
Analyzing Visibility Configurations
Carsten Dachsbacher

Abstract—Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of
visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present
an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on
visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular
surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method
allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected
visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an
area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and
performance of our method in synthetic scenes, as well as real applications.

Index Terms—Real-time rendering, visibility, GPUs, artificial intelligence.

Ç

1 INTRODUCTION

LEVEL OF DETAIL and occlusion culling methods pursue
the goal of reducing the rendering workload by detecting

which parts of a scene require detailed representations, which
can be sufficiently well rendered with less detail, and which
are not visible at all. These decisions are most often made on
the object level or for nodes in a scene hierarchy: either they
are not visible at all and excluded from rendering, or they are
visible and rendered after the required level of detail has been
determined. In the simplest case, this is solely based on a
distance metric, and possibly on the degree of visibility. Fig. 1
illustrates the quandary of this strategy: the information that
an object’s surface is partly visible does not reveal if the object
is blocked by a solid occluder, or if it is located behind a “see-
through” blocker. See-through blockers consist of structures
that are fine compared to the analyzed object, e.g., the foliage
in front of the “Polygirl” model in Fig. 1. Methods taking
perceptual criteria into account, such as Drettakis et al. [1],
determine the visual masking from such blockers and the
optimal level of detail by quantifying the visible differences
between the renderings with full and reduced detail;
however, they introduce significant computational overhead.
Effectively, visual masking is mainly due to strong variations
in lighting or shading, or from foreground see-through
blockers, such as foliage or fences.

In this paper, we present an efficient and robust method
to classify the different visibility configurations shown in
Fig. 1. The possibility to identify and differentiate between
these configurations provides valuable information for
many algorithms relying on visibility determination. For
this analysis, our method determines the distribution, or
structure, of visibility and occlusion across surfaces. This is
achieved by partitioning a triangle mesh into clusters, and

determining the visibility of each cluster separately. The
clusters’ visibility and location on the image plane constitute
the information used for the visibility analysis. We general-
ize co-occurrence matrices [2] from pixel images to scattered
data to generate classification features thereof. Commonly
used classifiers, such as neural networks or support vector
machines, reliably classify visibility configurations even
with small synthetic training sets that are general and
applicable to a wide range of applications. Representatively,
we discuss three algorithms for which the visibility analysis
has potential use: perceptually motivated level of detail
methods for real-time rendering, and two applications for
ray tracing and radiosity, as examples for offline rendering
methods. Fig. 2 shows the visibility analysis of an area light
source with respect to surface points, which can be used to
control sampling with ray tracing. For radiosity methods, we
demonstrate how the basic from-point visibility analysis can
be extended to a surface-to-surface visibility classification.

2 RELATED WORK

Visibility determination has been a central problem in
computer graphics since the very beginning of the field. It
is required for many aspects such as the detection of visible
and occluded surfaces to speed up image generation,
computing shading and shadowing from light sources, the
simulation of global illumination, and even in acoustics
simulation. Not surprisingly an enormous amount of
research has been conducted of which we only mention the
most related work: Law and Tan [3] describe a framework for
deducing virtual occluders, Funkhouser et al. [4] aim for
interactive walk-throughs of complex environments using
level of detail (LOD) rendering and precomputed visibility,
while Baxter et al. [5] and Yoon et al. [6] use cluster
hierarchies and occlusion culling. Exploiting coherence in
hardware-assisted visibility determination greatly improves
performance [7], [8]. Eisemann and Décoret [9] use GPUs for
area-to-area visibility determination and point to further
work on visibility and shadows. Related to our work,
Andújar et al. [10] identify partially occluded geometry for
occlusion culling and precompute the size of contiguous

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 4, APRIL 2011 475

. The author is with the Computer Graphics Group, Karlsruhe Institute of
Technology, Am Fasanengarten 5, 76228 Karlsruhe, Germany.
E-Mail: dachsbacher@kit.edu

Manuscript received 18 June 2009; revised 23 Dec. 2009; accepted 11 Apr.
2010; published online 20 May 2010.
Recommended for acceptance by K. Bala.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2009-06-0123.
Digital Object Identifier no. 10.1109/TVCG.2010.77.

1077-2626/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

visible regions; however, they do not analyze their structure

as we do. Charalambos et al. [11] presented a hierarchical

LOD and occlusion culling method that uses visibility

information obtained from hardware occlusion queries. This

work is orthogonal to our method and could directly benefit

from the visibility analysis. Wonka et al. [12] determine from-

region visibility using stochastic ray shooting and path

mutation, while Zhang and Turk [13] use visibility as a

criterion for surface simplifications. Bittner and Wonka [14]

and Cohen-Or et al. [15] provide comprehensive overviews

over this research area.
Rendering algorithms have always been high consumers

of computational resources and LOD methods aim at

reducing the surface detail (with regard to geometry or

shading), and thus, the rendering cost. Luebke et al.’s

excellent textbook [16] gives an introduction to this topic,

and the work of Drettakis et al. [1] provides an overview over

perceptually based rendering, which has been the focus of
much research over recent years.

Our method is also based on work from other research
areas. We adapt co-occurrence matrices (CMs) [2], known
from the vast field of image processing, for visibility
analysis and use machine learning techniques [17] for
classification. Previously, CMs have also been used for
mesh segmentation [18], which can be considered as the
counterpart to texture-based segmentation in images. To
our knowledge, extracting features with CMs for analyzing
visibility configurations is new in graphics, and may have
many applications.

3 CLASSIFYING TEXTURES AND VISIBILITY

Co-occurrence matrices are a well-known statistical techni-
que for feature extraction in image and texture analysis.
They gather information on the spatial distribution of colors
or gray levels in a pixel neighborhood.

The key observation is that we can interpret the
distribution of visibility across an object as a texture. As
illustrative example, imagine that we replace the Polygirl
model in Fig. 3 by a rectangular panel facing the viewer.
Next, we virtually subdivide this panel into a grid of 6� 6
subrectangles and determine the visibility for each of them
(Fig. 3). This results in an image with 36 pixels with gray
levels (quantized to G discrete levels) ranging from black for
invisible subrectangles to white for fully visible subrectan-
gles. The resulting “visibility texture” looks similar to the
synthetically generated patterns shown in the second row of

476 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 4, APRIL 2011

Fig. 2. (a) Our ray tracing test scene with solid and see-through blockers
lit by an area light source. (b) The classified visibility configurations
(color-coded) of the light source with respect to surface points can be
used to control sampling.

Fig. 3. The visibility of the model can be interpreted as a gray-scale
texture. The characteristics of such textures (shown isolated on the
right) allow the classification of the visibility configurations.

Fig. 1. Our method classifies the various visibility configurations for the model shown in orange (full invisibility/occlusion is not shown here). Although
approximately 50 percent of the object’s surface are visible in (b) and (c), the situation is different. We split the object into few clusters and combine
the visibility and the image space locations of the clusters to extract features for an efficient classification with neural networks. (a) Fully visible.
(b) Partial coverage solid blocker. (c) Full coverage see-through blocker. (d) Partial coverage see-through blocker. (e) Full coverage solid and see-
through. (f) Partial coverage solid and see-through.

