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Abstract

The antiradiance method, a variant of radiosity, allows the computation of global illumination solutions without determining
visibility between surface patches explicitly, unlike the original radiosity method. However, this method creates excessively
many links between patches, since virtually all elements exchange positive and negative energy whose interplay replaces the
visibility tests. In this paper we study how and if explicit visibility information can be recovered only by analyzing the link mesh
to identify chains of links whose light transport cancels out. We describe heuristics to reduce the number of links by extracting
visibility information, still without resorting to explicit visibility tests, e.g. using ray casting, and use that in combination with
the remaining implicit visibility information for rendering. Further, to prevent the link mesh from growing excessively in large
scenes in the beginning, we also propose a simple means to let graphic artists define blocking planes as a way to support
our algorithm with coarse explicit visibility information. Lastly, we propose a simple yet efficient image-space approach for
displaying radiosity solutions without any meshing for interpolation.
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1 INTRODUCTION

In the 1990s, radiosity methods have been significantly
improved, but after a period of large interest research
essentially ceased for several years. Mainly three dif-
ficulties with radiosity caused the degrading interest:
meshing of the input geometry and computing the (hier-
archical) link mesh, the necessity of storing all patches
and radiosity values in memory for computing a view-
independent solution, and above all, the expensive visi-
bility computation that typically consumes most of the
computation time [8]. However, some of these prob-
lems have recently been successfully tackled: the an-
tiradiance method reformulates the rendering equation
such that visibility computation for form factors is no
longer necessary, and by this enables a simple and fast
GPU implementation of radiosity methods. Dong et
al. [4] also demonstrated a GPU-radiosity algorithm
by coarsely discretizing visibility that can be computed
without ray casting. Motivated by this progress, Meyer
et al. [15] introduced a data-parallel method for mesh-
ing and hierarchical linking, and demonstrate a CUDA
implementation. In combination, these methods allow
for interactive radiosity in dynamic scenes. Fig. 1 illus-
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trates the fundamental differences of traditional radios-
ity, and the two aforementioned improvements. While
Dong et al.’s [4] method produces small link meshes –
actually smaller than traditional radiosity – it affects the
global illumination result negatively due to the coarse
discretization. In this paper, we focus our study on the
antiradiance method which matches traditional radios-
ity in terms of quality. However, it replaces costly vis-
ibility computation for form factors by creating exces-
sively many links to transport negative energy to com-
pensate for missing occlusion (see Fig. 2).

That is, two solutions at the opposite ends of the
spectrum exist for handling visibility in the radiosity
method: either fully explicit or fully implicit. This
paper bridges the gap in between by presenting a
method to deduce explicit visibility information from
the link mesh that is generated for the antiradiance (AR)
method. By this we can reduce the number of links,
however, still without computing form factors with ex-
plicit visibility, e.g. using ray casting. Obviously, the
visibility information of a scene must be encoded in
the AR link mesh: otherwise it would not be possi-
ble to compute the correct global illumination result
with implicit visibility. Our method starts at exactly
this point: we analyze the link mesh to identify chains
of links whose light transport cancels out. Once such
a chain has been identified, we can remove it with-
out changing the result or reducing the rendering qual-
ity noticeably. However, reducing the number of links
saves memory and computation time during light prop-
agation. We consider our contribution being a principal
study of deducing explicit from implicit visibility, and
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Figure 1: Light transport in different radiosity variants between a patch (a), and three other patches (transport
links to (a) shown as dashed lines; sizes of yellow arrows indicate transported intensity): Left: radiosity computes
visibility for each pair of patches; the transport from (b) is partly blocked. Center: the antiradiance method
transports energy as if there is no blocking, but compensates for this by propagating negative light that originates
from (b) via (c) to (a) (red arrow). Right: Dong et al. [4] discretize visibility to one link per direction bin eliminating
transport from (b) to (a). In case of full visibility, as for patch (d), all three methods yield the same result.

report statistical as well as visual results from our proto-
typal implementation. We also incorporate an effective
way to let graphics artists define during the modeling
stage where light transport cannot take place. For ex-
ample, if there is no light exchange between two wings
of a building, then we indicate this by simply placing a
polygon somewhere in between. Our algorithm will use
this coarse explicit visibility information to prevent the
AR link mesh from growing large even prior to our re-
duction. Lastly, we describe a novel way for rendering
high-quality antiradiance solutions without meshing or
interpolating the final radiance across neighboring ele-
ments. At render time, we light the scene using every
element as an area light source with an (anti)radiance
distribution obtained from the global illumination so-
lution. This allows the rendering of images with high
quality interpolation and better contact shadows.

