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This article introduces a novel locally adaptive progressive photon map-
ping technique which optimally balances noise and bias in rendered images
to minimize the overall error. It is the result of an analysis of the radiance es-
timation in progressive photon mapping. As a first step, we establish a con-
nection to the field of recursive estimation and regression in statistics and
derive the optimal estimation parameters for the asymptotic convergence of
existing approaches. Next, we show how to reformulate photon mapping
as a spatial regression in the measurement equation of light transport. This
reformulation allows us to derive a novel data-driven bandwidth selection
technique for estimating a pixel’s measurement. The proposed technique
possesses attractive convergence properties with finite numbers of samples,
which is important for progressive rendering, and it also provides better re-
sults for quasi-converged images. Our results show the practical benefits of
using our adaptive method.
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1. INTRODUCTION

Global illumination algorithms have experienced significant ad-
vances in recent years. We have now reached a point where pre-
dictive renderings can be achieved within reasonable time of min-
utes to hours, which allows for the use of global illumination in
many fields including movie production and industrial and architec-
tural design. Monte-Carlo techniques such as (bidirectional) path
tracing [Lafortune and Willems 1993; Veach and Guibas 1994] or
metropolis light transport [Veach 1998] compute unbiased solu-
tions, however, they converge only slowly to noise-free images.
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Photon mapping [Jensen 1996] traces and stores photons, and
uses an on-surface estimation to obtain radiance values. By this es-
timation, it essentially trades the variance (visible as noise in the
images) for bias (usually visible as overblurring of the illumina-
tion), which is a well-known “artifact” in the fields of estimation
and regression in statistics [Silverman 1986]. However, this prop-
erty makes photon mapping robust with complex illumination, such
as specular-diffuse-specular paths, which are difficult (or even im-
possible) to sample with pure Monte-Carlo-based approaches. And
in theory, the bias vanishes in the limit after tracing an infinite
number of photons. The noise of an image generated with pho-
ton mapping usually vanishes faster compared to unbiased meth-
ods [Hachisuka et al. 2012], which is achieved by trading the vari-
ance for bias. Although in theory this bias could be removed by any
consistent estimator in the limit, the problem of storing an infinite
number of samples makes the bias elimination practically impossi-
ble.

Recently, Hachisuka et al. [2008] introduced Progressive Pho-
ton Mapping (PPM), which uses an iterative radiance estimation to
merge the estimates from a series of photon maps, and thus avoids
storing all traced photons at the same time. Similar to the original
approach, it has low variance due to the reuse of light subpaths.
In this article, we focus on the important question: what is the op-
timal reuse strategy for these subpaths? To this end we make the
following contributions.

—We establish a connection between PPM and the field of recur-
sive estimation in statistics. This enables us to employ techniques
from a huge body of previous work from this field.

—Based on an asymptotic analysis of the class of PPM methods,
we derive the optimal asymptotic convergence rate and the val-
ues for previously user-specified parameters in PPM.

—We further show that PPM can be expressed as a local regression
over the pixel measurement equation.

—This generalized measurement estimation serves as a basis for an
adaptive data-driven bandwidth (gather radius) selection, which
automatically and locally balances bias and noise in order to
minimize the total error of a rendered image.

—The results of our method show that it converges faster and has
less noise and bias than existing PPM methods.

The article is structured as follows: the next section describes
the most relevant previous work in both graphics and statistics.
Section 3 introduces the background theory of progressive photon
mapping. In Section 4 we establish a relation to existing recursive
estimators in statistics and present an asymptotic analysis of PPM,
leading to the optimal asymptotic convergence rate. In order to ap-
proach this convergence rate as closely as possible with a limited
number of samples, an optimal bandwidth selection is necessary.
To this end, we reformulate PPM as a spatial regression in path
space in Section 5. Using this reformulation, we derive our novel
adaptive bandwidth selection method in Section 6. Section 7 pro-
vides implementation details of our method. We present results in
Section 8 which demonstrate the benefits of our adaptive method.
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2. PREVIOUS WORK

2.1 Photon Mapping, Bias and Variance Reduction

Shirley et al. [1995] were among the first who proposed to use
density estimation for global illumination. Based on the origi-
nal photon mapping technique [Jensen 1996], numerous publi-
cations focused on reducing the bias inherent to the method.
Myszkowski [1997] proposed to use multiple radii during radiance
estimation to estimate bias, and then selected the estimate that min-
imized an error heuristic. Walter [1998] reduced the boundary bias
further using a locally weighted linear least squares regression to-
gether with a perceptual metric. Suykens and Willems [2000] con-
trol the query radii by reducing the photon density in unimportant
and over-dense regions. Schregle [2003] proposed a bandwidth se-
lection for radiance estimation based on error estimates extracted
from the reconstructed irradiance. Ray maps [Havran et al. 2005]
reduce bias by taking into account spatial and directional distribu-
tion of photons, while Wong and Wang [2005] use an orthogonal
series estimator. Schjoth [2009] reduces the topological bias and
bias at radiance discontinuities using a diffusion-based anisotropic
estimator. Similarly, Spencer and Jones [2009] improve caustics
rendering with photon relaxation. For participating media, Jakob et
al. [2011] approximate a photon map with a hierarchical Gaussian
mixture for volumetric radiance estimation. Recently, Vorba [2011]
showed that the radiance estimation for different types of surfaces
can be combined using multiple importance sampling in a bidirec-
tional manner.

2.2 Progressive Photon Mapping

Hachisuka et al. [2008] introduced progressive photon mapping,
which does not require storing all photons for radiance estimation
at the same time. It has been generalized to handle distributed ray-
tracing effects [Hachisuka and Jensen 2009], and the photon trac-
ing has been improved by using adaptive mutation of visible pho-
ton paths [Hachisuka and Jensen 2011]. Belcour and Soler [2011]
proposed to enrich emitted photons with the spectrum of the car-
ried radiance to adaptively choose the radiance estimation radius.
Knaus and Zwicker [2011] developed a probabilistic framework,
studied the asymptotic behavior of bias and variance, proposed a
memoryless estimator, and generalized PPM to participating me-
dia. Jarosz et al. [2011] combined PPM with photon beams for im-
proved rendering of participating media. Hachisuka et al. [2010]
describe an error estimation framework for bias and variance esti-
mation and early rendering termination. However, their approach
was demonstrated for a single-point error estimation and has not
been used for an adaptive bandwidth selection. From our analy-
sis we derive additional conditions that complement their theory
(Section 6.3). In contrast to previous work, we analyze the bias
and variance as well as convergence of PPM methods in general.
And most importantly, we propose a method for a better bandwidth
selection which speeds up the convergence for progressive render-
ing. Georgiev et al. [2011] investigate the combination of PPM and
unbiased Monte-Carlo estimators. Independently and parallel with
our work, Hachisuka et al. [2012] also propose to combine PPM
with unbiased techniques and derive optimal values of some PPM
parameters for the case of multiple importance sampling.