Fig. 5, and in the following sections, we detail how to use
CMs to describe the characteristics of such images. We will
ultimately use the objects’ surface divided into clusters to
determine the visibility and adapt co-occurrence matrices to
extract features directly.

3.1 Feature Extraction

In this section, we will first introduce the CMs used for our
feature extraction, and next describe the classification and
training for the analysis. In general, a CM P�;� characterizes
a gray-scale pattern within a pixel region R of an image f .
Intuitively, a CM counts how often a pair of gray values
ðg1; g2Þ appears at a distance � and under an angle � off the
x-axis (Fig. 4):

P�;�ðg1; g2Þ ¼
X

~x2R
�ðfð~xÞ � g1Þ�ðfð~xþ ~dÞ � g2Þ; ð1Þ

where � is the discrete delta function with �ð0Þ ¼ 1, and
�ðxÞ ¼ 0 for x 6¼ 0, and ~d ¼ � � ðcos�; sin�ÞT .

We will use a variant of CMs that completely ignores
orientation and considers the bidirectional relationship of
gray levels only. This yields symmetric matrices, which are
invariant to rotation and mirroring of the input:

P�ðg1; g2Þ ¼
X

~x;~y2R
~x�~yk k¼�

� fð~xÞ � g1ð Þ� fð~yÞ � g2ð Þ: ð2Þ

CMs in image processing are typically large (for G gray
levels, the matrix has size G2) and sparse, and thus, various
metrics of the matrix are taken to get a more useful set of
features, e.g., the well-known Haralick [2] features which
measure among others contrast, entropy, and correlation. As
we will see, a small number of gray levels are sufficient for the
visibility analysis to distinguish the configurations shown in
Fig. 1 and we will directly use the CMs as input to classifiers.

A first indication about the visibility configuration can be
obtained from the histogram of the fractional visibilities,
which is contained in the diagonal elements of the P0 matrix
(the CM for � ¼ 0). Obviously, the lack of spatial relation-
ship in the histogram prevents the differentiation between
fundamentally different configurations, such as those
shown in Figs. 5f and 5g. Information to overcome this
problem is present in the P�1

matrix, where �1 is the size of
a pixel of the visibility texture, i.e., the distance of the
centers of two adjacent pixels. From this matrix, we extract
the diagonal elements P�1

ði; iÞ and the symmetric elements
P�1
ði; jÞ ¼ P�1

ðj; iÞ, i < j. Together with the histogram, we
get a feature vector with Gþ ðG2 þGÞ=2 elements for the
classification. Using CMs with distances of a multiple of �1

does not improve the classification of the visibility config-
urations shown in Fig. 1. Since we aim to use few visibility
tests only, i.e., low-resolution visibility textures, the Pk��1

,
k > 1, matrices do not contain reliable information. Classi-
fying more complex configurations, e.g., stripe patterns, is
possible with higher resolution visibility and direction-
dependent CMs, but of no interest for our visibility analysis.

3.2 Classification and Training

After little training, a human observer can easily differ-
entiate the various visibility textures or configurations
shown in Fig. 5 by looking at the CMs. Deriving a fixed
decision scheme based on these synthetic configurations is
feasible; however, it requires handcraft (the feature vector
has Gþ ðG2 þGÞ=2 elements), it is hard to fine-tune and
error-prone. Instead, we model the observer with widely
used classification tools: multilayer perceptrons (MLPs, an
artificial neural network with a simple acyclic topology [19])
or support vector machines (SVMs) [20]. Both are simple to
implement, quickly trained, and well suited for simple
classification tasks as in this case, while SVMs can be more
reliable in more complex applications [21], [22]. In addition
to increased flexibility and tolerance to noisy data, both are
able to model the observer just from example data, i.e., a
given training set of visibility configurations. One rule of
thumb for classification is that the quality of the extracted
features is of utmost importance and the choice of the
classifier is secondary. Our experiments attest this and both
MLPs and SVMs performed equally well. In the remainder
of the paper, we will focus our description on MLPs as they
are simple to use and robust libraries for classification and
back-propagation learning exist [17].

DACHSBACHER: ANALYZING VISIBILITY CONFIGURATIONS 477

Fig. 4. Co-occurrence matrices count how often every pair of gray
values ðg1; g2Þ appears at a distance � and under an angle � off the
x-axis.

Fig. 5. Top rows: exemplary visibility configurations and corresponding
synthetic visibility patterns of 8� 8 clusters with G ¼ 4 quantization
levels from black (full occlusion) to white (full visibility). The correspond-
ing P0 and P�1

CMs are shown below: brighter elements denote a larger
number of co-occurring fractional visibility pairs. Note that the co-
occurrence matrix P�1 is required to distinguish the two patterns (f) and
(g). The visibility pattern shown in (h) is undersampled: a slight camera
movement can result in a visibility pattern similar to (c). This is the
borderline case where the structures of the occluder are too small to be
detected as solid blockers and treated as see-through blockers instead.
Note that such a perfect alignment of clusters and occluders as in (h) is
extremely rare in practice.

In total, we use the Gþ ðG2 þGÞ=2 inputs stemming
from P0 and P�1

. In addition to the corresponding input
neurons, we create a hidden layer with the same number of
neurons, and as typical for neural networks, we create one
output for each visibility configuration. As neural networks
require the input values to be bounded, we scale the values
obtained from P0 and P�1

prior to classification and training
to the interval ½0; 1�. For our examples, we use an MLP that
has been trained using synthetic configurations as shown in
Fig. 5. During training, we set all output values to zero,
except for the output corresponding to the current visibility
configuration which is set to one. When using the MLP for
classification, the largest output indicates the classification
result. Without the hidden layer, the classification becomes
less robust—however, we did not observe better classifica-
tion using more neurons. Since the evaluation of small
MLPs is not time-critical, we did not investigate further
optimization techniques such as pruning.

In our implementation, we used a freely available and
lightweight library for MLPs [23]. For the training of the
MLP (for G ¼ 4, i.e., 14 inputs), we used automatically
generated variations of the different synthetic patterns
shown in Figs. 5a, 5b, 5c 5d, and 5e, and one for the case of
full invisibility. The variations are created by slightly
varying the size of the visible, partially visible, and
occluded regions, and by filling partially visible regions
with random mid-gray values. By this, we create a great
variety of patterns covering all visibility configurations that
we want to classify. Note that no rotations or mirrorings of
the patterns need to be generated as our co-occurrence
matrices are invariant to these transformations. The training
is required only once and takes 390 milliseconds with
2,500 training rounds, which provide converged MLP
weights. Using [23], the MLP can then be evaluated
180,000 times per second on a single core of an Intel
Core2Quad CPU at 2.4 GHz.

4 ANALYZING VISIBILITY CONFIGURATIONS

Unlike previous methods, we do not only determine the
degree of visibility of objects, but we also provide information
about the distribution or homogeneity of the visibility across an
object’s surface using CMs to extract this information. This
enables more intelligent decisions for LOD selection and

culling algorithms, or more generally, for algorithms which
make decisions based on visibility tests.

For the explanation of the basic algorithm, we first
consider the case of a from-point visibility determination,
i.e., we classify the visibility configuration for an object in a
scene rendered from a standard camera as shown in Fig. 1.
We distinguish the configurations depicted there, and of
course, the case of full invisibility.