2 RELATED WORK
The importance of global illumination (GI) for com-
puter graphics can be seen from the vast body of re-
search papers in this field. Two main directions have
been studied intensively in the last decades: ray tracing
and radiosity methods; we refer the reader to excellent
text books on these topics, e.g. Dutré et al. [5].

With the increasing computational power of graphics
hardware, there have been many attempts to use GPUs
to speed up global illumination. In recent years, re-
search in ray tracing made a great leap forwards and
there exist algorithms for real-time, parallel kd-tree
construction [24], BVH construction [12], and fully in-
teractive GI based on photon mapping [22].

Ray tracing based methods often cache information
about the lighting in a scene, e.g. irradiance caching
[23], photon mapping [9, 7], or instant radiosity [11].
In particular instant radiosity gained much attraction as
represent the lighting of a scene by a set of virtual point
lights, and thus easily maps to GPUs [18]. The light
cuts method [21] clusters point lights into a hierarchy

to speed up rendering. Final gathering is an essential
step for computing high-quality images and a parallel
algorithm therefor has recently be demonstrated [17].

In the following, we discuss work which is more
closely related to our approach. There have been sev-
eral attempts to compute radiosity solutions on the
GPU. The main cost factor is the evaluation of the mu-
tual visibilities between surfaces patches. Either ras-
terization together with the hemicube method [2, 1], or
ray tracing on the GPU [19] have been used to compute
form factors. The antiradiance reformulation [3] of the
rendering equation [10] replaces explicit visibility by
a recursive computation with negative light (“antiradi-
ance”). Dong et al. [4] use a directional discretization
and store only one link to the respective closest patch
per direction. Thus the visibility is constructed implic-
itly with the link hierarchy. Although both methods
are fundamentally different, both rely on a hierarchi-
cal link structure which initially had to be generated
sequentially on the CPU. Meyer et al. [15] present a
data-parallel algorithm for link and patch creation, im-
plemented in CUDA, which allows interactive radiosity
methods with fully dynamic scenes.
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Figure 2: Radiance and antiradiance links for a 1D ex-
ample. The normal of patch S is pointing downwards,
the other surface normals are pointing towards S. There
is only one unoccluded radiance link S

(+)−→ O (blue).
The other radiance links S

(+)−→ Rn (yellow) and anti-
radiance links Rn

(−)−→ Rm (red) only exist for implicit
occlusion handling.



Typically, the per-patch radiosity values that repre-
sent the GI solution are interpolated across adjacent
patches. This can be done by generating an accordingly
tessellated triangle mesh together with Gouraud shad-
ing [5] and improved using discontinuity meshing [14].
Dachsbacher et al. [3] used an image-space splatting ap-
proach that does not require a special mesh. Lehtinen
et al. [13] directly compute global illumination using
a meshless hierarchical representation and display the
solution similarly.

3 ANTIRADIANCE
In this section we briefly review the antiradiance meth-
od [3], also following the notation of this work. The
rendering equation describes the equilibrium of light
transport in a scene and the radiance at a surface point
x in direction ωo is:

L(x,ωo) =E(x,ωo)+
∫

Ω+
f (x,ωo,ωi)Lin(x,ωi)cosθdωi

=E(x,ωo)+(KLin)(x,ωo) .