2.3 Adaptive Estimation

In kernel estimation methods, the smoothing radius of a kernel is
called bandwidth, and the optimal choice thereof is a challenging
problem. The development of adaptive estimators started in the

1960s, when Parzen [1962] showed the optimal rate of convergence
and asymptotically optimal bandwidth reduction rate for the ker-
nel estimator. Rudemo [1982] suggested the first cross-validation
method, however, these methods usually undersmooth the data and
are very sensitive to outliers. Silverman [1986] suggested a rule
of thumb bandwidth selection, which assumes that the underly-
ing function can be well approximated by a normal distribution.
Quickly evolving fields, such as computational finance, artificial
intelligence, robotics, machine learning, and computer vision, cre-
ated much activity in this field in the 1990s. Novel methods for
estimating the precision of sample statistics (medians, variances,
percentiles) by using subsets of available data (jackknifing), or ran-
domly drawing from a set of data points (bootstrapping) were de-
veloped. Popular methods include wavelet shrinkage [Donoho et al.
1993], an estimation technique based on the idea of thresholding
the wavelet coefficients; or the Intersection of Confidence Intervals
(ICI) [Katkovnik and Shmulevich 2002], which is based on the cal-
culation of estimates of the function and their variances. Neural
networks and support vector machines [Cortes and Vapnik 1995]
can also be used to learn an unknown function. The ICI method
has been recently used in graphics by Rousselle et al. [2011] to
determine the optimal smoothing radius in screen space for BiDi-
rectional Path Tracing (BDPT). However, due to using BDPT they
inherit difficulties with complex specular paths.

The plug-in bandwidth selection [Park and Marron 1990;
Sheather and Jones 1991] for kernel estimation selects the optimal
bandwidth by “plugging in” the estimate for higher-order deriva-
tives of a function into the formula for the asymptotically optimal
bandwidth. This approach inspired us to develop the adaptive pro-
gressive photon mapping method which we propose in this article.

Our work carries on the asymptotic analysis started by Knaus and
Zwicker [2011] and the error estimation of Hachisuka et al. [2010].
We make use of adaptive recursive estimation methods [Jones and
Sheather 1991; Hall and Patil 1994; Wand and Jones 1994] to de-
velop a novel data-driven bandwidth selection for PPM.

3. PRELIMINARIES

Our work is inspired by progressive photon mapping [Hachisuka
et al. 2008], its extension stochastic PPM [Hachisuka and Jensen
2009], and the probabilistic analysis of PPM [Knaus and Zwicker
2011]. These techniques are able to robustly sample difficult paths
in light transport, for example, reflected caustics, without suffer-
ing the high memory requirements of the original photon mapping
method. In this section, we will briefly recapitulate the most rele-
vant aspects for our work.

The main issue in conventional photon mapping is that there is
a trade-off between the variance, or noise, and the expected error,
or bias, in the radiance estimate. A photon map is used to obtain
an approximation of the true reflected radiance and one can either
achieve a low variance or a low expected error, but not both. The
main insight of progressive photon mapping is that we can obtain
a solution with vanishing variance and expected error by averaging
the results over many photon maps [Hachisuka et al. 2008], that is,
progressive photon mapping is a multipass method that solves the
rendering equation by accumulating statistics of photons. The ini-
tial eye pass traces rays from the camera and stores the nonspecu-
lar hit points. The following photon passes trace photons from light
sources and update statistics on the hit points using these photons.
The photon statistics include position of a hit point x, the incident
radiance times the BRDF f(x;ω), and the search radius rN . Here,
N is the number of the photon tracing passes and the number of
eye samples. At the N -th pass, the radiance value at the position x
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(a) α = 0.5, k = 10 (b) α = 0.5, k = 50 (c) α = 0.8, k = 10 (d) α = 0.8, k = 50 (e) Adaptive PPM

Fig. 1. The BOX scene rendered with standard PPM with different values of the user-specified parameters α and k (for the k-NN search to determine the
initial bandwidth r1). Result images (top left part) and differences to the converged images (bottom right part) are shown after emitting 10 million photons.
Here our adaptive method (e) shows the benefits of minimizing the overall estimation error.

Table I. Notation Used throughout This Article.

Symbol Description

N Number of estimation iterations (eye subpaths)
J Photon map size (emitted photons per iteration)

M≡NJ Total number of emitted photons
x, ω Surface point and outgoing direction

Var[X] Variance of expression X
E[X] Expected value of expression X
εN , ε̄N One-step and average radiance estimation error at step N
e, l Vertex of an eye subpath and light subpath
I, ÎN Exact and estimated measurement of a pixel value
W Importance (contribution of eye subpaths)
L Outgoing radiance
γj Contribution of the light subpath (i.e., photon) j
i Eye subpath index
j Light subpath index, photon index
rN Kernel radius (bandwidth) at step N
k, kr Canonical and normalized kernel with bandwidth r

Ψ Contribution of all full paths through the estimation points
ψi,j Contribution of eye subpath i with light subpath j

towards the direction ω is estimated as

L̂(x, ω) =
1

J

J∑
j=1

kr(xj − x)γj , (3.1)

where the notation of variables is listed in Table I. This estimation
is based on the contributions γj of all light subpaths around the
point x applying a smoothing filter with kernel kr .

Knaus and Zwicker [2011] rewrote this approximation as
L̂(x, ω) = L(x, ω) + ε, where ε represents the error introduced
by the radiance estimation. Then they obtain a complete pixel mea-
surement estimate ÎN as

ÎN =
1

N

N∑
i=1

Wi

pe,i
L̂(xi, ωi) (3.2)

for which the expected value E[ÎN ] converges to the true pixel
value I and the variance Var[ÎN ] approaches zero as the number
of eye samples N increases. Here, Wi≡W (xi, ωi) is the impor-
tance of the i-th eye subpath ending at the point xi and pe,i is the
probability of sampling this eye subpath. A crucial property of pro-
gressive photon mapping is that each sample is evaluated using a
new photon map.

Knaus and Zwicker rederived PPM based on a more general
probabilistic framework which allowed them to analyze the vari-

ance and the expected error of the radiance estimation in photon
mapping from a probabilistic perspective.

They showed that if the variance and the expected value of the
average error ε̄N both approach zero as N →∞ then the estimator
is consistent if

Var[ε̄N ]→ 0 =⇒ Var[ÎN ]→ 0

E[ε̄N ]→ 0 =⇒ E[ÎN ]→ I.

As a consequence, with each new sample the variance of the error
εN at every iteration is allowed to increase by a factor

Var[εN+1]

Var[εN ]
=
N + 1

N + α

for some constant α with 0 < α < 11. This parameter α controls
how quickly the variance is allowed to increase in each iteration.
Knaus and Zwicker showed that α effectively determines a trade-
off between vanishing variance and expected value of the average
error. In summary, the variance and the expected value of the av-
erage error vanish as desired if 0 < α < 1, where α controls
the relative rate of decrease. In addition, their asymptotic analysis
showed that: (1) the variance vanishes to the order of O(1/Nα),
and (2) the expected value of the average error is proportional
to the square radius and vanishes to the order of O(1/N1−α).
That is, for 0 < α < 1 the squared radius decreases slower than
the increase in number of photons. As a consequence, more and
more photons are collected with increasing N , which guarantees
L(x, ω) = limN→∞ L̂N (x, ω). Note that this equation neither con-
verges for α = 0, because the initial radius will not be decreased,
nor for α = 1 as the noise level increases.

As we will see, the choice of the parameter α is crucial and
directly affects the convergence rate of the whole rendering with
PPM. Moreover, we will also show that the choice of the initial ra-
dius r1 affects progressive rendering as well as the absolute error
of an image.