First of all, we need to determine the visibility distribution
across each object to extract the classification features for the
visibility analysis as described above. Obviously, replacing
objects by planar panels to obtain visibility textures is no
general solution and may yield wrong visibility, particularly
in scenes with dense geometry. A simple solution is to
virtually subdivide the screen space bounding rectangle of
an object into a grid, and next determine for every grid cell
how many pixels the object covers without occluders and
how many pixels there are actually visible. Counting the
pixels can be efficiently done using hierarchical item buffers
[24]; however, this approach requires rendering each object
twice: first, each object alone to determine the screen
coverage without occlusion, and then, all objects together
to resolve the final visibility.

Instead of determining the visibility on a regular grid
(i.e., computing a visibility texture as in Fig. 3), we propose
to use a combined object-space and screen-space approach:
we partition the object’s surface into clusters (of roughly
equal surface area), and determine their fractional visibility
(the ratio of visible to projected area for each cluster) at
render time. For the visibility analysis, we then adapt CMs
to work with irregularly sampled visibility information, in
this case, the cluster visibility and the cluster centroid
locations in image space. The actual visible surface area of
each cluster is determined by sampling, e.g., with hardware
occlusion queries, and the projected visible area without
occlusion from other objects is computed analytically.
However, efficiently computing the latter requires an
estimation of intraobject self-occlusion to extract mean-
ingful features for the visibility analysis, which we describe
in Section 4.2. Fig. 6 gives an overview of our method. The
steps of our algorithm are depicted in Figs. 7, 8, and 9.

4.1 Clustering

In order to classify the different visibility configurations, we
need to determine the visibility distribution on an object’s

478 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 4, APRIL 2011

Fig. 6. Overview of analyzing the from-point visibility configuration of an object: in a preprocessing step, we cluster the object, and at runtime,
determine the visibility of each cluster (typically after rendering the image). The fractional visibilities and the locations of the clusters in image space
determine the histogram and the co-occurrence matrix. The visibility configuration is classified from the feature vector (all red-framed entries of the
matrices) using a multilayer perceptron. The result can then be used for controlling the object’s level of detail in the subsequent frame.

surface. For this, we partition the surface into disjoint
clusters, and at render time, we determine the visibility of
all clusters. We decided to use a clustering algorithm
similar to the method used by Sander et al. [25]. This
method alternates between two phases (starting with an
initial cluster seed): one which assigns triangles to clusters
(starting the search from the centroids) and one which
computes a new centroid for each cluster (searching from
the cluster boundaries inward).

We modify this approach making it simpler and better
suited for our requirements (Fig. 7 shows results of our
clustering algorithm). The first modification is that cluster
centroids are not required to reside on the surface. Second,
we replace the search in phase 1 by simply assigning
triangles to the cluster with the closest centroid. This
effectively removes the normal variation penalty of the
original method applied when growing clusters, and lifts all
constraints on cluster topology. Both effects are intended as
we do not aim for planar clusters or well-behaved chart
parameterization as in [25]. In phase 2 of the clustering
algorithm, we place the new cluster centroids at the center
of the minimal bounding sphere containing all triangles of a
cluster. Note that nonplanar clusters result in more
uniformly sized, isotropic cluster shapes when projected
in screen space. Enforcing planar clusters, however, can
result in highly anisotropic cluster shapes, e.g., for
Neptune’s trident (Fig. 11) or the arms of the Polygirl
model (Fig. 7). The visibility analysis with rotation invariant

co-occurrence matrices works best with isotropic clusters
(see also Section 5.1.1).

4.2 Fractional Visibility

For the view-dependent analysis of the visibility distribu-
tion across an object’s surface, we determine the fractional
visibility of each cluster in post-transformed view space.
The fractional visibility vi, of the ith cluster, is the ratio of
actually visible pixels ai to the total projected screen size si,
of front-facing triangles without blocking from other objects.
For the feature extraction, we quantize the fractional
visibility to G ¼ 4 levels (see Section 6 for a discussion).
Clusters containing back-facing triangles only or located
outside the view frustum do not provide any information to
the visibility distribution and we cull them prior to the
analysis. We also cull clusters which cover only few pixels
on the screen, as their fractional visibility might be error-
prone and unstable. As no practical analytic solutions to the
general visibility determination exist, we sample the actual
visibility ai with hardware occlusion queries (in interactive
applications), or with ray casting (in offline rendering). The
occlusion query mechanism is natively supported by
graphics hardware. It detects the visibility of a rasterized
surface against the contents of the depth buffer and returns
the number of pixels passing the depth test. The projected
size of a cluster can be computed pixel-accurate given the
transformation and projection matrices and the screen
resolution; however, this computation cannot consider
self-occlusion (from other triangles or clusters of the object
itself) or occlusion from other objects. If there is intraobject
self-occlusion, then it will reduce the number of actually
visible pixels ai, which is detected by the occlusion queries,
and consequently, we also need to account for it when
computing si.

Concave objects generate this self-occlusion: clusters in
the front can occlude clusters behind them and this can be
misinterpreted as occlusion from other objects in the scene.
Thus, we need to determine the self-occlusion for each
cluster in order to correct the determined fractional
visibility. When using occlusion queries for this as well,
then two additional render passes per object would be
required: rendering all clusters without any occluders,

DACHSBACHER: ANALYZING VISIBILITY CONFIGURATIONS 479

Fig. 8. For each cluster, we determine the quantized fractional visibility
(a), and estimate the distance �1, characterizing the direct neighbor-
hood of two clusters in image space, from the 2D centroid locations (b).
Counting the occurrences of pairs of gray values of neighboring clusters
(c) yields the CMs used for classification (d).

Fig. 9. We assume that clusters cover a circular area on the image plane
(a). Multiple occlusions (b) are resolved by iteration. (c) Fractional
visibility vi (red), the estimated self-occlusion V 2

i (blue), and the
corrected term v0i (purple, saturation doubled for illustration).

Fig. 7. The Polygirl model with 8 (a) and 16 (b) clusters created using the
simple method described in Section 4.1.

followed by rerendering with occlusion queries. That would
increase the computation cost significantly, but we found
that a fast approximation is sufficiently accurate to make the
classification reliable. For this, we assume that all clusters
cover a circular area around their centroid location in 2D
image space coordinates ~xi with a diameter r (the derivation
of this parameter is described in the next section). The
distance of a cluster to the viewer is di, and the size of the
overlap region of two clusters is denoted by Að~xi;~xjÞ
(see Fig. 9). We then compute the self-occlusion for each
cluster by determining the fraction of its disc area that is
visible and not occluded by the other discs. However,
instead of an accurate computation, which is costly with
many clusters, we use an iterative approximation in the
spirit of [26]:

V m
i ¼ V m�1

i �
XN�1

j¼0;dj<di

V m�1
j

A ~xi;~xj
� �

r2�
; ð3Þ

with iteration m and V 0
i ¼ 1. This typically yields results

within 5 percent of the accurate disc-based overlap with
m ¼ 1 or m ¼ 2 iterations (see below for a detailed analysis).
We substitute the fractional visibility vi (accounting for self-
occlusion and occlusion from other surfaces) for the
corrected term v0i ¼ minð1; vi=V m

i Þ, if V m
i > 0. This effec-

tively removes self-occlusion to an extent, which proved
sufficient in all our tests.