The incoming radiance at position x from direction ωi
originates from the closest surface in that direction. It
is determined using the ray casting operator ray(x,ωi)
and part of the transport operator G:

Lin(x,ωi) = L(ray(x,ωi),ωi) = (GL)(x,ωi) . (1)

As the computation of G is a very costly, the AR
method strives to replace G by another transport op-
erator that is cheaper to compute. Instead of resolving
visibility explicitly by finding the nearest surface, the
radiance is gathered from all surfaces along a ray yield-
ing the transport operator U. Extraneous light is then
propagated and must be compensated. A pass-through
operator J is defined that lets incoming radiance at a
patch pass through without changing its magnitude or
direction. The operators are related as follows:

GL = UL−UJGL = U(L−A) (2)

with A = JGL being the antiradiance. With this refor-
mulation of the standard transport operator, the antira-
diance rendering equation is obtained as:

L = E +KU(L−A) (3)
A = JU(L−A) . (4)

When L, A and E are projected into a suitable Hilbert
base over the scene surface with finite dimensional-
ity, these functions can be expressed as vectors of their
components in that Hilbert space. Likewise, the opera-
tors U, K and J become matrices:(

L
A

)
=

(
E
0

)
+

(
KU 0

0 JU

)(
L−A
L−A

)
. (5)

We can then separate K out of this matrix and get:(
L
A

)
=

(
E
0

)
+

(
K 0
0 I

)(
UL 0
0 JUA

)(
L−A
L−A

)
.

(6)
The thus remaining matrix describes the occluded light
transport by means of the transport operator U. Replac-
ing it with

(G 0
0 0

)
yields the discretized equation for oc-

cluded light transport (as in standard radiosity) again.
This comparison shows that the upper left part UL of
the matrix describes radiance transport while the lower
right part UA describes antiradiance transport.

4 REMOVING OCCLUDED LINKS
Eq. 6 shows that once we separated out the transport
operator matrix we can interpret antiradiance and tra-
ditional radiosity as two extremes of how light is prop-
agated between elements in the scene. However, the
transport matrix does not have to take the form of ei-
ther the fully occluded or the fully unoccluded trans-
port. Within limits that we will discuss in the follow-
ing, it is possible to create intermediate matrices U′L
and U′A that contain transport with and without explicit
visibility, i.e. essentially a mixture of entries from G
and U.

Let us first assume the case where we replace one
unoccluded transport by a transport with explicit visi-
bility. For this we define the matrix U′L which contains
one entry of G, i.e. U′Lkl = G′Akl , and all other entries
are equal to UL. If the resulting light transport is cor-
rect, then the solutions Li j and L′i j for both matrices are
equal. The equation for the k-th patch, Lk, becomes:

Lk = ∑
i 6=l

Kki(UL
kiLi−U′Aki Ai)+Kkl(GklLkl−U′Akl Akl) .

(7)
An entry Gi j is always less or equal to the respective
entry Ui j, and thus the sum over all U′Aki Ai in this equa-
tion must either be equal or less than the sum over all
UA

kiAi. This means, that at least one of the entries in
this particular row of U′A must be decreased in value.
In other words, if the radiance transport between two
patches is performed with proper occlusion, the receiv-
ing patch must no longer receive the same amount of
antiradiance that was previously transported to it (to ac-
count for the occlusion along this transport path that we
now consider explicitly). Note that although this shows
that unoccluded and occluded light transport can be per-
formed at the same time, no rules for the adjustments to
U′A can be derived from these equations alone. If we
assume for now that we can replace values of UL

i j one
after another, then we can repeat this until U′L equals
G, and in this case U′A vanishes.

4.1 Link Removal in 1D
We have shown that mixing occluded and unoccluded
light transport operations is possible under the re-
striction that antiradiance must only be transported to
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Figure 3: Convention for creating links: radiance links
are created between patches facing each other (left);
antiradiance links are in the negative hemisphere of a
patch (center). Right: For every incoming link (here:
L) we search if there are shorter incoming links (L′).
Then we can remove L. Note that the antiradiance link
shown in red is removed because of the same fact and
thus the result is again correct at last.

patches that are the target of unoccluded transport op-
erations. To introduce our algorithm we start with the
instructional example of patches along one line. We
will discuss rules for removing transport links for the
case where a target patch is fully occluded from the
source. Note that this information is solely based on
the patch positions and extents, and the link mesh. De-
tecting partial occlusion, i.e. not only removing links
for fully occluded patches, requires visibility computa-
tion, e.g. using ray casting that we still want to avoid.
Also, we only consider opaque surfaces as potential oc-
cluders.

