sin-
gularities, as the sampling probability can be very close to
zero. In general, mollification can be applied on top of any
near-singular function leading to consistent integration.

Regularization for BRDFs depends on the representation:
for measured BRDFs it can be easily achieved using a nu-
merical convolution. For the regularization of narrow lobes
of analytic BRDFs we suggest the following options:
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• Importance-sample the BRDF and then connect only if the
connecting vertex lies within the mollification cone of the
BRDF sample. This is statistically correct and equivalent
to the procedure that photon mapping methods perform.
• We could extract the major asymptotic term of the solid

angle quantile [JM12] of the analytic model w.r.t. its
roughness parameters. Using this term it is possible to ad-
just the roughness of the model according to the mollifi-
cation bandwidth when regularization is required.

In general, the decision on when to regularize near-
specular paths should depend on various factors, such as
performance-accuracy trade-offs or measures like the cur-
vature of the local light field. The problem of near-singular
transport (due to narrow BRDF lobes and complex illumina-
tion) can also be addressed using the manifold exploration
mutation strategy [JM12]. Note that our work focuses on an
orthogonal problem: finding non-samplable transport paths.

4.4. Selective Regularization

An ad-hoc regularization approach – to mollify all delta dis-
tributions in the integrand – would lead to a large bias, in
particular at the early stages of rendering. To keep the bias to
a minimum, we mollify as few interactions as possible (e.g.
only one S-vertex in Fig. 2). For a selective regularization we
always have to determine all interactions along a path first.
Prior to that, it is not possible to determine whether it can
be constructed in an unbiased way or not. And thus we can
also not decide earlier whether it is necessary, and where to
regularize the path.

Example: Regularization with Path Tracing. If the paths
are generated using unidirectional path tracing, we decide
about the regularization only at the next event estimation
(directly sampling light sources), because the path type is
completely formed only at this stage. Consequently, the only
vertex we can mollify at this stage, without regenerating the
path, is either the last interaction type or the position on the
light source (or both if necessary). Note that for a unidi-
rectional path tracer, every path that ends with "S" is non-
samplable. Thus there are more types of paths that cannot be
handled by this technique since PT is a subset of BPT.

Consider an example where a subpath from a pinhole
camera to a specular surface SDSE, which is to be connected
to a point light source LSD, can be turned into a samplable
path by mollifying the last-generated interaction type yield-
ing LSDDDSE (Fig. 3, left). Note that the mollification of
the light source position and/or of the singular BSDF at this
interaction vertex would enable us to construct the path.

4.5. Regularization with Bidirectional Estimators

When using a bidirectional estimator, the decision can be
made only when connecting the two subpaths, as the type
of the full path is not known before. And at this point, we

rN

S
LSD

DSE LDS

SDE
S

S{
ω

ω’

Figure 3: Left: regularization with mollification at the next
event estimation in unidirectional sampling. Right: regular-
ization at two interactions with bidirectional sampling.

can regularize either of the two connection vertices or both
to eventually turn it into a path of the type in Theorem 1.
Fig. 3 (right) shows an example where the regularization of
interactions at both connection vertices is required.

In bidirectional methods, e.g. BPT, we typically use a set
of bidirectional estimators which contains all possibilities
to construct the respective path. If the resulting path can be
sampled in an unbiased way, there is no need to apply regu-
larization and we handle it in an unbiased way as in original
BPT, weighting the respective contributions of the bidirec-
tional estimators in the set using multiple importance sam-
pling (MIS) [VG94]. However, if the path cannot be sam-
pled in an unbiased way, we regularize it. It is important to
note that the set of bidirectional estimators for such regular-
ized path always consists solely of biased estimators. In the
following we introduce a weighting strategy for regularized
paths which can be seen as a counterpart of MIS for a set of
biased estimators.

Weighting Strategy for Biased Estimators. Consider an
example of a path LSDSDSDSE (as in Fig. 2) which can
be turned into a samplable path by mollifying the BSDF at
the first or second specular vertex in the middle part, which
yields two different estimators E1 and E2. In order to achieve
consistent results we have to choose the weights for com-
bining these estimators, w1 and w2, such that w1 +w2 = 1,
analogously to MIS. However, in contrast to MIS, both es-
timators with regularization are biased and the goal of the
combining strategy should be bias minimization.