Note that this approximation does not correct for self-
occlusion of triangles inside one cluster. However, for many
models, and in particular, for the envelope meshes
(introduced in Section 5.1 and shown in Fig. 10), clusters
tend to be convex without pronounced concavities. As we
cull back faces, the impact of intracluster self-occlusion is
often negligible. Of course, if concavities dominate, either
an accurate determination of self-occlusion or creating
flatter clusters (either by normal-aware clustering or simply
more clusters) to reduce intracluster occlusion is necessary.
Enforcing planar clusters, however, does not avoid the
intraobject self-occlusion itself.

Discussion. We evaluated the accuracy of the iterative
disc-based overlap by comparing it to the analytically
computed visibility of the clusters’ discs. For a camera
round trip in the scene shown in Fig. 1 (and in the
accompanying video which can be found at http://
doi.ieeecomputersociety.org/10.1109/tvcg.2010.77), the

average error of approximation was 3.9 percent, the
maximum error was 36.0 percent; a change in the quantized
fractional visibility was very rare. Note that the classifica-
tion is tolerable against few variations and we did not
detect any different classifications hereby. In principle, it
would be possible to compute the occlusion among all
objects in the scene based on disc approximations instead of
using visibility queries. However, for reasonably sized
scenes, the number of clusters becomes large and reducing
the computation cost requires hierarchical data structures
[26]. Note that we also would need a disc representation for
all objects (no matter if a visibility analysis for them is
intended), and see-through blockers require a nonstraight-
forward mapping to semitransparent discs.

4.3 Co-Occurrence Matrices for Clustered
Geometry

CMs have previously been used with images, but the above
definition does not preclude us from using them for the
fractional visibility distributions, as soon as we find a
distance characterizing the “direct neighborhood” of two
clusters on the image plane (analogous to the distance of the
centers of two adjacent pixels in an image). A meaningful
value is the mean shortest distance between two clusters.
Let ~xi, 0 � i < N , be the centroid location in 2D image space
coordinates (i.e., in post-transformed view space) of the ith
cluster, then we get

�1 ¼
1

N

XN�1

i¼0

min
0�j<N
j 6¼i

k~xi �~xjk: ð4Þ

�1 is roughly equal to the mean cluster diameter projected
onto the image plane due to the uniformity of the clustering.
Thus, we can compute a CM for a set of clusters and their
fractional visibilities vi replacing the set of pixels R and the
image f . Of course, it is unlikely that the distance between
two centroids is exactly �1, and thus, we replace the
distance test in (2) by ~x�~yk k ��1j j < �. The value chosen
for � proved to be uncritical and we chose 20 percent of the
cluster image space diameter in all our examples.

Discussion. According to (2), all pairs of not entirely back-
facing clusters (with distance �1) contribute equally to the
CM. We experimented with weighting the influence of
clusters according to their projected surface area, which
strengthens the influence of predominantly front-facing
clusters on the classification result. Although weighting
seems reasonable at first sight, we omitted it for two
reasons. First, for thin object parts such as the Neptune’s
trident in Figs. 11 and 12, or parts seen from grazing angles
(i.e., typically peripheral object parts), the influence of the
respective contribution to the co-occurrence matrix di-
minishes. Note that we want to determine the visibility
configuration across the entire object, not only for large
parts. Nevertheless, clusters that cover very few pixels only
are removed prior to classification to prevent unstable
results. Second, for rather bulky objects without such thin
parts, the impact of weighting was negligible.

5 APPLICATIONS

We believe that our visibility analysis is an interesting tool
to be used together with various existing algorithms that
make decisions based on visibility, and will stimulate

480 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 4, APRIL 2011

Fig. 10. (a) The Polygirl model and (b) its envelope with 16 clusters (see
Section 5.1). (c) The superimposed meshes.

further research. Methods that possibly benefit from this
method are, among others, perceptually motivated LOD
methods, image-space occlusion culling techniques, e.g., [7],
[8], [11], and offline rendering algorithms such as area light
sampling with ray tracing or hierarchical radiosity. In this
section, we outline initial ideas for both real-time and
offline rendering for which the visibility analysis has
potential use.

5.1 Perceptually Motivated Level of Detail Control

Real-time LOD control methods typically estimate the LOD
for an object in a given view based on viewing distance (or
closely related the screen size), the degree of occlusion
from other surfaces [27], and sometimes additional
perceptually motivated criteria, such as eccentricity or
velocity. In general, LOD methods consist of three parts:
the generation of simplified versions of an object, the
selection of the detail levels, and switching or blending
between them. Our visibility analysis can be used to
improve on the selection of detail levels by considering the
distribution of visibility across an object, and thus,
providing an efficient way to incorporate findings from
recent perceptual rendering methods.

Drettakis et al. [1] take visual masking due to contrast
and spatial frequency for LOD selection into account. For
this, they compute threshold maps [28] storing the predicted
visibility threshold for each pixel. This perceptual threshold
predicts the maximum (luminance) error that can be
tolerated at every location over the image. At regular
intervals, the currently chosen LOD for an object is
compared against the highest quality representation, by
rendering both and counting the number of pixels exceed-
ing the visibility threshold. The decision for increasing,
decreasing, or maintaining the LOD is then based on this
result. Detecting the interobject visual masking is realized
by splitting the scene into depth layers. Creating depth
layers and reference images, computing threshold maps,
and comparing introduce a significant rendering cost. This
overhead only amortizes in scenes with complex geometry
and widespread visual masking.

Intuitively, there are two cases causing significant visual
masking for an object: masking from foreground occluders
with fine structures, such as trees or fences, and second,
strong variations in lighting or shading, for example, from
hard shadows. We can directly map the first observation to
our visibility analysis: whenever an object is partially or
completely visible, we cannot expect pronounced masking
effects everywhere on the surface and we base the LOD
selection on conventional criteria (distance, eccentricity,
etc.). However, if we detect that the object is entirely behind
a see-through blocker, we reduce the detail (on an per-
object basis) as we expect that the visual difference is less
apparent to the human observer.

Of course, occlusion and visual masking are two different
things: masking stems from spatial frequency content,
orientation, and local contrast, while costly computations
are required to detect when and where this phenomenon
appears. However, for interactive applications, our visibility
analysis—which is very cheap to compute, compared to
perceptual models—might be a practical alternative when
used together with conventional LOD criteria: we identify
configurations where masking is very likely and reduce the
level of detail accordingly. This does not require any
intricate integration into rendering pipelines compared to
[1], and allows to optimally exploit the considerable
processing power of modern graphics hardware.