The motivation for the link removal is that the im-
plicit handling of visibility in antiradiance generates a
number of light transporting links that rises dispropor-
tionally with the depth complexity of the scene.

A simple set of surfaces in a 1D example as seen in
Fig. 2 motivates the removal of unnecessary links. With
unoccluded light transport, the topmost surface S illu-
minates all other surfaces. Therefore, it is linked to all
of these surfaces, although the nearest surface O already
fully occludes the light, and the light transported across
the links to the surfaces further away needs to be com-
pensated for. This is achieved by the antiradiance links
from O to all other patches Rn below, and the pattern re-
peats analogously for every surface. When explicit vis-
ibility is taken into account, only the link S

(+)−→O is re-
quired to illuminate this example scene correctly. With
the implicit handling of occlusion as described above,
n+n!−1 excess links are generated for n patches.

The first observation here is that all occluded radi-
ance links in this example intersect the sole unoccluded
patch O. Removing them along with all antiradiance
links that originate from O itself effectively results in
the occluded transport again. However, the remain-
ing antiradiance links do not transport energy anymore
since the patches where they start from do not receive
any. To optimally reduce the link mesh, we also want
to remove those from the transport matrix.

It is now possible to formulate two rules to find

Full visibility Partial visibilityNo Visibility
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Figure 4: Classification of visibility in 3D used for our
heuristics. A sender patch S emits radiance towards a
receiving patch R, which may be blocked by a potential
occluding patch O. Three situations need to be distin-
guished: full (left), none/fully occluded (middle) and
none (right).

groups of links that can be removed from the link mesh
without changing the result:
Rule 1 Search for a pattern of three links: from the
sender S to the occluding receiver O, from S to the oc-
cluded receiver R, and from O to R. When such a pat-
tern is found, both links to the occluded receiver S

(+)−→R
and O

(−)−→ R may be removed. We distinguish radiance
and antiradiance links by the sign over the arrow.
Rule 2 Check for every incoming link of a patch L if
there is another, shorter incoming link L′. If such a link
is found, we can remove L as it is occluded (Fig. 3).
Note that this rule is only valid if the objects in the
scenes are manifolds with closed surfaces as also as-
sumed in [3].

4.2 Heuristics for Link Removal in 3D
Obviously, the aforementioned removal in 1D retains
validity in two or three dimensions only if it is applied
to infinitely small patches along a single ray through
the scene. For patches with finite size and only a finite
number of discrete directions (directional bins), as used
in the antiradiance method [3], we can derive heuristics
from these rules that still work well when the scene dis-
cretization is reasonably fine. In Section 6 we evaluate
the validity of both heuristics described in this section.

The modification compared to the 1D case is neces-
sary due to the fact that the visibility function V be-
tween two patches is no longer either 0 or 1, but can
take any value in-between (see Fig. 4). Furthermore, a
special treatment is required to respect peculiarities in
a hierarchical link mesh: to determine if the light trans-
port between two patches is blocked, we might have to
search across different levels of the hierarchy.
Heuristic 1 The first rule from Section 4.1 trans-
forms into Algorithm 1. Again we find a combination
of sender S, occluder O, and receiver R. However, we
only remove the links, if O or one of its parents (in the
patch hierarchy) subtends a large enough solid angle
such that the light transport from a sender to another
surface is completely blocked (see Fig. 5). In addition,
the radiance link S

(+)−→ R must have the same (discrete)
direction as the antiradiance link O

(−)−→ R. To test this,
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Figure 5: Left: the occluder O, as seen from S (note
that in the antiradiance method links are established be-
tween patch centers), subtends a larger solid angle than
the receiver patch R. Center: the subtended solid an-
gle of O is too small and the link from S to R cannot
be removed. Right: the radiance link S

(+)−→ R is on a
different level of the hierarchical link mesh than the an-
tiradiance links O

(−)−→ R. Thus we also consider parents
in the patch hierarchy when searching for blockers.