For this we propose to use a maximum distance heuris-
tic which assigns wi = 1 if the estimator Ei corresponds to
the path with the longest distance l between the two con-
nection vertices among the estimators with the lowest possi-
ble number of regularized dimensions; otherwise we assign
wi = 0. This is equivalent to a minimization of the molli-
fication bandwidth r. Hegland and Anderssen [HA96] also
show that the mollification error (bias) directly depends on
the bandwidth.

Discussion. When using regularization for near-singular in-
teractions (Sect. 4.3), we would face the problem of combin-
ing consistent with unbiased estimators of the same path. In
this case one can use the original MIS with the bias consid-
erations as in [GKDS12].
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5. Regularization with Integration Methods

As we have seen, it is straightforward to apply regulariza-
tion to both unidirectional and bidirectional sampling. This
enables us to apply our regularization framework to all ex-
isting unbiased methods, including bidirectional path tracing
and Metropolis light transport.

Note that the regularization with mollification is transpar-
ent to the integration method: the integration method does
not require changes, instead the regularization selectively
smoothes singular modes in the underlying integrand. Thus
all existing variance reduction techniques, sampling meth-
ods, and mutation strategies can be used together with this
type of regularization without any changes.

We will describe how to gradually reduce the mollification
bandwidth with each integration iteration to achieve consis-
tent results in the limit. We derive the shrinkage rate condi-
tions to compute the bandwidth rn for the n-th iteration from
the user-specified initial mollification bandwidth r0.

5.1. Consistent MC Integration with Regularization

In order to achieve a consistent estimation of the path inte-
gral in Eq. 1 with Monte-Carlo (MC) integration methods,
such as PT and BPT, the mollification bandwidth has to be
gradually reduced after each step of the integration. Recall
that one or both interactions might require regularization.
For the latter case, the two delta distributions can be com-
bined into one using a combined product measure. In this
case the dimensionality of the new-formed delta distribution
is the sum of dimensionalities of the two original ones. If the
mollification is applied to a d-dimensional delta distribution,
the reduction rate has to be in the following boundaries (see
App. A for a proof):

O
(

n−1/d
)
< rn < O(1) , (6)

where n is the index of the sample taken for the integra-
tion. As a practical and simple sequence we suggest to use
rn = r0n−λ, where r0 is the user-specified initial mollifica-
tion radius and λ ∈ (0;1/d) for a d-dimensional mollifica-
tion. Note that this range evaluated for a 2D specular mol-
lification matches the one in PPM for rn = r0n(α−1)/2 with
α ∈ (0;1) [HOJ08,KD13]. Similarly to the optimal parame-
ter for PPM [KD13], we choose λ = 1/6 for a single-vertex
specular mollification and λ = 1/12 for two vertices. This
mollification parameter λ is defined globally and the band-
width shrinking causes the regularized parts of the integrand
to become sharper with every integration step, yielding a
consistent estimation in the limit.

Note that even path tracing with regularization of specu-
lar interactions is already able to handle all light transport
paths. In the supplementary material we provide a modified
version of “SmallPT”, a minimalistic path tracer by Kevin
Beason, demonstrating the simplicity of our method. How-

ever, PT and also BPT are significantly less efficient for sam-
pling regularized paths than MCMC methods introduced in
the next section (see Sect. 7 for a discussion).

5.2. Consistent MCMC Methods with Regularization

Markov chain Monte-Carlo (MCMC) methods, such as
Metropolis light transport (MLT), greatly improve on the
slow convergence of MC methods: once a narrow mode is
found, it is explored thoroughly by the Markov process. Reg-
ularization can also be applied to MCMC methods to enable
a consistent estimation of paths which cannot be handled
with the original methods.

Our proposed method combines the simulated annealing
optimization method with MCMC integration. Intuitively,
the “sharp peaks” of the integrand are regularized (smoothed
out) in the beginning of the integration such that the Markov
chain can easily find them. In order to achieve consistency,
the regularization is reduced throughout the integration. The
important condition is to “sharpen” these peaks slower than
the integrand converges, as otherwise the Markov chain
might get stuck in the sharp peak for a long time, jeopar-
dizing the convergence of other parts of the image. When set
up correctly, MCMC methods solve the slow convergence
problem of MC methods along with the problem of diffi-
cult paths in consistent methods (see Fig. 4). Note that the
Markov chain finds regularized paths even if it is not initial-
ized with any of them, i.e. there is no need to initialize with
non-samplable paths.