5.1.1 Masking and Perceptually Motivated Definition of

See-Through Blockers

Obviously, neither the histogram nor a CM captures
“perceptual factors,” but we can infer visibility configura-
tions from the contained statistical data, and thus, detect
when masking can be expected. Consequently, the defini-
tion of see-through blockers has to be linked to the spatial
frequencies that cause masking effects. This can be best
explained with the help of the illustrative example of the
visibility texture on the rectangular panel (Fig. 3). Each
subrectangle of the panel measures visibility, and the size of
the subrectangles determines which feature sizes of
occluders can be resolved: larger features are detected as
contiguous solid parts, whereas roughly equal-sized or

DACHSBACHER: ANALYZING VISIBILITY CONFIGURATIONS 481

Fig. 12. A close-up comparison of rendering with full-resolution models
(a), and LOD controlled by distance and visibility analysis (b) as described
in Section 5.1. The visible differences prediction (c) was computed using
HDRVDP [30] for 1;920� 1;080 resolution on a 250 cd=m2 display: green
and red represent regions with little and strong visible differences; gray
denotes no difference.Fig. 11. We use the visibility analysis for adjusting the LODs for the

statues and busts in this scene. The static part (Sponza Atrium and
vegetation) consists of 199,000 triangles.

smaller features yield partly covered subrectangles, and
thus, are detected as see-through blocking. Thus, for
detecting cases of visual masking, the subrectangles should
ideally be as small as the patterns causing masking. The
assumption in our method is that all see-through blockings
cause a certain degree of masking, which then can be
detected using larger subrectangles (whose size is chosen
manually). Note that the actual masking effects do not only
depend on spatial frequencies but also on shading;
however, we make another simplifying assumption here
and rely on visibility only. This observation holds analo-
gously for the visibility determination using clusters. When
the camera moves closer to (or further away from) an object,
we use more (or less) clusters to keep their size in image
space—and thus, the relation to see-through blockers—
roughly constant. Note that the relation between cluster and
feature sizes is another reason for enforcing isotropic
clusters: anisotropic clusters would distinguish solid and
see-through blockers differently depending on the cluster
and feature orientation.

Analogous to the identification of masking from occlu-
ders, we can also detect shadow configurations by replacing
the visibility test with a shadow test. Our experiments
showed that this works well with point light sources as they
cause hard shadows, but evaluating masking from shading,
in general, requires perceptual models, such as threshold
maps [28] or visible differences predictors [29]. Note that in
contrast to these metrics, our definition of see-through
blockers completely ignores color and shading.

5.1.2 Level of Detail Control in Real-Time Applications

We implemented our approach in an interactive rendering
system using discrete LODs and cluster each LOD of an
object such that we can maintain roughly equal cluster sizes
in screen space across objects and view distances. In practice,
we used 8, 16, and 32 clusters, fewer for coarse LODs and
more for detailed representations. Note that the method
described in this section is meant for objects that are not
made of subparts that, in turn, provide their own levels of
detail. However, the visibility analysis can be combined with
hierarchical LOD methods and, for example, carried out only
for partially visible subparts. For each frame, we first render
the whole scene and thereafter determine the cluster
visibilities to perform the analysis. With distance-based
metrics, the artist assigns LODs to distance ranges, so we let
the user define how strongly the LOD selection is affected: in
our example, we reduce the detail for objects behind see-
through blockers (as in Figs. 1c and 1e) by 1 or 2 levels
depending on the amount of see-through blocking indicated
in P0. Extracting more quantitative information from the co-
occurrence matrices proved to be unreliable, mainly due to
the noisy and little data (see the video for P0 and P1 under
camera and object movement). For distant objects, i.e., LODs
which are cheap to render, a visibility analysis is unprofitable
and we rely on conservative LOD criteria instead.

For complex triangle meshes, it becomes too costly to
render the full geometry for the occlusion queries and to
compute the projected area on the CPU. And we also cannot
use coarse LODs for the occlusion queries together with fine
LODs for display: their surfaces potentially intersect and
the visibility determination is void. Note that we cannot use

bounding volumes in many scenes as they might intersect
with surrounding objects. Instead, we use an envelope mesh,
a coarsely triangulated hull, tightly enclosing the complex
object (Fig. 10) for the visibility analysis, and consequently,
compute the clusterings for the envelope. Note that
envelope meshes are used for the visibility determination
only after the visible geometry has been rendered, i.e., they
are rasterized and tested against the depth buffer that
contains the visible geometry, but they never modify its
content. This ensures that no potential occluder is enlarged.

For the envelope construction, we compute a distance
field to the input mesh and use the Computational
Geometry Algorithms Library [31] to triangulate an isosur-
face with a positive distance to the object’s surface. We only
need to verify that the envelope and the input mesh do not
intersect. In this case, we increase the isovalue and redo the
surface reconstruction. Progressive hulls [32] or offset
surfaces [33] can also be used to create envelopes; however,
we decided to use the CGAL surface mesh generator which
yields more equilateral triangles, and thus, well-shaped
clusters. Using envelopes is more involved with animated
objects as the transformation of an object needs to be
applied to the envelope as well. For this, we specify the
envelope vertices in the local tangent spaces of the input
mesh. This works well as long as animated object parts are
not welded in the envelope, like the hand and the hip of the
Polygirl in Fig. 10. Clearly, offset surfaces or a preparation
of the model and manual intervention by an artist might be
the best options to avoid these problems. Envelopes
potentially self-intersect under strong deformation (similar
problems appear with any displacement mapping method),
but the expected impact on the visibility determination
from this is minor. In initial tests, we experimented with
even simpler bounding geometry, in particular, axis-aligned
boxes from a standard bounding volume hierarchy or octree
subdivision. The functionality and reliability of the visibility
analysis was not affected thereby. However, avoiding
intersections of the bounding geometry and the surround-
ing geometry (in dense scenes) requires tighter bounding
volumes for the actual occlusion queries that have to be
created for this purpose. Although this is practicable for
rigid objects, we opt for envelope meshes that can be easily
used with animated objects as well.

At rendering time, the feature extraction and classification
are executed on the CPU. Only the fractional visibility
determination is realized using one hardware occlusion
query for each cluster of an object. Of course, this is only done
for objects intersecting or inside the view frustum and not
being already rendered at the lowest LOD due to the distance
criterion. Whenever we detect a sudden increase in visible
pixels, we switch back to a conservative LOD scheme: in this
case, a close-by object might appear from behind a blocker
and we want to make sure to render it with sufficient detail.
Fig. 11 shows our example scene rendered with techniques
typical for current video games, such as high dynamic range
lighting and soft shadows. In order to hide latencies from the
occlusion queries, we allow the analysis to lag one frame
behind the rendering, which is acceptable if high frame rates
can be maintained. Latencies are usually more crucial in
“stop-and-wait” algorithms when the application waits for
an occlusion query result. Exploiting temporal coherence

482 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 4, APRIL 2011

similar to [7], [8] reduces this overhead and might be
applicable to our method as well.

The preprocessing required for the LOD models took
approximately 1 to 2 minutes depending on the model
complexity. The most time-consuming step was the dis-
tance field computation, followed by the mesh decimation
to obtain the levels of detail (using the quadric edge
collapse decimation of MeshLab [34]); tessellation and
clustering only takes a few seconds. We prepared eight
meshes per object with varying detail (ranging from
approximately 6,000 to 1,000,000 triangles); the envelope
meshes consist of about 2,000 triangles each. Table 1 details
the rendering performance of our method for the scene
shown in Fig. 11. Note that aside from pure geometric LOD,
other costly rendering techniques, such as normal map
filtering [35] or displacement mapping [36], feature adjus-
table rendering quality and speed, thus, also providing a
great potential for LOD rendering when used with our
visibility analysis.