we construct two infinite circular cones with their tips
in S: the first one, CLink connects the centers of S and O
with its axis and has an opening angle so that the solid
angle subtended by this cone equals that of O as seen
from S. The second cone, Cbin has the discrete direc-
tion of the link’s source bin as its axis and its opening
angle is chosen so that Cbin covers a solid angle of ωbin.
Then, CLink must enclose Cbin (cf. Alg. 1 lines 6-10).
This ensures that all patches lie on one line, analogous
to the 1D example before. When using hierarchical link
meshes, an occluder can be linked to the receiver on a
finer level than the sender-receiver link, in which case
the patch at the finer level takes on the role of R (Fig. 5,
right, Alg. 1 line 5). Also, the full extent of the occlud-
ing geometry can be better estimated by checking the
solid angles subtended by any parents of the suspected
occluding patch.
Heuristic 2 The second removal rule transfers to the
3D case analogous to the previous one (see also Algo-
rithm 2). The aforementioned restriction to scenes con-
sisting entirely of closed manifolds stays valid. When

Algorithm 1 Find and disable all links between
senders, occluders and receivers.

1 for each radiance l ink L
2 required [L ] = true
3
4 for each radiance l ink L
5 for al l target patch Pj of l ink L and i t s parents
6 CLink ← cone( center (Pi ) , actualdir (L ) , ωi← j )
7 / / sourcedir (L) is discreet source direct ion of Link L
8 Cbin← cone( center (Pi ) , sourcedir (L ) , ωbin )
9 i f ωi← j > ωbin and CLink encloses Cbin

10 binOccluded ← true
11
12 i f binOccluded
13 for al l antriadiance l inks L′ start ing from Pj
14 Pk ← target_patch (L)
15 i f l ink Pi→ Pk exists
16 i f sourcedir (L)=sourcedir (L′ )
17 i f targetdir (L)= targetdir (L′ )
18 required [L ] ← false
19 required [L′ ] ← false
20
21 remove al l l inks where required [L ] is false
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Figure 6: (a) Two incoming links L and L′ at R have the
same direction. To determine if we can remove L, we
need to test if the transport from S to R is blocked. Test-
ing this blocking with the patch O where L′ emanates
from does not reveal this information. Ascending the
hierarchy and testing with the parent of O determines
full blocking (c) and L can be faithfully removed. (d) A
situation where a fully occluded antiradiance link must
not be removed: The link S

(+)−→ R is partially occluded
by O and O1 and the link O

(−)−→ R is fully occluded by
O1, but the antiradiance produced at O must arrive at R
to correctly reproduce the partial occlusion. Therefore,
the link O

(−)−→ R must not be removed.

we test if a link S
(+)−→R can be removed, we need to find

a shorter link from a potential occluder O to R. How-
ever, these two links must have the same (discretized)
direction (Alg. 2 line 4). If we detect such a situation,
then we need to determine if O, or the surface to which
is belongs, is large enough to block the transport from
S to R by ascending the hierarchy from O to its largest
parent. Next, we project S onto the plane of this par-
ent patch and only if the projection is fully on that sur-
face the link can be removed (Fig. 6, Alg. 2 lines 9-15).
Note that patches that share a common parent with S
will never be considered as occluders (Alg. 2 line 8).

However, not all links that are detected as fully oc-
cluded may actually be removed. As illustrated in Fig. 6
antiradiance links might be necessary to capture par-
tial occlusion although the above heuristic marks them
as occluded. Algorithm 3 detects these links and pre-
vents them from being removed. For each partially vis-
ible link S→ R it searches all other antiradiance links

Algorithm 2 Classify Link visibility as seen from target
patch.

1 for each radiance l ink L
2 visibility [L ] = f u l l
3 for each l ink L′ ending at target patch of L
4 i f target_bin (L)=target_bin (L′ )
5 R← target_patch (L)
6 S← source_patch(L)
7 O← source_patch(L′ )
8 i f S and O do not have same parent patch
9 / / I f S or O are clusters , the following is

10 / / checked on every pair of patches in these clusters
11 O′← biggest parent of O
12 S′← perspective projection of S onto O′

13 i f S on far side of O′ and S′ f u l l y inside O′
14 visibility [L ] ← none
15 continue
16 else
17 visibility [L ] ← par t ia l



Algorithm 3 Finding required occluded links.