We start by creating initial paths using unbiased local
sampling (BPT in our implementation). While mutating
them, we apply selective regularization to non-samplable
paths by mollifying the interactions, as in Sect. 4, and us-
ing the decreasing mollification bandwidth rn at mutation
n. The target distribution (altered by the shrinkage rate)
should change slower than the Markov chain mixing rate.
The shrinkage rate of the mollification bandwidth for a sin-
gle Markov chain

O
(
γ

n)≤ rn < O(1) , (7)

ensures that the change in the target distribution for mutation
n is small enough (see App. B). We use an ad-hoc sequence
rn = r0γ

n, where the constant r0 should be appropriately se-
lected by the user to be large enough to allow the Markov
chain to easily reach any of the mollified paths from any
state during the first steps. Also note that the parameter γ

is problem-dependent and has a different meaning than in
Monte Carlo integration: γ ∈ (0;1) should be more than the
spectral gap of the transition kernel K(·, ·). It has to be cho-
sen close enough to 1 to guarantee the practical convergence.

Normalization Constant. The initialization of MCMC
methods is done with unbiased methods to estimate the im-
age normalization constant correctly. Veach’s original nor-
malization [Vea98] also works in our case, as it is based on a
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Figure 4: Equal time rendering (30 min.) of the BUDDHA scene at 1024×768. This simple scene illustrates the additional light
transport paths enabled by the regularization. It is “simple enough” such that it can be handled with progressive photon mapping
which we used to compute the “reference” (4 hours). Please zoom in the electronic version.

scaling ratio to the alternative sampling method (BPT in our
case). However, there might be cases when regularized fea-
tures dominate the resulting image and thus it is hard, or even
impossible, to determine the normalization constant solely
based on paths that can be sampled in an unbiased way.
In order to avoid such cases, we propose to initialize MLT
with a selectively regularized integrand (using regularized
BPT). We then refine the normalization constant sparsely,
e.g. once per several hundred mutations, by sampling some
additional paths using regularized BPT. During this process
both mollification bandwidths for MLT and BPT are shrunk
as described in Sect. 5.1 and 5.2. This way the normaliza-
tion constant is estimated in a consistent way and practically
converges earlier than the actual image (see Fig. 5).

6. Implementation Details

For our experiments and comparisons we use the follow-
ing rendering methods: standard path tracing (PT) [Kaj86]
with next event estimation; bidirectional path tracing
(BPT) [VG94, LW93] with multiple importance sam-
pling [VG94] (power heuristic, β = 2); Metropolis light
transport (MLT) with the original set of mutations [Vea98]
as well as with simple mutations in the unit hypercube and
bidirectional connections [KSKAC02]; stochastic progres-
sive photon mapping (PPM) [HOJ08, HJ09]; and its vari-

ant with Metropolis photon tracing (MCPPM) [HJ11]; and
recent vertex connection and merging (VCM) [GKDS12].
Note that our method is orthogonal to the sampling strat-
egy, i.e. one could use the original mutations proposed by
Veach [Vea98] as well as the recent additional mutation
through specular manifolds [JM12].

Our renderer is implemented using the Nvidia OptiX ray
tracing platform and all results have been measured using a
GeForce 580 GTX GPU. Unless stated otherwise, all images
have been rendered at 1024×768 resolution.

In Alg. 1 we provide a simple listing for Monte-Carlo in-
tegration, which can replace the evaluation routine for the
specular material in an existing unbiased renderer. Note that

Algorithm 1 Selective Angular Mollification of a Single
Specular Interaction for Bidirectional Path Tracing; reflec-
tion direction ω and direction to vertex ω

′.
if current vertex is ”S” then

if path not contains ”DD” then
rN ← r0 ·N−λ . Shrink bandwidth with iterations
εN ← arctan rN

connection_distance . Compute angle
return ϕεn(ω,ω

′)/〈ω ·n〉 . Evaluate mollifier
else return 0 . Mollification is not required

c© 2013 The Author(s)
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the same code can be reused for MCMC integration with
the difference in shrinkage evaluation of rn. Special attention
should be paid to the machine precision during the integra-
tion. Since the mollification angle can become very narrow
after many iterations, it can run out of floating point preci-
sion. We suggest to avoid dividing by the connection dis-
tance in Alg. 1, but to work on a scaled sphere, which con-
tains the vertex to be connected to. In the additional material
we provide a modified version of ’SmallPT’, a minimalistic
path tracer by Kevin Beason, demonstrating the few changes
our method requires.