4. PROGRESSIVE PHOTON MAPPING AS A
RECURSIVE ESTIMATOR

In this section we analyze the radiance estimation in PPM and its
asymptotic behavior. PPM methods comprise two user-specified
parameters: (1) the constant α ∈ (0; 1) controls the bandwidth re-
duction, effectively balancing between variance and bias reduction,
and (2) the initial per-pixel bandwidth r1 which defines the initial

1This is asymptotically equivalent to the initial radius reduction scheme by
Hachisuka et al. [2008], but easier to analyze.
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“smoothing” of the radiance estimate. Figure 1 shows the influence
of differently chosen values on the rendering convergence.

The choice of the proper value for the parameter α seemed to
be unintuitive, which can be observed from varying values given in
previous works, for example, see Hachisuka et al. [2008], Knaus
and Zwicker [2011]. In this section, we analyze the progressive ra-
diance estimate and show that a unique asymptotically optimal α
value exists. This is the first step towards our new method, as we
will see that for progressive rendering, that is, when displaying re-
sults prior to convergence, the selection of the second parameter,
the bandwidth r1, is of utmost importance (Section 6).

We begin by rewriting the radiance estimator used by Knaus and
Zwicker [2011], Eq. (3.1) and Eq. (3.2 in this article, as a recursive
equation using the notation that we will use throughout this article.
We have

ÎN =
1

N

N∑
i=1

Wi

pe,i
L̂(ei, ωi) =

1

N

N∑
i=1

Wi

pe,i

(
1

J

J∑
j=1

kri(ei−l
i
j)γ

i
j

)

=
N−1

N
ÎN−1 +

1

N

WN

pe,N

1

J

J∑
j=1

krN(eN−lNj )γNj , (4.1)

where L̂(ei, ωi) is the reflected radiance at the point ei and is ap-
proximated using kernel estimation (second equality); γij is the con-
tribution of the j-th light subpath from the i-th photon map, landing
at the point lij ; all other variables are listed in Table I. The second
line is obtained by regrouping and rearranging the terms, where the
last summand is the contribution of the new photon map obtained
from the step N .

The term krN (t) = µ(rN )−1k(t/rN ) is the scaled and normal-
ized version of the canonical kernel k(t), and µ(rN ) =πr2

N is the
normalization factor for an isotropic, circular on-surface estima-
tion. If the argument of k(·) is a vector, we assume its Euclidean
length is used to evaluate the kernel. For the sake of consistency
with the existing work in statistics, we call the radius rN band-
width. In PPM it shrinks with every iteration and converges to zero
as N→∞. The kernel k should be continuous, bounded, and nor-
malized [Parzen 1962]. Similarly to Hachisuka et al. [2010], we use
the Perlin kernel k(t) = 1 + t3(−6t2 + 15t − 10) [Perlin 2002]
in our work. Note that the choice of the bandwidth rN , but not the
particular shape of the kernel, is important for the efficiency of the
estimator [Silverman 1986].

PPM combines the results of photon maps using a shrinking
bandwidth, controlled by the parameter α. Intuitively, the band-
width trades both sources of error: bias and variance. In a first step,
we will derive the asymptotically optimal value for α. However,
as we will see, it only balances bias and variance in the limit. Thus
our goal is to select the bandwidth for every pixel measurement and
every iteration more precisely such that we can minimize the error
on finite samples as well.

4.1 Recursive Estimation

Recursive estimators, such as the radiance estimator in Eq. (4.1),
have been proposed by Wolverton and Wagner [1969] and Yam-
ato [1971]. Such an estimator is consistent, that is, it yields un-
biased results in the limit, if, for some λ ≥ 0 and a kernel with
at least two existing non-zero derivatives, the sequence of band-
widths {rN} obeys the following conditions in d dimensions [Yam-
ato 1971; Hall and Patil 1994]:

lim
N→∞

1

N2

N∑
i=1

r
−(d+λ)
i → 0, lim

N→∞

1

N

N∑
i=1

r2
i → 0. (4.2)

These two conditions guarantee that variance and bias, respectively,
vanish in the limit. The parameter λ should be zero for estimating
the function value [Hall and Patil 1994]. Later in Section 6.3 we
will use the values λ> 0 for the estimation of the function deriva-
tives. An equivalent result to Eq. 4.2 for λ = 0, that is, only for
the estimation of the function value but not its derivatives, can be
obtained from Eqs. (3), (5), (9), and (10) in Knaus and Zwicker’s
work [2011].
When updating rN as in Knaus and Zwicker [2011] with

r2
N+1 = r2

N

N + α

N + 1
, (4.3)

the conditions in Eq. (4.2) are met only for α∈ (0; 1), which is in
accordance with previous PPM methods. In the following, we re-
place this sequence with a simpler, yet asymptotically equivalent
one, rN = r1N

(α−1)/2 (see Appendix C). It simplifies the asymp-
totic analysis as it can be directly computed for any iteration N .

4.2 Asymptotic Convergence Rate of PPM

The preceding observations allow us to derive the asymptotic con-
vergence rate for PPM and the asymptotically optimal value of the
parameter α. Throughout the article we base our analysis on the
minimization of the Asymptotic Mean Squared Error (AMSE). The
Mean Squared Error (MSE) is the most widely used loss function
and well-suited for analyzing the performance of estimators as it
enables partitioning of variance and bias.

We show in Appendix B that, in terms of the MSE, the asymp-
totically optimal α for shrinking the bandwidth is

αopt = 2/3. (4.4)

From Eqs. (C.1) and (4.4) we can obtain the asymptotically optimal
shrinking rate of the bandwidth

rN = r1N
−1/6 ∝ O

(
N−1/6

)
. (4.5)

This result is important, as it shows that using αopt for the band-
width update yields the same asymptotically optimal rate that we
find in statistics literature [Wand and Jones 1994].

Note that Knaus and Zwicker [2011] thoroughly studied the de-
pendence of bias and variance on the parameter α independently of
each other. They show that different α-values trade the vanishing
rate between variance and bias. Yet αopt balances these rates such
that the MSE is asymptotically minimized, that is, variance and
(squared) bias vanish with the same rate. Note that any nonoptimal
α unbalances asymptotic bias and variance and slows the conver-
gence rate.

It is also noteworthy that the optimal value of α and the asymp-
totic behavior of the sequence {rN} remain the same with sparse
updates of the bandwidth, that is, when the bandwidth is updated
once per J samples, as the conditions in Eq. (4.2) are still met. Con-
sequently, the asymptotic convergence of PPM does not depend on
the size of the photon map. However, in order to obtain consistent
results independent of J , one can employ the compensation proce-
dure proposed by Jarosz et al. [2011].

Convergence Rate of Progressive Photon Mapping. Sub-
stituting αopt into the AMSE leads to the optimal convergence rate
for PPM (see Appendix B for details)

AMSE[ÎN ] ∝ O(N−2/3). (4.6)

Again, this result aligns with convergence rates found in exist-
ing literature for 2D estimators [Wand and Jones 1994; Silverman
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trendMSE

# photons

Fig. 2. Mean Squared Error (plotted in log-log scale) for the image shown
in Figure 5(a) rendered with PPM with different values of α. The initial
bandwidth is selected with a k-NN search with k = 10 and different val-
ues for α: 0.36̄/0.46̄/0.56̄/0.6̄ (optimal)/0.716̄/0.76̄/0.816̄. Note that
the optimal convergence rate can be outperformed by suboptimal α-values
depending on the choice of the initial bandwidth.

1986]. Note that this is the optimal theoretical asymptotic conver-
gence rate for photon mapping techniques using a density estima-
tion on surfaces. An experimental measurement of the convergence
rate with different values of α is shown in Figure 2.