1 for each l ink L
2 i f visibility [L ] = none
3 required [L ] = false
4 else
5 required [L ] = true
6
7 for each l ink L with visibility [L]= par t ia l
8 S← source_patch(L)
9 R← target_patch (L)

10 for R and each chi ld patch of R
11 for each antiradiance l ink L′

12 S′← source_patch(L′ )
13 R′← target_patch (L′ )
14 i f R=R′

15 for each l ink L′′ connecting S to S′

16 i f visibility [L′′ ] != none and L′′ is radiance l ink
17 required [L′ ] ← true

S′
(−)−→ R to the same target patch and checks if a non-

occluded link S→ S′ exists. If so, S′
(−)−→ R is required

to keep the partial occlusion of S′ from R by S intact
and is marked as required. Note that this heuristic can-
not be used after heuristic 1 because links S′

(−)−→ R may
already have been removed, resulting in required links
getting missed and removed.
Patches without incoming links In case of static di-
rect lighting in the scene we can also remove all links
emanating from patches that are neither light sources
nor have any incoming links, as these links will never
transport energy. However, similar to the original anti-
radiance implementation [3] we typically use shadow
maps for computing direct illumination and thus po-
tentially every patch can receive energy that has to be
propagated further.

4.3 User-Defined Link Removal
In addition to the link removal heuristics described
above, we can optionally perform link removal based
on user-defined (invisible) blocking geometry which
strictly cuts all links that intersect it. This additional
geometry can be a simple polygon generated by the
user along with the scene to separate parts of the scene
that obviously do not directly exchange light with each
other, e.g. two rooms separated by solid walls (see
Fig. 8). Since this geometry consists of few polygons
only, we test for every link if it intersects the blocking
geometry without generating high cost, and remove the
link if this is the case. Note that this is similar to Fradin
et. al. [6] who used manually placed portals to section
large scenes.

5 FINAL SHOOTING
Dachsbacher et al. [3] used a splatting approach, similar
to point-based rendering, to render an image with inter-
polated patch colors. Instead we propose to use a “final
shooting” approach: we treat each patch in the scene as
a patch light source (PLS) with a directional intensity
distribution according to the total exitant intensity de-
termined by the antiradiance solver. For rendering the

final solution, we simply light the scene only using the
PLSs. This approach can be seen as a variant of instant
radiosity [11], where light sources emit radiance and
antiradiance (computed using the antiradiance method)
and thus account for shadowing implicitly. Note that
the resulting number of virtual light sources in our ap-
proach is typically orders of magnitudes higher. Fur-
thermore, every PLS is an area light source from which
lighting computation is more intricate than from point
lights. To this end, when computing the lighting of a
fragment due to a PLS, we replace the PLS by 8 point
light sources randomly placed on the PLS. This can
be seen as a Monte-Carlo sampling of the area light
sources; no noise is visible in the images, as the number
of PLS is very high (it equals the number of patches in
the scene). Note that by lighting the scene with all PLSs
we obtain not only a smooth interpolation, but also one
(additional) indirect bounce at the same time with no
additional cost.

When using a full link mesh, we efficiently accumu-
late the contributions of all PLSs using deferred shading
and interleaved sampling [20]. However, care has to be
taken when using final shooting together with the link
removal heuristics: in this case, only those patches are
to be lit by a PLS that are still linked to it after reducing
the link mesh. To account for this, instead of using de-
ferred shading, we have to render every receiver patch
for every PLS, compute per-pixel lighting, and accu-
mulate the contributions. Note that this process bene-
fits from the GPU’s early-z culling automatically omit-
ting occluded receivers. For lighting computing from
a PLS, we look up the interpolated intensity towards a
fragment using precomputed interpolation weights in a
cube map (6×5122 resolution in our examples).