5.1.3 Evaluation of the Level of Detail Control

Rendering quality. Fig. 12 shows a qualitative analysis of the
visible differences between rendering with full-resolution
models and geometric LOD. Differences are primarily visible
at object silhouettes and due to shading artifacts. Note that
the latter can be reduced with commonly used, and
inexpensive, normal mapping techniques. We also computed
the PSNR to compare rendering with visibility analysis to
rendering with distance-based LOD only. We consider the
latter to be the “reference” instead of using full-resolution
models that might cause aliasing. In a 90-second flyby of the
Sponza scene (see Fig. 11 and the accompanying video), the
LOD for at least one object was reduced because of detected
potential masking in 75 percent of all frames. The PSNR was
between 40.1 dB and 72.3 dB with an average of 56.5 dB.

Classification. In order to verify whether co-occurrence
matrices provide additional information for the classifica-
tion over the histogram alone, we run the flyby using P0

only for classification. Instead of an MLP with 14 input and
14 hidden neurons, we trained a smaller network with only
2� 4 neurons plus 7 output neurons; apart from that, the
method remained unchanged. Table 2 illustrates the inferior

classification resulting in wrongly detected masking. The
results indicate that the “full see-through blocking” is
classified quite reliable, which is to be expected as it can be
easily detected using the histogram only (see Fig. 5c). The
misclassification of this configuration to “full blocking with
solid and see-through” is also tolerable in the LOD
application. However, other configurations are wrongly
classified to “full see-through blocking” although they do
not (potentially) cause masking. Overall, the classification is
also more vulnerable to inaccurate fractional visibilities
(e.g., due to the disc-based intraobject occlusion approx-
imation). Note that this test assumes that the analysis using
P0 and P�1

is “correct.” Obviously, there is no ground truth
as the definition of the configurations is inherently fuzzy.
However, we carefully inspected the classification manually
in many synthetic and real-world scenes, where the
visibility analysis yielded the expected results.

Limitations. We also examined more difficult cases for
our method. To test highly concave objects, we treated a
grid of 3� 3 nearby Polygirl models as a single object to
generate high intraobject self-occlusion. The disc approx-
imation (Section 4.2) converges after 3 to 4 iterations in this
case, and compares well to the exact visible disc areas. The
classification was as reliable as for objects with less self-
occlusion. Naturally, the capability to differentiate config-
urations depends on the cluster count and size. Changing
the number of clusters may yield different classification
results, e.g., because small visible (or occluded) object parts
can be missed in the fractional visibility computation. In
particular, the configuration shown in Fig. 1f is delicate
with few clusters and might be classified as Figs. 1b or 1e.

DACHSBACHER: ANALYZING VISIBILITY CONFIGURATIONS 483

TABLE 1
Average Rendering Speed (Measured on an NVIDIA 8800GTX)

for a Flyby through the Scene Shown in Fig. 11 and in the
Accompanying Video

Timings are given for standard and deferred rendering with LOD
selection based purely on a distance criterion (D), of course, taking
screen resolution into account, and distance plus visibility analysis
(D+VA). Average triangles per frame comprise the statues and busts
only.

TABLE 2
Misclassification When Using the Histogram Only (as Opposed

to P0 and P�1
); Only Occurred Configurations Are Shown

Each row of the table lists the percentage of the respective configuration
that is correctly or wrongly classified. For example, the second row
shows that 76 percent of all configurations that have been classified as
partial solid coverage using P0 and PD1

are correctly classified when
using the histogram only (second row, second column); 12 percent are
wrongly classified to partial see-through blocking (second row, third
column), and 11 percent to full solid and see-through coverage (second
row, fourth column). Note that a perfect classification would have
resulted in 100 percent on the diagonal elements with all other entries
being 0 percent.

5.2 Applications in Offline Rendering

We also examined the use of the visibility analysis in the
context of offline rendering, which we outline in this section.

Ray tracing. Strategies for area light source sampling in ray
tracing aim to reduce variance, and thus, noise in images, and
often use importance sampling to achieve this objective.
However, if a priori information about the light source
occlusion is available, then correlated [37] or adaptive [38]
sampling can be selectively used to improve the result. We
integrated the visibility analysis into PBRT [39] to analyze the
visibility of the light source as seen from a surface point. For
this, we split an area light source into 4� 4 clusters and
determine their fractional visibility with four shadow rays
each. We experimentally used the classification results,
shown in Fig. 2, to control further sampling: we used adaptive
sampling for surfaces with partial coverage from solid
blockers, and importance sampling otherwise. We applied
the analysis to large or close area-light sources, where the cost
for the visibility analysis is expectedto amortize (seeFig.13 for
an example). Samples used for the classification can of course
be reused for the lightingcomputation. In Fig.13, the benefit of
the visibility analysis for area light sources was a 3:4�
speedup over pure stochastic sampling with even higher
quality. Obviously, this speedup is only possible when
restricting the visibility analysis to situations where the
lighting computation requires more than 64 rays to compute a
noise-free image.

Area-to-area visibility. Many problems in computer
graphics require the determination or classification of the
visibility between surfaces. Fig. 14 shows a simple scene with
two pairs of surfaces that exhibit different visibility config-
urations. In general, however, the mutual visibility of two
polygons A and B may feature multiple visibility configura-
tions according to our definition (see Fig. 15) at the same time.
One possibility to extract the information necessary for
decision making is to carry out multiple from-point classifica-
tions, which we describe for hierarchical radiosity (HR)

refinement as an example. In HR, an oracle evaluates if a link
between two surface patches which exchange energy has to be
refined, and one or both patches have to be subdivided. Due to
memory and time constraints, the tessellation cannot be
arbitrarily fine and an important criterion for subdivision is
mutual visibility, which is typically evaluated using ray
casting (see [40] for an overview). A standard oracle [41]
terminates refinement if two patches become totally invisible
relative to each other; if they become totally visible, there is no
need for further visibility tests, although further refinement
may still need to occur. The visibility analysis can be used to
decide upon refinement in case of partial coverage, which
might be due to solid blockers (then a subdivision is necessary
to capture shadow boundaries), or due to fine details, i.e., see-
through blockers, which possibly cannot be captured even by
the finest permitted tessellation. Note that this differentiation
is related to the feature-based control of the visibility error in
radiosity [42]. We integrated an experimental oracle into an
(unoptimized) HR solver and perform 1 to 8 analyses
(depending on the patch sizes) for each link. Each analysis is
the same as a point-to-area analysis as described in the
previous paragraph and computed for randomly chosen
points locatedonboth patches. If the analysesdo notdetect the
same configuration, we subdivide the respective larger patch
and repeat the visibility analysis for the newly created links
until unambiguous configurations are detected, or until the
maximum subdivision has been reached. We terminate
refinement if see-through blocking is detected and details
are too fine to be resolved within the tessellation budget, but
weenforce it ifpartial solidblockingis detected. Besidesdirect
illumination, the analysis is also very important for indirect
light, which is usually transferred between larger patches.
Note that the visibility tests can again be reused for form factor
computation. The number of patches in Fig. 16 decreased by

484 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 4, APRIL 2011

Fig. 13. The visibility analysis is used to decide after 64 samples whether to continue sampling adaptively or stochastically with up to 512 rays per
pixel. The render time (image resolution 560� 400 pixels) decreases significantly while the quality benefits from adaptive sampling in the penumbra
region of the character model.