It is interesting to compare this result to the asymptotic conver-
gence of unbiased Monte-Carlo techniques such as path tracing.
The AMSE of these techniques (consisting of variance only) is
AMSE[MC] = Var[MC] = O(M−1), where M is the number
of sampled full paths for a pixel. The theoretical asymptotic con-
vergence rate of PPM is O(N−2/3) and thus slower than that of
unbiased Monte-Carlo techniques. This is because the probability
of constructing a full path in PPM is also proportional to the ker-
nel footprint πr2

N , which shrinks as O(N−1/3), thus reducing the
probability of constructing a full path.

However, this does not mean that unbiased Monte-Carlo estima-
tors should always be preferred due to their superior rate of conver-
gence: there exist undecidable paths in path space, such that no al-
gorithm can construct all of them. One example is pure SDS paths,
for example, a reflected caustic seen from a pinhole camera where
the light is coming from a point light source. In all unbiased Monte-
Carlo techniques such paths require finding the path from one given
point to another one. It is possible to find such paths numerically
in simple cases [Mitchell and Hanrahan 1992], but this introduces
bias and cannot construct these paths exactly. Note that generally
there exist configurations of perfect specular surfaces where this
was proven undecidable [Reif et al. 1994]. And this is not just a
theoretical issue: almost all example scenes in this article contain
such paths (for example those shown in Figure 7).

Finite Number of Samples. Obviously we are interested in an
optimal result for a finite number of iterations and photons when
rendering images. Most importantly, αopt only defines the asymp-
totic shrinkage rate of the bandwidth, but not the optimal value for a
particular (finite) number of iterations, as the initial bandwidth r1 is
an unknown in the bandwidth update (Eq.( 4.5)). With finite num-
bers of samples it is very important to directly select the optimal
bandwidth in every iteration and not rely on the asymptotic shrink-

0

0

Fig. 3. Path-space estimation of the incident radiance in the measurement
equation: and eye subpath, for example, eye − e1 − e2 is connected to a
light subpath light− l1 − l2 using the kernel kr .

age rate. This can be observed from the results shown in Figure 2:
due to a suboptimal initial bandwidth r1 the optimal α-parameter
outperforms others only when many samples are taken. In order
to select the bandwidth more precisely, we reformulate PPM in the
next section. In Section 6 we derive our new adaptive method which
is asymptotically optimal as well, but also yields near-optimal re-
sults significantly faster. As we will see, selecting the bandwidth is
of utmost importance.

5. PHOTON MAPPING AS A PATH-SPACE
REGRESSION

In this section we express photon mapping as a local regression
over the measurement equation in path space. Unlike the previous
formulations of PPM, we express the kernel smoothing as a unified
operator on top of the pixel measurement equation. The new formu-
lation allows us to apply methods from statistics to derive our new
adaptive estimator in Section 6. A reformulation is required, for ex-
ample, to eliminate the weighted sum in Eq.( 4.1), which prevents
us from analyzing the same kernel bandwidth for different passes.

The measurement equation introduced by Veach [1998], gener-
alized for paths consisting of eye and light subpaths of arbitrary
lengths, can be written as

I =

∫
M×S2

W (x, ω)Lo(xM(x, ω),−ω)dxdω, (5.1)

where S2 is the unit sphere and M is the manifold of all scene
surfaces in R3; W (x, ω) is the importance of the eye subpaths
of all lengths at (x, ω); Lo(xM(x, ω),−ω) is the outgoing ra-
diance (caused by the light subpaths of all lengths) at the point
xo = xM(x, ω), and xM(x, ω) is the ray-casting function. We
denote incident values (in the direction of light flow) with the
subindex i (e.g., xi, Li), while the subscript o denotes outgoing
values (e.g., ωo, xo, Lo). The outgoing radiance at a surface point
xo in direction ωo can be estimated [Pharr and Humphreys 2010]
with

Lo(xo, ωo)=

∫
S2

f(xo, ωo, ωi)

∫
M

δ(xo−xi)Li(xi, ωi)dxidωi

≈
∫
S2

f(xo, ωo, ωi)

∫
M

k(xo−xi)Li(xi, ωi)dxidωi, (5.2)
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where δ is the Dirac delta function, which we replace by the
smoothing kernel k(t). After inserting Eq. (5.2) into Eq. (5.1), we
apply Fubini’s theorem multiple times and obtain

I ≈
∫
M×S2

W (xM(xo,−ω), ω)

∫
S2
f(xo,−ω, ωi)∫

M
k(xo − xi)Li(xi, ωi)dxidωidxodω

=

∫
M×M

k(xo − xi)

∫
S2
W (xM(xo,−ω), ω)∫

S2
f(xo,−ω, ωi)Li(xi, ωi)dωidωdxidxo

=

∫
M×M

k(xo − xi)Ψ(xo,xi)dxidxo, (5.3)

where Ψ(xo,xi) is the contribution of all possible full paths con-
structed by connecting the endpoint xo of eye subpaths to the
endpoint xi of light subpaths. Such full paths are weighted by
k(xi − xo). Consider the example shown in Figure 3: the path
e0(eye)–e1–e2–l2–l1–l0(light) is one possible path constructed in
Ψ(e2, l2) and weighted by k(e2−l2).

Let us now assume that we drawN eye subpaths from the impor-
tance distribution and J random light subpaths for each eye subpath
from the radiance distribution. Then we can estimate the measure-
ment with

ÎN =
1

NJ

N∑
i=1

J∑
j=1

kri(ei − lij)ψi,j , (5.4)

which can be written in a recursive manner similarly to Eq. (4.1).
Here, ψi,j is the contribution of the full path constructed using a
single eye subpath ending at ei and a single light subpath ending at
lij (see Figure 3). The superscript i denotes that a new sample set (a
photon map) {li}J is used for every new eye subpath i.

This new formulation enables us to express the optimal band-
width selection using the generalized kernel smoothing operator on
top of pixel measurement as shown in the next section.

6. ADAPTIVE MEASUREMENT ESTIMATION

The kernel estimation in photon mapping provides lower variance
at the price of introducing a systematic error (bias). The main goal
of our work and the preceding derivations is to analyze this trade-
off and to obtain the optimal strategy for balancing variance and
bias at every step of the recursive estimation. In statistics, this prob-
lem is known as bandwidth selection [Silverman 1986; Jones and
Sheather 1991], where the optimal bandwidth r is selected in order
to minimize the estimation error.

Knaus and Zwicker [2011] studied several methods for deter-
mining the initial bandwidth r1 (starting condition for Eq. (4.3)):
(1) globally constant bandwidth, (2) local bandwidth based on k-
Nearest-Neighbors (k-NN) search, and (3) local bandwidth based
on ray differentials—and none of them leads to the optimal choice
(see Knaus and Zwicker [2011] for discussion). Figure 7 shows
an example where the result is still oversmoothed even after emit-
ting 1011 photons. The reason is that with an improper initial
bandwidth, the recursive estimator accumulates suboptimal results,
while subsequent iterations (with smaller bandwidth) are weighted
less and less; thus the error remains large even for large N .

It is also intuitive that the bandwidth selection should be locally
adaptive to smooth the signal in sparse regions as well as preserve

crisp radiance discontinuities. In the following, we derive the opti-
mal bandwidth to improve the efficiency of the measurement esti-
mation with a finite number of samples.