Parameters. Both r0 and λ (for MC integration) / γ (for
MCMC integration) are user-defined parameters; r0 controls
the mollification blurring in spatial units. In the case of MC
integration λ controls the shrinkage rate and is equivalent to
this in PPM [HPJ12, KD13]. For MCMC, in contrast, γ is
the second largest eigenvalue of the transition kernel and de-
notes the mixing rate of the Markov chain. It depends on the
scene and cannot be known in advance. It is usually hard or
impossible to obtain from a given transition kernel, thus we
suggest to select it empirically close enough to 1 in order to
achieve the practical convergence. We use the value of 1%
of the scene bounding radius for the initial on-surface band-
width r0, λ = 1/6 for MC integration with 2D regularization
and γ = 1−10−4 for MCMC integration in all experiments.

7. Results and Discussion

Fig. 4 shows PT, BPT and MLT with and without regulariza-
tion to demonstrate the difference when accounting for all
light transport paths (which in this case can also be handled
with progressive photon mapping).

Fig. 5 shows a comparison of MLT with regularization
and Markov chain PPM (MCPPM) demonstrating the con-
vergence of our method. Note that MCPPM as well as the
original MLT method does not handle all light transport
paths (see also Fig. 1). The bias introduced by the regu-
larization is apparent as blurring of the floor caustics re-
flected in the wall; due to a spatially-controlled mollifica-
tion it is similar to the bias of PPM. However, the major-
ity of lighting in regularized MLT is rendered in an unbi-
ased way, which can be seen by comparing the sharpness
of the edge of the directly visible caustic on the floor. Also
note that the bright splotches in both regularized and origi-
nal MLT images are due to Kelemen et al.’s simple mutation
strategy [KSKAC02]; the original mutation set with the re-
cent manifold exploration (the last two images in the bottom
row) reduce these artifacts.

Fig. 6 demonstrates the strength of our method in finding
difficult paths. Due to the specular BRDF and the pinhole
camera, unbiased methods typically have difficulties han-
dling the reflection of the LEDs on the curved surface.

Future Work and Limitations. An interesting study for fu-
ture work would be an analysis of the spectral gap of the

Figure 6: The EG logo is made of 4194 LEDs and placed
over a curved specular water surface with a subtle diffuse
component. The image was rendered using MLT with regu-
larization in 10 minutes at a resolution of 256×256 pixels.

transition kernel of MCMC methods, since all marginal dis-
tributions are known. This would allow us to assess the lower
bound of the convergence rate as well as the more accurate
choice of the bandwidth shrinkage rate parameter γ.

One limitation of our method can be observed with en-
ergy redistribution path tracing (ERPT) [CTE05]. It can also
benefit from regularization, but due to the design of the algo-
rithm the bias can be high: ERPT computes a predetermined
number of mutations for many short chains and thus the mol-
lification bandwidth has to be reset to r0 for every new chain.

Other Consistent Methods as a Special Case. Photon
mapping methods can be considered as a special case of
regularization. These methods do not connect eye-subpaths
with randomly shot light-subpaths (as BPT), but one more
ray is shot from the eye-subpath according to the local im-
portance function and then a range query gathers from prox-
imate light-subpaths at the intersection point. This can be in-
terpreted as angular regularization after sampling, leading to
the same regularization procedure that we propose for spec-
ular BRDFs. However, this regularization is applied to all
paths regardless whether they can be sampled or not.