Fig. 14. Two pairs of surfaces (yellow polygons) that exhibit different
visibility configurations: partial coverage from see-through blockers (left)
and partial coverage from solid blockers (right).

Fig. 15. Two polygons A and B may feature multiple visibility
configurations simultaneously depending on the regarded point, e.g., full
visibility and occlusion (a), or see-through and solid blocking (b) and (c).

approximately 10 percent (from 7,717 to 6,971), the links by 22
percent, while the lighting solution looks very similar. Note
that this moderate benefit is due to the simple geometry in this
test scene. In a practical implementation, clustering and
volumetric approximations [43] can be used to further
accelerate the visibility analysis by reducing the number of
cast rays. Fig. 16 shows the predominant visibility configura-
tions of the scene surfaces with respect to the area light source.

6 DISCUSSION AND FUTURE WORK

Previous real-time techniques pursue the goal of efficiently
determining if an object is visible or occluded (e.g., using
coherent visibility queries or intelligently placed virtual
occluders), while our method differentiates visibility config-
urations. The closest works in this spirit are hardly visible sets
[10] focusing on occlusion culling only, and the perceptual
rendering pipeline [1] which inspired our LOD algorithm. We
believe that these and other recent approaches, e.g., [7], [8],
are orthogonal and can be combined with our method.

During the analysis, the objects’ clusters serve as probes
for visibility determination. The differentiation between
solid and see-through blockers, thus, depends on their image
space size. To ensure a consistent analysis, we adapt the
cluster size to the view (or light) distance (Section 5.1). Our
examples indicate that the most important visibility config-
urations for our examples (Figs. 1a, 1b, 1c, and 1d) can be
reliably classified with few clusters. However, an adaptive

refinement using more clusters can be used to reveal further
information at any time and enables a quantitative analysis
of classification errors. Note that the classifiers and the LOD
selection can be forced to a conservative behavior, for
example, in a way such that the LOD is only reduced if the
fractional visibility of all clusters is less than 30 percent.

Our experiments showed that neither the classification
nor the differentiation of the visibility configurations
according to our definition (shown in Fig. 1) improves
when using more than 4 or 5 quantization levels for the
fractional visibilities (less do not permit a clean differentia-
tion of visibility, see-through, and occlusion). Furthermore,
the CM size grows quadratically with the number of levels,
thus CMs tend to become sparse when using few clusters,
and of course, the classification also becomes more costly.

Generally speaking, our analysis determines visibility at
a finer granularity, but it does extract more information
than solely the degree of visibility. Methods for hierarchical
occlusion culling, e.g., [7], [8], [11], determine visibility for
hundreds to thousands of scene nodes and it could be
beneficial to base culling strategies on identified visibility
configurations, and thus, use the already present informa-
tion on a higher level.

This work also raises further questions. We would like to
use perceptual models to derive and validate metrics for
LOD selection and ray-tracing-based sampling guided by
the visibility configurations. The envelope generation for
animated objects will be important for many real-time
applications and is certainly a challenge on its own. We also
plan to explore further applications for our visibility
analysis within existing methods.

7 CONCLUSIONS

We presented a novel and efficient method for the classifica-
tion of different visibility configurations and demonstrated
its versatility and potential use in real-time and offline
rendering methods for the analysis of from-point and area-to-
area configurations. Based on a simple clustering approach,
the feature extraction is derived from the established
algorithms. The classification proved reliable in our test
scenes and requires small training sets only. In conclusion,
our visibility analysis is very simple to implement and can be
easily integrated into, and combined with, existing methods.
We believe that it has potential use in many algorithms that
rely on visibility determination of some kind.

ACKNOWLEDGMENTS

The author would like to thank Pierre Alliez for help with

CGAL, and Christian Roessl for initial discussions. The

Polygirl, bust, and statue models are provided courtesy of

INRIA by the AIM@SHAPE Shape Repository. The Sponza

model is courtesy of Marko Dabrovic, other models used in

the example scenes and the accompanying video are

courtesy of Crytek GmbH.

REFERENCES

[1] G. Drettakis, N. Bonneel, C. Dachsbacher, S. Lefebvre, M.
Schwarz, and I. Viaud-Delmon, “An Interactive Perceptual
Rendering Pipeline Using Contrast and Spatial Masking,” Proc.
Eurographics Symp. Rendering, 2007.

DACHSBACHER: ANALYZING VISIBILITY CONFIGURATIONS 485

Fig. 16. Top: a typical HR refinement for our example scene with a blue
solid box (a) and a box made of gratings (b). Bottom: the visibility
analysis prevents refinement due to small features which cannot be
resolved within a given tessellation budget (c); the predominant visibility
configurations (with respect to the light source, i.e., for the direct lighting)
are shown color-coded (d).

[2] R.M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features
for Image Classification,” IEEE Trans. Systems, Man, and Cyber-
netics, vol. SMC-3, pp. 610-621, Nov. 1973.

[3] F.-A. Law and T.-S. Tan, “Preprocessing Occlusion for Real-Time
Selective Refinement,” Proc. Symp. Interactive 3D Graphics (I3D
’99), pp. 47-53, 1999.

[4] T. Funkhouser, S. Teller, and D. Khorramabadi, “The UC Berkeley
System for Interactive Visualization of Large Architectural
Models,” Presence, vol. 5, pp. 13-44, 1996.

[5] W.V. Baxter, A. Sud, N.K. Govindaraju, and D. Manocha,
“GigaWalk: Interactive Walkthrough of Complex Environments,”
Proc. 13th Eurographics Workshop Rendering (EGRW ’02), pp. 203-
214, 2002.

[6] S.-E. Yoon, B. Salomon, and D. Manocha, “Interactive View-
Dependent Rendering with Conservative Occlusion Culling in
Complex Environments,” Proc. 14th IEEE Visualization (VIS ’03),
pp. 163-170, 2003.

[7] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer,
“Coherent Hierarchical Culling: Hardware Occlusion Queries
Made Useful,” Computer Graphics Forum, vol. 23, no. 3, pp. 615-624,
2004.

[8] O. Mattausch, J. Bittner, and M. Wimmer, “CHC++: Coherent
Hierarchical Culling Revisited,” Computer Graphics Forum, vol. 27,
no. 3, pp. 221-230, 2008.

[9] E. Eisemann and X. Décoret, “Visibility Sampling on GPU and
Applications,” Computer Graphics Forum, vol. 26, no. 3, pp. 535-544,
2007.

[10] C. Andújar, C. Saona-Vázquez, I. Navazo, and P. Brunet,
“Integrating Occlusion Culling and Levels of Detail through
Hardly-Visible Sets,” Computer Graphics Forum, vol. 19, no. 3,
pp. 499-506, 2000.

[11] J.P. Charalambos, J. Bittner, M. Wimmer, and E. Romero,
“Optimized Hlod Refinement Driven by Hardware Occlusion
Queries,” Proc. Third Int’l Symp. Visual Computing (ISVC ’07),
pp. 106-117, 2007.

[12] P. Wonka, M. Wimmer, K. Zhou, S. Maierhofer, G. Hesina, and A.
Reshetov, “Guided Visibility Sampling,” ACM Trans. Graphics,
vol. 25, no. 3, pp. 494-502, 2006.