6 RESULTS AND DISCUSSION

In this section we compare the heuristics and the user-
defined link removal. To determine the impact of the
heuristics’ approximation regarding the link removal,
we modified both to perform explicit visibility checks
using ray casting and Monte Carlo sampling instead
of the link mesh based checks. Note that no heuristic
should remove more links than those removed with ex-
plicit visibility testing. We have implemented an Anti-
radiance solver similar to the one described in [3], using
the same algorithm for building the hierarchy. The pre-
processing, including the previously discussed link re-
moval heuristics, is initially implemented and executed
on the CPU (running on multiple cores), while OpenGL
is used for the simulation of the light transport and for
displaying the result. While our current implementation
can be seen as an experimental prototype, we plan to
integrate our heuristics into the data-parallel link gen-
eration method by Meyer et al. [15] in the future.



heuristic 1 heuristic 2
explicit heuristic not explicit heuristic not

scene patches links test removal incorrect removed test removal incorrect removed
Japan 12745 629665 157449 129313 54872 (42%) 83058 (52%) 71007 34408 11732 (34%) 48331 (68%)
Office 14246 1470440 581768 395592 124232 (31%) 310408 (53%) 260475 85075 28739 (34%) 204139 (78%)
Desks 14396 1465632 759669 280705 7752 (10%) 486716 (40%) 690145 300316 11577 (4%) 401406 (58%)
Soda Hall 25023 2774452 2076609 1621749 73998 (5%) 528858 (25%) 1888014 1016923 21026 (2%) 892117 (47%)

Table 1: Results of applying our heuristics to the test scenes with: the total number of radiance and antiradiance
links, the number of links removed by the explicit test, the links removed by the heuristic, the number of incorrectly
removed links compared to the explicit test, and the number of links that have not been removed by the heuristic
but by the explicit test.

scene patches links heuristic 1 heuristic 2
Japan 12745 629665 22.1s 26.0s
Office 14246 1470440 248.2s 224.9s
Desks 14396 1465632 80.5s 127.0s
Soda Hall 25023 2774452 87.9s 280.0s

Table 2: Measured run time for our multithreaded CPU
implementation of the heuristics running 8 concurrent
threads (averaged over 10 runs)

6.1 Link Removal Heuristics

We tested our link removal heuristics against the ex-
plicit visibility oracle on various scenes: the Japanese
room and office from [3], the “desks” shown in Fig. 8
and the model of the fifth floor of the Soda Hall (see
Fig. 12). The results are summarized in Table 1 and
the run times are given in Table 2. All measurements
were taken on an Intel Core i7 CPU with 2.66MHz,
6GB RAM, and an NVIDIA GeForce GTX 465 with
1024MB RAM, running Linux.

Our results show that the heuristics also remove links
that are not totally occluded. In the Japanese room and
office scene, which both consist of a single room with
many objects inside, the error rate is particularly high

(a) heuristic 1 (b) heuristic 2

(c) 4× difference heuristic 1 (d) 4× difference heuristic 2

Figure 7: The Japan scene rendered with reduced link
meshes using final shooting (top), and then luminance
differences to an image computing with the full link
mesh (red is less, green is greater than original). The
difference images have been scaled by a factor of 4.
Compare Fig. 9, 10a for references.

while it is low for the “desks“ scene and the Soda Hall
with their walls as main occluders. This shows that
while both heuristics perform well with big solid oc-
cluders, they are prone to inaccuracy with correctly es-
timating visiblity along silhouettes of objects. The first
heuristic relies on the subtended solid angle for testing
blocking. However, this gives no indication about the
actual patch shapes: for instance, elongated patches can
be visible although nearly quadratic patches with larger
solid angles are in front of them. The second heuristic
erroneously removes links for which unblocked paths
between the patches may still exist although the projec-
tion test succeeds. The runtime for heuristic 1 depends
on the number of occluders in the scene: the algorithm
only needs one occluder per link and thus has to search
less links and terminates quicker when many large oc-
cluders are present. Heuristic 2 spends most time in al-
gorithm 3, whose complexity is dominated by the num-
ber of links that have to be searched.