6.1 Asymptotic MSE of the Measurement

We derive our adaptive method by restarting from the AMSE for
the pixel measurement estimator Î (Eq. (5.4)). Our goal is a band-
width selection procedure which minimizes the AMSE. The AMSE
for Î can be found in Appendix D where we show that it consists of
the variance of the Monte-Carlo estimation inside the measurement
equation and the bias and variance of the kernel estimator. How-
ever, we show that the latter variance is negligible and thus sim-
plify the AMSE for our derivation by omitting it (see Appendix D
for details)

AMSE[ÎN ]≈ 1

πplJ
Var[ψ]

1

N2

N∑
i=1

r−2
i +B[ÎN ]2, (6.1)

where B[Î]=E[Î]−I is the bias of the estimator; pl is the average
density of light subpaths in the proximity of all estimation points
of the pixel measurement. The goal of our work is to minimize the
AMSE by balancing between the measurement variance and the
bias of the kernel estimation. Note that this is possible as the band-
width also influences the Monte-Carlo variance of the path integral:
the larger the bandwidth, the more full paths are constructed.

Using existing approximations (e.g., Hall and Patil [1994],
Hachisuka et al. [2010], and Knaus and Zwicker [2011]) the asymp-
totic approximation of the bias is expressed as

B
[
ÎN

]
≈ 1

2
k2∆I

1

N

N∑
i=1

r2
i , (6.2)

where ∆I is the Laplacian of the measurement with respect to
the kernel estimation which we discuss in detail in Section 6.3;
and k2 =

∫
R t

2k(t)dt is the kernel-dependent constant [Silver-
man 1986]. The exact value for the Perlin kernel can be found in
Hachisuka et al. [2010]. Using Eqs. (6.1) and (6.2) we obtain

AMSE[ÎN ]≈ 1

πplJ
Var[ψ]

1

N2

N∑
i=1

r−2i +
1

4
k2

2(∆I)2

(
1

N

N∑
i=1

r2
i

)2

.

One can minimize this equation with respect to rN , when assuming
all other ri to be constant (please see the supplementary material).
However, the solution is computationally expensive and we will
make further simplifying assumptions.

Simplified Bandwidth Selection. We make the assumption
that the bandwidth rN approaches the optimal value r̄N quickly
enough such that we can assume r̄N ≈ri≈1/N

∑N
i=1 ri. In other

words, we assume that ri quickly stabilizes and does not change
significantly during later iterations (and thus the difference in error
introduced by using r̄N instead of ri is negligible). Thus we replace
all ri in the previous equation by r̄N and obtain the new AMSE′

AMSE′[ÎN ]≈ 1

πplJNr̄2
N

Var [ψ] +
1

4
k2

2(∆I)2r̄4
N . (6.3)

Minimizing AMSE′ means that we always minimize the current er-
ror while using the previously estimated parameters for computing
it. We provide an experimental validation of this approximation in
the supplementary material. After minimizing this equation with
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respect to r̄N , we obtain the asymptotically optimal bandwidth:

r̄N =

(
2 Var[ψ]

πJplk2
2(∆I)2

)1/6

N−1/6, (6.4)

where the density pl is estimated using a recursive estimator iden-
tical to Eq. (4.1), but without the actual photon values γij .

As the measurement estimator in Eq. (5.4) is a reformulation of
PPM, it is not surprising that it has the same asymptotic conver-
gence rate as the one we obtained earlier in Section 4.2. However,
Eq. (6.4) provides an explicit expression for bandwidth selection
which will allow us to obtain faster convergence and better results
for quasi-converged images.

The Laplacian ∆I in Eq. (6.4) is unknown, yet important for
the bandwidth selection. To this end, we briefly discuss different
bandwidth selection approaches and show how to estimate ∆I in
Section 6.3.

6.2 The Plug-In Method for Bandwidth Selection

Many adaptive estimation techniques are known in literature (see
Jones et al. [1996] for a survey), however, most of them are not suit-
able for our purposes as they either require to store a huge amount
of data (e.g., Donoho et al. [1993] and Katkovnik and Shmule-
vich [2002]), or require access to all previous samples, for example,
(biased) cross-validation and expectation-maximization methods.
We decided to use the recursive modification [Hall and Patil 1994]
of the plug-in method [Sheather and Jones 1991; Wand and Jones
1994]. It can be computed fully recursively and efficiently, has low
variance, and good behavior for finite samples.

The main idea of the plug-in method is to plug an estimate ∆ÎN
of the unknown Laplacian ∆I into the original estimator Eq. (6.4).
This requires an estimation of the radiance derivatives on the sur-
face. However, as noted by Jones and Sheather [1991], this requires
selecting yet another bandwidth r′ for the estimation of the deriva-
tives, which is different from the optimal bandwidth r used for
estimating the measurement itself. The necessity of selecting an-
other optimal bandwidth seemingly leads to a nested hierarchy of
such bandwidths for higher derivatives. However, as pointed out in
previous work [Wand and Jones 1994; Jones et al. 1996], the sec-
ond bandwidth r′ is less critical. In fact, we can estimate it using
a normal distribution fit to the estimated derivatives (the so-called
rule of thumb), without causing a significant loss in convergence
performance. In the nomenclature of Wand and Jones [1994], we
use a simplified S − N scheme: in the N -step, we use a normal
distribution fit to select the bandwidth r′ for the estimation of the
Laplacian. And the S-step uses the plug-in method to select a single
bandwidth r based on the estimated Laplacian.

6.3 Recursive Estimation of the Laplacian

In order to estimate the bias introduced by the kernel smoothing,
it is necessary to estimate the curvature of the underlying function.
In our case, the estimation is done by constructing full paths using
a spatial kernel smoothing to connect eye subpaths to light sub-
paths. This means that smoothing happens around every vertex of
every possible path of the measurement equation I . To this end,
we use a two-step approach: first, we estimate the Laplacian at the
surface at every path vertex of the measurement (denoted as vertex-
Laplacian, LΩ(ei), Figure 4). Next, we compute a sum of all es-
timated vertex-Laplacians weighted by the respective importance
function. Throughout the article, we denote this as the Laplacian
of the pixel measurement with respect to the on-surface incident

= + +

Fig. 4. The Laplacian of a pixel measurement is computed as the sum
of the Laplacians of the on-surface incident radiance at the path vertices,
LΩ(ei)

, weighted by the respective importance Wi.

radiance (∆I in Figure 4). It determines the average curvature of
the incident radiance at all path vertices of paths going through the
pixel weighted by the respective importance. Thus, intuitively, it
determines the flatness of the incident radiance for the measured
pixel is.