[13] E. Zhang and G. Turk, “Visibility-Guided Simplification,” Proc.
Conf. Visualization 2002 (VIS ’02), pp. 267-274, 2002.

[14] J. Bittner and P. Wonka, “Visibility in Computer Graphics,”
Environment and Planning B: Planning and Design, vol. 30, no. 5,
pp. 729-756, 2003.

[15] D. Cohen-Or, Y.L. Chrysanthou, C.T. Silva, and F. Durand, “A
Survey of Visibility for Walkthrough Applications,” IEEE Trans.
Visualization and Computer Graphics, vol. 9, no. 3, pp. 412-431, July-
Sept. 2003.

[16] D. Luebke, B. Watson, J.D. Cohen, M. Reddy, and A. Varshney,
Level of Detail for 3D Graphics. Elsevier Science, 2002.

[17] V.N. Vapnik, The Nature of Statistical Learning Theory. Springer-
Verlag New York, Inc., 2001.

[18] S. Liu, R.R. Martin, F.C. Langbein, and P.L. Rosin, “Segmenting
Periodic Reliefs on Triangle Meshes,” Proc. IMA Conf. Math.
Surfaces, pp. 290-306, 2007.

[19] C.M. Bishop, Neural Networks for Pattern Recognition, first ed.
Oxford Univ. Press, Jan. 1996.

[20] S.R. Gunn, “Support Vector Machines for Classification and
Regression,” technical report, Univ. of Southhampton, 1998.

[21] N. Barabino, M. Pallavicini, A. Petrolini, M. Pontil, and A. Verri,
“Support Vector Machines vs Multi-Layer Perceptrons in Particle
Identification,” Proc. European Symp. Artificial Neural Networks
1999, pp. 257-262, 1999.

[22] K.P. Bennett and C. Campbell, “Support Vector Machines: Hype
or Hallelujah?” SIGKDD Explorations Newsletter, vol. 2, no. 2, pp. 1-
13, 2000.

[23] Sebastian Nowozin “Libperceptronnetwork—Neural Network
Library,” http://user.cs.tu-berlin.de/nowozin/libpn/, 2009.

[24] T. Engelhardt and C. Dachsbacher, “Granular Visibility Queries
on the GPU,” Proc. 2009 Symp. Interactive 3D Graphics and Games
(I3D ’09), pp. 161-167, 2009.

[25] P.V. Sander, Z.J. Wood, S.J. Gortler, J. Snyder, and H. Hoppe,
“Multi-Chart Geometry Images,” Proc. Symp. Geometry Processing,
pp. 146-155, 2003.

[26] M. Bunnell, “Dynamic Ambient Occlusion and Indirect Lighting,”
GPU Gems 2: Programming Techniques for High-Performance Graphics
and General-Purpose Computation, pp. 636-648, Addison-Wesley
Professional, 2005.

[27] J. El-Sana, N. Sokolovsky, and C.T. Silva, “Integrating Occlusion
Culling with View-Dependent Rendering,” Proc. Conf. Visualiza-
tion (VIS ’01), pp. 371-378, 2001.

[28] M. Ramasubramanian, S.N. Pattanaik, and D.P. Greenberg, “A
Perceptually-Based Physical Error Metric for Realistic Image
Synthesis,” Proc. ACM SIGGRAPH, pp. 73-82, 1999.

[29] S. Daly, “The Visible Differences Predictor: An Algorithm for the
Assessment of Image Fidelity,” Digital Images and Human Vision,
pp. 179-206, The MIT Press, 1993.

[30] R. Mantiuk, S. Daly, K. Myszkowski, and H.-P. Seidel, “Predicting
Visible Differences in High Dynamic Range Images—Model and
Its Calibration,” Proc. Human Vision and Electronic Imaging X,
IS&T/SPIE’s 17th Ann. Symp. Electronic Imaging, pp. 204-214, 2005.

[31] CGAL “Computational Geometry Algorithms Library,” http://
www.cgal.org, 2010.

[32] P.V. Sander, X. Gu, S.J. Gortler, H. Hoppe, and J. Snyder,
“Silhouette Clipping,” Proc. SIGGRAPH, pp. 327-334, 2000.

[33] D. Pavi�c and L. Kobbelt, “High-Resolution Volumetric Computa-
tion of Offset Surfaces with Feature Preservation,” Computer
Graphics Forum, vol. 27, no. 2, pp. 165-174, 2008.

[34] MeshLab, http://meshlab.sourceforge.net, 2010.
[35] C. Han, B. Sun, R. Ramamoorthi, and E. Grinspun, “Frequency

Domain Normal Map Filtering,” ACM Trans. Graphics, vol. 26,
no. 3, p. 28, 2007.

[36] X. Wang, X. Tong, S. Lin, S.-M. Hu, B. Guo, and H.-Y. Shum,
“Generalized Displacement Maps,” Proc. Eurographics Symp.
Rendering Techniques, pp. 227-234, 2004.

[37] L. Szécsi, M. Sbert, and L. Szirmay-Kalos, “Combined Correlated
and Importance Sampling in Direct Light Source Computation
and Environment Mapping,” Computer Graphics Forum, vol. 23,
no. 3, pp. 585-594, 2004.

[38] A.J.F. Kok and F.W. Jansen, “Adaptive Sampling of Area Light
Sources in Ray Tracing Including Diffuse Interreflection,” Com-
puter Graphics Forum, vol. 11, no. 3, pp. 289-298, 1992.

[39] M. Pharr and G. Humphreys, Physically Based Rendering: From
Theory to Implementation. Morgan Kaufmann, 2004.

[40] M. Feixas, J. Rigau, P. Bekaert, and M. Sbert, “Information-
Theoretic Oracle Based on Kernel Smoothness for Hierarchical
Radiosity,” Proc. Eurographics Short Presentations, pp. 325-333,
2002.

[41] P. Hanrahan, D. Salzman, and L. Aupperle, “A Rapid Hierarchical
Radiosity Algorithm,” Proc. ACM SIGGRAPH, vol. 25, no. 4,
pp. 197-206, 1991.

[42] F. Sillion and G. Drettakis, “Feature-Based Control of Visibility
Error: A Multi-Resolution Clustering Algorithm for Global
Illumination,” Proc. ACM SIGGRAPH, pp. 145-152, 1995.

[43] F.X. Sillion, “A Unified Hierarchical Algorithm for Global
Illumination with Scattering Volumes and Object Clusters,” IEEE
Trans. Visualization and Computer Graphics, vol. 1, no. 3 pp. 240-254,
Sept. 1995.

Carsten Dachsbacher received the diploma in
computer science and the PhD degree in
computer graphics from the University of Erlan-
gen-Nuremberg. He is a full professor at the
Karlsruhe Institute of Technology. Prior to joining
KIT, he was an assistant professor at the
Visualization Research Center, University Stutt-
gart, Germany, a researcher at INRIA, Sophia
Antipolis, France, within a Marie-Curie Fellow-
ship, and a visiting professor at Konstanz

University. His research focuses on real-time computer graphics,
interactive global illumination, GPGPU, and perceptual rendering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

486 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 4, APRIL 2011