Although the resulting error due to the link removal
heuristics seems significant for the affected scenes, the
impact on the rendered images is hardly perceivable
(see Fig. 7 and Fig. 10a). Obviously, errors are only in-
troduced for links whose contribution (either radiance
or antiradiance) is negligible. The first heuristic creates
generally brighter shadow regions. It discards O

(−)−→ R

links even if there exists another link S′
(+)−→ R that is

Figure 8: Desk scene with blocking geometry (red) af-
ter 6 antiradiance iterations, rendered with splatting.



Figure 12: Soda Hall level 5 lit by diffuse emitting area
light sources in the rooms and on the hallways. It was
rendered using final shooting and the reduced link mesh
produced using heursitic 1 (see Table 1).

only partially occluded by O and requires the antira-
diance generated at O to correctly light R. The second
algorithm of heuristic 2, which is run to preserve partial
occlusion, results in a stronger tendency to keep antira-
diance links. Thus, the corresponding difference image
shows lesser brightening of shadow regions. Applying
heuristic 2 followed by heuristic 1 on the Japanese room
and Soda Hall scenes results in 144983 removed links
(45.5% error) and 1628987 removed links (4.7% error),
respectively, and visual quality comparable to Fig. 7.

We tested the blocking planes by adding two such
polygons between the rooms in the “desks” scene (see
Fig. 8). These two quads alone caused a removal of
almost 76% of all occluded links in the scene, demon-
strating that this mechanism is not only cheap to com-
pute, but also highly efficient.

6.2 Rendering Quality
Fig. 9 shows resulting images for the Japanese room
without interpolation, with splatting, and final shoot-
ing. The global illumination solution has been com-
puted with 4 antiradiance iterations and 128 direction
bins for all of our test scenes.

At a resolution of 800× 600 pixels the rendering
speed was 8.5 frames per second with no interpolation,
7.7 fps with splatting, and 0.04 fps with shooting. Al-
though final shooting has a considerable impact on per-
formance due to the high number PLSs, the resulting
images capture finer details, e.g. contact shadows, due
to patches emitting antiradiance. Interleaved sampling
for final shooting with 4× 4 interleaved sampling runs
at 0.44 fps, and the performance increases further when
using larger interleaving patterns yielding 1.22 fps at
8×8, and 2.88 fps at 16×16. However, at some point
the wider Gaussian blur filter again removes details (see
Fig. 10). Nichols et al. [16] report tremendous speed-
ups with multi-resolution splatting compared to inter-
leaved sampling, however, there is another way to speed
up shooting. So far, we used the leaf nodes in the hier-
archy as PLSs, but we also can use interior nodes there-
for. Using the leaves’ parents yields about 75% less
PLSs, but only slightly reduces the amount of detail in
the lighting as we treat them as area lights (see Fig. 11),

but already yields a significant speedup: shooting at full
resolution runs at 0.14 fps, at 1.29 fps with 4×4, at 2.99
fps with 8×8, and at 5.09 fps with 16×16 interleaving,
respectively. A further optimization, and direction for
future work, is to exploit the patch hierarchy also for
selecting the PLSs, in spirit of [21].

7 CONCLUSIONS
In this paper we studied heuristics operating directly on
the hierarchical link mesh of the antiradiance method
to deduce explicit visibility information and thus to re-
duce the number of links. The energy propagation is
the most time consuming step in antiradiance methods
and greatly benefits from link removal as its cost is
proportional to the number of links. Our heuristics re-
move links more faithfully than Dong et al.’s method [4]
yielding results of similar quality as the antiradiance
method. The user-defined blocker geometry can further
be used to remove links with little computation. The
final shooting simplifies the rendering of a high-quality
final solution and yields better results and requires less
tweaking than Dachsbacher et al.’s splatting approach.

Obviously, our heuristics will have to be incorpo-
rated into a data-parallel link generation method, such
as Meyer et al.’s work [15] to actually speed up antira-
diance in fully dynamic scenes. This data-parallel al-
gorithm is about two orders of magnitude faster than
our (and Dachsbacher et al.’s) CPU-based link genera-
tion algorithm (45 million links/s versus 140 thousand
links/s), and we would expect a similar speedup for the
link removal. Another challenge is to create blocking
geometry automatically by analyzing the scene geome-
try. We believe that these two steps will enable our link
removal in fully dynamic scenes at interactive speed.
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