We compute the vertex-Laplacian ∆L̂eN by approximating the
second derivatives along two orthogonal directions ∆L̂eN =

L̂
(2)
eN ,u + L̂

(2)
eN ,v, where eN is the estimation point at the step N ;

u and v are two orthonormal basis vectors defined on the surface
at the estimation point; and L̂(2)

eN ,u, L̂(2)
eN ,v are the estimators for

the second derivative along u and v, respectively. Note that the
vertex-Laplacian is invariant to the rotation of the basis (u,v).
Each derivative is estimated recursively using shrinking finite dif-
ferences as proposed by Ngerng [2011]. Furthermore, we replace
L̂N with ÎN and L̂(2)

eN with Î(2)
eN after weighting by the importance,

and denote the value of the measurement with radiance estimated
at the point ei+ur′i as Î+ur′i

. The equation is provided for Î(2)
u,N

(and is analogous for Î(2)
v,N )

Î
(2)
u,N ≈

1

N

N∑
i=1

Î+ur′i
+ Î−ur′i − 2Î

r′2i

=
1

NJ

N∑
i=1

J∑
j=1

ψi,j
1

r′2i

(
kr′i

(
ei−lij+ur′i

)
+

kr′i

(
ei−lij−ur′i

)
−2kr′i

(
ei−lij

))
. (6.5)

Consequently, we compute the Laplacian of the measurement as

∆ÎN = Î
(2)
N,u + Î

(2)
N,v. (6.6)

Radiance Steps (Discontinuities). The asymptotic behavior
of the AMSE at discontinuities has a higher theoretical rate of con-
vergence. Van Eeden [1985] showed that for a point on the discon-
tinuity, the optimal bandwidth shrinkage rate isO(N−1/2d), where
d is the dimensionality of the estimator. Due to the robustness of the
Laplacian estimator the discontinuities are handled automatically:
the finite difference in the numerator of Eq. (6.5) becomes constant
and the optimal shrinkage rate of r′N leads to the growth rate of
the Laplacian O(N1/4). After substituting this rate into Eq. (6.4),
one can validate that the asymptotic shrinkage rate of rN becomes
indeed O(N−1/4).
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(a) progressive photon mapping (b) adaptive PPM (our method) (c) PPM (d) our method
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Fig. 5. The BOX scene is challenging for global illumination algorithms because of its specular-diffuse-specular paths. These images show renderings with
depth-of-field using progressive photon mapping and adaptive progressive photon mapping (our method) using 20 million photons and 300 iterations. From
left to right: (a) PPM with α=2/3 and kNN =10; (b) adaptive PPM; (c) and (d) show close-ups; (e) plots of the L2 loss (mean squared error) of (a) and (b).
The dashed green line roughly separates two phases: (1) where the bandwidth adapts to the lighting in the scene, and (2) the equalization of the convergence
rate.

Consistency of the Derivative Estimation. In general, for
a consistent recursive estimation of the s-th-order derivative, the
asymptotic bandwidth reduction rate of r′ should obey Eq. (4.2)
with λ=2s [Hall and Patil 1994]. This restricts the valid range for
the power of the shrinkage rate of r′ in d=2 dimensions to

O(N−1/(2s+2)) < r′N < O(N0).

Consequently, for a consistent estimation of the second derivative
the rate must be slower than O(N−

1
6 ), which is by coincidence

equal to the optimal shrinking rate for the estimation bandwidth r.
This means that we cannot use the same bandwidth for the estima-
tion of both the function and its second derivative, otherwise the
estimation of the latter diverges.2

Analogous to Section 4.2, we obtain the asymptotically optimal
values by minimizing the AMSE of the second derivative estimator
as in Wand and Jones [1994] (where r′1 is some constant)

r′N,opt = r′1N
−1/8.

Selecting the Optimal Bandwidth for the Derivative Es-
timation. In the N -step of the S − N scheme we estimate the
bandwidth r′N by applying Silverman’s [1986] rule of thumb to the
second derivative. That is, we assume that the actual function of the
Laplacian ∆I can be approximated by a normal distribution and se-
lect the optimal bandwidth r′ based on this assumption. For the 2D
Perlin kernel the bandwidth is

r′N ≈ 1.9635 σ̂NN
−1/8, (6.7)

where σ̂N =

√
Var[∆ÎN ] is the standard deviation of the Laplacian

estimate; the variance can be estimated recursively by updating the
first two moments of the derivative estimator.

6.4 Convergence Rate and Consistency

Our adaptive scheme does not change the asymptotic convergence
rate of PPM (Eq. (4.6)). However, it provides better results with

2This also shows that when using Eq. (4.3) for updating r′ for second
derivative estimation (as in Hachisuka et al. [2010]), the valid range for
the α parameter is (2/3; 1), otherwise the estimation diverges. The optimal
value for the second derivative is αopt = 3/4.

finite samples (Figure 6) compared to initial bandwidth selection
used in previous work. Moreover, in contrast to our method, the
bias in the previous PPM methods is still noticeable even in quasi-
converged images after emitting 1011 photons (Figure 7). The rea-
son is inherent to the recursive estimator: the contribution of the
N -th iteration contributes to the solution with a weight of 1/N ,
that is, an initially bad choice of the bandwidth can hardly be cor-
rected. In contrast, our method corrects the bandwidth based on the
input data at every iteration.

In order to ensure a robust behavior of our adaptive method, we
bound the optimal bandwidth rN (Eq. (6.4)) within the interval
[rminN

−1/6; rmaxN
−1/6], where rmin and rmax are (user-defined)

minimum and maximum initial bandwidths. This guarantees con-
vergence in regions where no reliable statistics are available, for ex-
ample, in completely black areas of the image. Seemingly, this in-
troduces two new parameters, however, these bounds are not crucial
for the method and are reached very seldom, usually in some dark
places during initial iterations when the estimates are noisy. We
found that setting rmin and rmax to 10−6Rscene and 10−1Rscene,
respectively, where Rscene is the bounding radius of the scene,
works well for all scenes we have tested. In principle, if the bounds
are too narrow, the benefits of APPM might be smaller, as there
is less freedom to adjust the bandwidth; if the upper bound is too
high, the performance might drop during the first iterations due to
extensive queries to the photon map.

7. IMPLEMENTATION DETAILS

In this section we detail the differences of an APPM implementa-
tion compared to standard PPM. APPM requires 6 additional sin-
gle precision floating point values per pixel to store E[ψ], E[ψ2],
∆ÎN , E[∆ÎN ], E[∆Î2

N ], and p̂l,N . At the first iteration we initial-
ize the values of r1 and r′1 with the maximum bandwidth rmax

(Section 6.4). In the subsequent iterations, we update the estimates
for these values and recompute the bandwidth rN using Eq. (6.4).
We use Eq. (6.5) for the estimation of the Laplacian ∆I , where the
bandwidth r′N is selected according to Silverman’s rule of thumb
(Eq. (6.7)).

The pseudocode shown in Algorithm 1 summarizes our band-
width selection process. All variances are computed as a differ-
ence of the corresponding moments, that is, as Var[X] = E[X2]−
E[X]2.

ACM Transactions on Graphics, Vol. 32, No. 2, Article 16, Publication date: April 2013.



Adaptive Progressive Photon Mapping • 9
B

O
X

(a) Converged (b) Close-up (c) PPM, 5M (d) APPM, 5M (e) PPM, 20M (f) APPM, 20M (g) Selected r, 20M
0.17
‰

0.1
‰

R
O

O
M

0.17
‰

0.1
‰

T
O

R
U

S

0.11
‰

0.05
‰

C
O

R
N

E
L

L
B

O
X

0.19
‰

0.12
‰

C
L

O
C

K
S

0.17
‰

0.05
‰

Fig. 6. We show a comparison of the progressive convergence for different scenes using the original PPM and our adaptive PPM method 5 million and 20
million emitted photons, respectively. The initial bandwidth for PPM has been selected using a k-NN search with k = 10 and the parameter α=αopt =2/3.
The last column shows the selected bandwidth using the APPM method. All scenes are illuminated by point light sources and have perfectly reflective or
refractive materials which makes it impossible to render them with existing unbiased techniques. The bandwidth range is specified in per mille with respect to
the bounding radius of the corresponding scene.