On the other hand, PPM better samples certain types of
illumination than BPT. This is due to the efficient caching
of light-subpaths using range queries which connect an
eye-subpath to multiple light-subpaths (stored in a photon
map) [GKDS12]; in contrast, BPT connects to random in-
stead of relevant paths. However, our method can also be
combined with more advanced sampling methods such as
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MCPPM, 30 min. Regularized MLT, 30 min. MCPPM, 180 min. Regularized MLT, 180 min.

Original MLT, 180 min. VCM, 180 min. MLT+ME, 17k mut./pixel Regularized MLT+ME, 17k mut./pixel

Figure 5: Equal time comparison: a point light illuminates the KITCHEN scene from outside through glass windows. Note how
MCPPM introduces bias where MLT does not: here bias becomes noticeable as blurred edges of the floor caustic (red inset).
The right inset shows regions where both MCPPM and regularized MLT introduce bias; original MLT cannot handle the caustic
reflected off the mirror wall. For MCPPM we update eye subpaths once per 2000 mutations of the Markov chain. We use 16384
Markov chains mutating in parallel for both MLT and MCPPM. VCM [GKDS12], one of the most advanced non-Metropolis
techniques, generates noisy results which is due to the inefficiency of random path sampling (compared to exploring the small
subset of light paths through the window contributing to the lighting in the image). The two rightmost figures in the bottom
row were rendered using original Metropolis light transport [Vea98] with the recent manifold exploration mutation [JM12]
using the Mitsuba renderer [Jak10]. We use roughly the same number of mutations per pixel as for other images rendered with
our renderer in 3 hours. The slight difference to the other images is due to the different material descriptions used. Note how
manifold exploration is able to efficiently explore regularized paths.

MLT, which has a superior convergence than PPM in non-
trivial illumination scenarios (Fig. 5) and does not suffer
from the absence of the cache as BPT (Fig. 4).

Virtual spherical lights (VSL) [HKWB09] are used to
replace virtual point lights for faster rendering of glossy
scenes. This is equivalent to an angular mollification of spec-
ular BRDFs (at the connection point) and convergence is
also achieved by gradually shrinking the VSL radii (as in
Eq. 6).

Conclusions. We have shown that selective regularization
in path space using mollification enables us to overcome
the ill-posedness of the light transport integrand, orthogo-
nally to the integration method used. The regularization is

only required for a small subset of the path space, avoiding
bias for the majority of light transport, while handling dif-
ficult paths in a consistent way. This provides a simple yet
powerful framework, which incorporates existing consistent
methods as special cases. It enables consistent sampling of
paths, hitherto non-samplable by advanced techniques, such
as Metropolis light transport.
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Appendix A: Consistency of Regularized Monte-Carlo
If we consider only a specular BRDF regularization as pro-
posed in Sect. 4.2, one could claim equivalence to progres-
sive photon mapping and conclude the consistency. Here we
show that the regularization framework, including arbitrary
(e.g. spatial) mollifications, is also consistent under general
conditions. Due to size constraints we provide all proofs in
the supplementary material.
Theorem 2. Given the unified space of all light trans-
port paths Ω, the Monte-Carlo estimation of an inte-
gral as in Eq. 1 with a measurement function f (x̄) as
an integrand, converges consistently with integrand fr(x̄)
with d-dimensional selective regularization (as described in
Sect. 4), i.e.

E
[
Î
]
= E

[
1
N

N

∑
n=1

frn(x̄n)

p(x̄n)

]
= I

if and only if the sequence of mollification bandwidths {rn}
decreases as O

(
n−1/d

)
< rn < O(1).

Appendix B: Consistency of Regularized MCMC
The following theorem states that given an ergodic mutation
strategy, selective regularization leads to a consistent estima-
tion of the integral in Eq. 1.
Theorem 3. Given the unified space of all light transport
paths Ω as a state space, and a Harris-recurrent transition
kernel K(·, ·) on it, the Markov chain Monte-Carlo estima-
tion of an integral in Eq. 1 with selective regularization of
the integrand fr(x̄) (as in Sect. 4), converges almost surely
if bandwidth shrinkage rate is O(γn)≤ rn < O(1) for some
γ ∈ (0;1).

Note that the conditions of the theorem assert that the mu-
tation strategy should not only cover the whole path space,
but the probability of returning to the same path has to be
non-zero. All sets of existing strategies, including Kelemen’s
and Veach’s mutation sets, comply.
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