Algorithm 1 Adaptive bandwidth selection for a single pixel
Initialization stage (before the first frame)
{r′1, r1} ← rmax . Both bandwidths start with maximum value
{E[ψ],E[ψ2],E[∆Î0],E[∆Î2

0 ], p̂l,0} ← 0 . Clear other values

Estimation pass N
Generate photon map
for each pixel do

Trace eye subpath
{E[∆ÎN ],E[∆Î2

N ]} ← Eq. 6.6 . Update Laplacian’s moments
r′N ← Eq. 6.7 . Update Laplacian’s bandwidth r′N
E[ψ],E[ψ2]← Eq. 5.4 . Update moments of contribution ψ
p̂l,N← 1

NJ

∑∑
kri(ei−lij) . Update density pl (Eq. 5.4 w/o ψ)

rN ← Eq. 6.4 . Update PPM bandwidth rN
Obtain radiance estimate using bandwidth rN
Update pixel value

end for

In our implementation we perform the estimations for luminance
only, however, this procedure can be trivially extended to the esti-
mation of an (r, g, b)-triplet or spectral distribution. In our exper-
iments the additional computation for our method in all presented
scenes added an overhead of 2% to 7% (see Table II). Knaus and
Zwicker [2011] also pointed out that local per-pixel statistics have
only minimal impact on performance. The measured performance
loss and memory cost of storing the statistics per pixel proved to be
dominated by ray tracing costs even with simple scenes.

8. RESULTS AND DISCUSSION

In this section, we discuss the results of APPM and provide a com-
parison to standard PPM. In our implementation we use NVIDIA
OptiX [Parker et al. 2010] as a GPU-accelerated ray tracing plat-
form and all measurements were taken on an Nvidia GTX 570
GPU. All images in this article were rendered at a resolution of
7682. In all tests we used a photon map of size J=2562 (the total
number of photons shot per iteration). Table II shows performance
measurements and MSE for our test scenes.
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Table II. Performance and error of PPM and our method after 5
million emitted photons. The MSE is computed against the

reference solution, which is obtained from the original PPM with
large number of photon passes as in Hachisuka and Jensen [2009]

and the global bandwidth smaller than the pixel footprint.
Time, sec MSE, ×102

Scene PPM Our method PPM Our method
BOX 10.14 10.18 1.91 0.79
CLOCKS 12.13 12.76 6.17 1.76
CORNELL 13.49 13.57 0.032 0.004
ROOM 20.73 21.34 4.61 1.12
TORUS 6.32 6.76 0.073 0.016

We can observe that the selected bandwidth is quite noisy in
some scenes (e.g., in the BOX and TORUS scenes in Figure 6), how-
ever, this does not lead to a noisier image. The reason is that this
noise mostly appears in uniformly lit regions and is caused by noisy
statistical data. Thus the bandwidth might fluctuate around the op-
timal value, but is increased to capture more statistics, that is, more
photons which also result in smooth estimates.

Figure 7 shows a comparison of the bias in quasi-converged im-
ages. We can observe that the initial radius selection results in vis-
ible bias in PPM even after emitting 100 billion photons in total.
This is due to the weakness of PPM that the initial bias vanishes
very slowly. This is a well-known disadvantage of the recursive
estimator (Eq. (4.1)) where the contribution of later iterations is
weighted by the quickly vanishing term 1/N . Thus the convergence
slows down significantly when drawing a large number of samples.
Although theoretically the bias is eliminated in the limit, practically
this does not happen due to the finite number of rendering iterations
and finite precision of the rendering pipeline.

The close-ups in Figure 6 clearly show more noise for PPM than
for APPM. However, in some regions smaller kernel bandwidths
are selected (e.g., close to the caustic edges in the BOX scene) and
hence APPM exhibits more high-frequency noise along radiance
discontinuities as fewer photons are considered for the estimation.
This is a consequence of selecting the bandwidth such that it mini-
mizes the AMSE. As this is obviously not a perceptual metric, two
images with the same error computed with PPM and APPM cannot
be considered as equally visually good (please see the additional
material for a comparison using a perceptual visible differences
predictor). We believe that adaptive photon shooting [Hachisuka
and Jensen 2011] could augment APPM here to make an image
converge more uniformly.

The benefit of APPM for progressive results can also be observed
in Figure 6. APPM achieves results with significantly less noise and
reduced blur compared to standard PPM. This is because the band-
width is chosen per pixel such that bias and variance are balanced
and thus the MSE is minimized in every iteration. This leads to
a faster convergence in regions with flat or very smooth lighting
where the Laplacian of the pixel measurement is low.

9. LIMITATIONS AND FUTURE WORK

One limitation of our method is the assumption that there is a sin-
gle optimal bandwidth for a pixel. As shown in Eq. (5.3), the mea-
surement can be represented as a weighted sum of different modes
(weighted by the importance of the eye subpaths). As a potentially
difficult case, imagine some dim caustics on top of some brightly
and uniformly lit diffuse surface: the optimal bandwidth would
mostly be selected to ensure a good convergence of the diffuse il-
lumination, thus making the caustics blurrier. However, according

Fig. 7. The TORUS scene illuminated with a single point light source, ren-
dered with 100 billion emitted photons. For standard PPM (top-left) the
initial bandwidth was chosen using the k-NN search with k = 10, and
α = 2/3. Top-right: adaptive PPM; bottom-left: the absolute difference to
PPM, scaled by a factor of 20—note that the bias is still clearly visible for
standard PPM; bottom-right: the selected bandwidth using APPM.

to the experience of many practitioners of the plug-in method, it
can gracefully handle complex and even discontinuous multimodal
distributions. Our experience with the adaptive bandwidth selector
(based on the plug-in method) is similar and can also be observed
from the results, for example, the illumination on the alarm clock
glass in Figure 6.

Another limitation is that regions with discontinuities might ap-
pear noisier than with the original PPM method (see Figure 6, Box-
scene for APPM with 5 million photons). This is because a small
bandwidth is selected due to a large bias. Even though such re-
gions converge quickly even with moderate numbers of photons
(Figure 6, APPM with 20 million photons), we believe that pho-
tons should ideally be shot adaptively, for example, in spirit of
Hachisuka et al. [2011] in order to provide better convergence;
combining both algorithms would be an interesting future work.

Although the provided APPM derivation is demonstrated only
for on-surface estimation, it is trivial to show (using a procedure
similar to Appendix B) that the optimal bandwidth for volumet-
ric radiance estimation [Knaus and Zwicker 2011] is rN,vol ∝
O(N−1/7) and AMSEvol ∝ O(N−4/7). For progressive photon
beams [Jarosz et al. 2011] the optimal shrinkage rate can be simi-
larly obtained as rN,ppb ∝O(N−1/5) and the convergence rate as
AMSEppb ∝ O(N−4/5). Interestingly, the convergence rate for
progressive photon beams is faster than the one of progressive pho-
ton mapping, which means that the participating media rendering
with such transport has faster convergence (given the same number
of samples) than the surface rendering with PPM.

Even though the adaptive method can be similarly derived for
volumetric phenomena, the curse of dimensionality comes into play
and influences the adaptivity more than for on-surface estimation.
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We believe that a thorough analysis of every such method is re-
quired, which we leave for the future work.

Similar to other PPM methods, we currently assume to have only
one eye subpath for a single photon map. An interesting question is
to what degree we can reuse a single photon map with different eye
subpaths, as dropping the photon map after performing an estima-
tion for a single eye subpath is not always the most efficient strat-
egy. This is especially interesting for scenes with glossy surfaces or
out-of-focus regions. Both PPM and APPM can be trivially modi-
fied to reuse a photon map for several eye subpaths, however, this
ratio could be adaptively estimated by means of statistical methods.

We believe that our work opens a valley for new research in the
field of path-space kernel estimation. As future work, it would be
interesting to use more elaborate bandwidth selection procedures,
for example, the D−S−N scheme [Wand and Jones 1994], which
would lead to an anisotropic bandwidth selection with a matrix of
bandwidths. Such an improvement can significantly help in the re-
gions with highly anisotropic signal in image space, such as heavily
motion-blurred objects.

Another improvement would be to combine different estimators
of the measurement integral using multiple importance sampling
as proposed by Vorba [2011], while using our method to select the
bandwidth either for the weighted sum of these estimators or for
each estimator separately.

Alternative estimation techniques, such as memory-optimized
wavelet estimation or neural networks, are also an interesting di-
rection. The use of perceptual metrics instead of the MSE would
be another important and promising step towards more efficient
bandwidth selection criterion. Lastly, our estimation technique can
also be used for early rendering termination in spirit of Hachisuka
et al. [2010], as well as for adaptive sampling of eye and light sub-
paths.

10. CONCLUSIONS

In this article we deduced the optimal convergence rate and con-
sistency conditions for progressive photon mapping techniques.
We presented a data-driven adaptive measurement estimation tech-
nique, which requires no crucial user-specified parameters. More-
over, we showed how, compared to previously existing techniques,
the convergence can be sped up on finite numbers of photons, and
how quasi-converged images of better quality can be obtained.
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APPENDIX

In this appendix we use the same notation as Knaus and
Zwicker [2011]; the initial equations used for the asymptotic anal-
ysis are taken from this article. Note that all approximations in this
appendix are done in the scope of an asymptotic analysis.

A. ASYMPTOTIC VARIANCE AND EXPECTATION
OF THE ESTIMATION ERROR

We can simplify the asymptotic variance of the estimation er-
ror (based on two last equations in Appendix E of Knaus and
Zwicker [2011]). We have

Var[ε̄N ] ≈ Var[ε1]

N2

(
1 +

N∑
i=2

iαB(α, i)

)

=
Var[ε1]

N2

(
1 +

2Γ(N + α)− αΓ(α)Γ(N + 2)

(α− 2)Γ(N + α)

)
≈ Var[ε1]

N2

αΓ(α)Γ(N)(N + 1)(N + 2)

(2− α)Γ(N + α)

≈ Var[ε1]

N2

αB(α,N)

2− α
≈ Var[ε1]

αΓ(α)N−α

2− α

≈ Var[ε1]

(2− α)Nα
,

where B(·) and Γ(·) are the Beta and the Gamma functions, re-
spectively. The expected estimation error can also be simplified
(based on last equation, second line in Appendix F of Knaus and
Zwicker [2011]):

E[ε̄N ] =
E[ε1]

N

(
α+N

B(α,N)α2N
− 1

α

)
≈ E[ε1]

N

α+N

Γ(α)N−αα2N
≈ E[ε1]

α2Γ(α)N1−α ≈
E[ε1]

αN1−α .

B. MINIMIZING THE MEAN SQUARED ERROR OF
THE MEASUREMENT

The asymptotic mean squared error can be approximated using the
previous observations and results for variance and expectation of
the measurement from Knaus and Zwicker [2011], Appendices C
and D

AMSE[ÎN ] = Var[ÎN ] + B[ÎN ]2 ≈ 1

N
Var

[
W

pe
L

]
+

E

[
W

pe

]2
(

Var [ε1]

(2− α)Nα
+

E [ε1]2

α2N2−2α

)
. (B.1)

After equating the first derivative to zero and performing asymp-
totic simplifications we obtain

N3α−2 =
α2 Var [ε1]

2(2− α) E[ε1]2
.

The outcome of this result is two-fold: first, as the right part is finite,
the only local minimum with respect to α is

αopt = 2/3.

Second, if we insert αopt back into the AMSE we obtain

AMSE[ÎN ]≈ 1

N
Var

[
W

pe
L

]
+

3

4N
2
3

E

[
W

pe

]2(
3 E [ε1]2+Var [ε1]

)
∝ O

(
N−

2
3

)
. (B.2)
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C. ASYMPTOTIC BEHAVIOR OF THE PPM
BANDWIDTH SEQUENCE

Both original PPM methods [Hachisuka et al. 2008; Knaus and
Zwicker 2011] use an asymptotically equivalent formula for band-
width shrinkage

r2
N+1 = r2

N

N + α

N + 1
= r2

N

(
1 +

α− 1

N + 1

)
.

It can be replaced with a simplified yet asymptotically equivalent
explicit formula which allows for an easier analysis.

To this end, we set tN ≡ r2
N and solve the asymptotic equation

as N →∞

tN+1−tN =tN
α−1

N+1
⇔t′(N)=t(N)

α−1

N+1
⇒t(N)=c(N+1)α−1

for some constant c. Thus the new sequence {rN} (rN =
√
tN ) is

rN = r1N
α−1
2 ∝ O(N

α−1
2 ). (C.1)

D. VARIANCE OF THE AMSE

We begin with the AMSE as in Appendix B

AMSE[ÎN ]≈Var

[
1

N

N∑
i=1

W

pe
L

]
+E

[
W

pe

]2(
E [ε̄N ]2+Var [ε̄N ]

)
.

The term L in the first summand is the radiance at a single iteration
i. If we denote as Si the average number of full paths for the Monte-
Carlo integration of the pixel measurement constructed at the i-th
iteration, then the first summand of the AMSE becomes

Var

[
1

N

N∑
i=1

W

pe
L

]
=Var

[
1

N

N∑
i=1

W

pe

1

Si

Si∑
j=1

γij

]
=Var

[
1

N

N∑
i=1

1

Si

Si∑
j=1

ψi,j

]
.

The samples ψi,j are independent and identically distributed and
thus we apply the Bienaymé formula. Also the number of samples
Si at the i-th iteration can be approximated as Si≈πr2

i Jpl where
pl is the mean density of light subpaths (photons) around all esti-
mation points. By this we obtain:

Var

[
1

N

N∑
i=1

1

Si

Si∑
j=1

ψi,j

]
≈ 1

πplJ
Var[ψ]

1

N2

N∑
i=1

r−2
i .

The variance Var [ε̄N ] can be expressed using Appendix B from
Knaus and Zwicker [2011], and by using Hall and Patil [1994] we
obtain

Var [ε̄N ]≈
(
Var[γ] + E[γ]2

) plk3

J

1

N2

N∑
i=1

r−2
i ,

where k3 =
∫
R k(t)2dt. Thus the variance of the AMSE becomes(

ℵplk3+
1

πpl
Var[ψ]

)
1

JN2

N∑
i=1

r−2
i ≈

1

πplJ
Var[ψ]

1

N2

N∑
i=1

r−2
i ,

where ℵ=E[W/pe] (Var[γ] + E[γ]2). The last step is based on the
assumption (in spirit of Knaus and Zwicker [2011]) that 1/pl�pl.
Using the equality E[W

pe
] E[ε̄N ]=E[W

pe
ε̄N ]=B[ÎN ], we get

AMSE[ÎN ]≈ 1

πplJ
Var[ψ]

1

N2

N∑
i=1

r−2
i + B

[
ÎN

]2
.

From this we can observe that the variance of the AMSE is domi-
nated by the Monte-Carlo integration of the measurement.
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