M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering — Supplemental l1of4

Random Access Segmentation Volume Compression
for Interactive Volume Rendering — Supplemental

M. Piochowiak, F. Kurpicz and C. Dachsbacher

In this supplemental document we explain how to efficiently an-
swer rank queries on wavelet trees and give additional render timing
results of our methods to assess the effect of wavelet trees on perfor-
mance. This includes a recapitulation of bit vector queries from the
main document, followed by detailed explanations of our adapted flat
rank [Kur22] structure for constant time rank queries on bit vectors
and rank queries on wavelet trees. The last section details the effect
of using wavelet trees in our random access CSGV-R segmentation
volume compression on render times. The random access and rank
support of wavelet trees comes at the cost of tree traversal for all
queries. However, we show how the benefits outweigh the costs and
render times with our optimized implementations are overall faster
compared to an exemplary 4-bit Nibble random access encoding as
well as compared to the existing serial CSGV [PD24] compression.

1. Rank Queries on Bit Vectors

A bit vector B is a text over the binary alphabet {0, 1}. The query
ranko,(i) = |{j < i: B[j] = a}| for a € {0, 1} returns the number
of times o occurred before i. As rank(i) can easily be computed
as i — rank (i), we only discuss rank; queries. Our bit vectors are
stored as arrays of 64 bit words where the first indexed bit in a word
is the least significant bit (LSB). On a single word, rank; (i) can
be computed using the popcount operator (bitCount in GLSL
shaders) that retunrs the number of 1 bits set in a word:

int ranklWord(uint64 word, int 1) {
return (i > Ou) ? popcount (word << (64u - 1))
0u;

For ranky queries on a full bit vector, a naive implementation
would have to loop over all words j < |i/64] adding up full word
popcount results followed by a final rank1word on the word at
index |i/64]. To achieve constant time complexity, the general idea
is to split the bit vector into equally sized blocks and store a helper
array which stores the number of 1 bits up to the beginning of each
block [Jac89]. Storing the bit counts hierarchically reduces memory
consumption: The currently most space efficient approach (requiring
3.51% additional space) with reasonable query performance is flat
rank [Kur22]. We use an adapted flat rank variant in our method with
slightly faster query performance which is designed as follows:

The bit vector is split into blocks of 1280 bits, or 20 words,
size. Each entry in our flat rank array covers one of these blocks

L1 L2 L2
20 bits 11 bits | 11 bits | 11 bits | 11 bits

L

Figure S1 Our adapted flat rank [Kur22] layout for bit vector rank
queries in constant time at 5% space overhead: Each 64 bit flat rank
entry covers a block of 1280 bits in the bit vector (yellow). L1 counts
1 bits in the bit vector before the block (green). L2 entries count 1
bits from the beginning of the block in 4 word intervals (blue).

Algorithm S1 Constant Time Bit Vector rank (i)
Input bit index i, bit vector B, flat rank array FR
Output number of 1 bits in B before i: rank (i)
. f < FRJi/1280]
. count + f.getL1() + f.getL2(| (i mod 1280)/64%|)
cwe [|i/64]/4] x4
: for (|i/64] mod 4) times do
count < count + popcount(B.words[w])
w—w+1

> up to 3 times

o T

7: return count + rank1Word(B.words[w],i mod 64)

(Figure S1). Our flat rank has a hierarchical depth of two as opposed
to the original depth of three: A flat rank array element consists of
a single 20 bit L1 entry followed by four 11 bit L2 entries. The
L1 entries cover a full 1280 bit block and store the number of 1
bits in the bit vector up to their respective block. L2 entries cover
intervals of 4 words each, as opposed to 8 words form the original
flat rank, and store the number of 1 bits from the beginning of the
block up to their respective interval within the block. Putting it all
together, a rank; query on a bit vector is a sum of the respective L1
and L2 entries, up to three full word (popcount) and one partial
(ranklword) bit counts after the L2 entry start (Algorithm S1).

Compared to the original flat rank [Kur22], removing one hierar-
chy level and covering half as many words with each L2 entry results
in faster querying. We can make this optimization since we have
an upper bound for our bit vector length: In our Random Access

20f4 M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering — Supplemental

W = 1011010000000 | 001100001 | 100001 | 0101 | 10
N v

T-A P A2AASA>>F@FAt~>

E Blts 1y bit: 0 ranky(9) 5 2 CHC
& A 000 AT AAD A 3 A1
000010 0O0UO0O /1 00O ?001 101 1 01 .00 00 0 0 O = 01
010 « = =) 001
V i 4 r'unk;if)) v \1‘ A o1t - - ® - rankZ,(9) ; 0001
14 bit: 0 4 . . (&
t 6;‘ 100 o 01 1 0 0 0 0 1 12(m/~‘|(o) % 00001
A & 101 t 1 - |7— / &« 00000
01 0000011110 0 0 1 0 0 0 0 1 -
0 i « ranky(8) = 6 \]; 0 1 7 7
2,4 bit: 0 2 0 1 0 1
AAXAAS [P FFAL] B & ¢
000 01 1 1f|0 1 10 0 1 1 0

rank; (6) = 2 7'1171A'_L(9)
3,4 bit: 1 2
Wavelet Tree

Huffman-shaped Wavelet Matrix

Figure S2 Wavelet tree rank. A wavelet tree that encodes a text 7 of operations in its conceptual form (left), and as stored in memory in form
of a compressed Huffman-shaped wavelet matrix (right). Wavelet tree traversal for rank=p(9) = 2, i.e. the number of times = occurs in T
before index 2, is highlighted in blue: Starting at position i = 9 in the root node at the top, the traversal bit o in each level 1 is the I-th bit of the
queried character, in this case 001 for = . We descend to the left node in the next level if o is 0, and to the right node otherwise. The index i
is updated for the next node with a rankq (i) query on the current node’s bit vector. Once the node of the character’s last bit is reached, one
final ranko,(i) returns the overall requested result. The Huffman-shaped wavelet matrix is a pointer-less, compressed representation of a
wavelet tree. It stores characters as ther canonical Huffman-codes (CHC) with a variable number of bits. In our implementation, we make use of
streamlined Huffman-shaped wavelet matrix that does not have any right child nodes. rank queries are computed exactly as before with the only
differences that queries terminate on different levels and descend only occurs for 0 bits. Note that characters are only added for readability. In
memory, the Huffman-shaped wavelet matrix is only stored as the bit vector W with the start indices of tree levels within.

Algorithm S2 Operation Stream Wavelet Matrix rankgp, ® € £ Algorithm S3 Operation Stream Wavelet Matrix rank@y
Input index i, character , wavelet matrix bit vector W Input
from brick header: Wj level starts, Z;[I] = rank} (W)

Output number of ® in T before i: ranke (i)
: for1=0...(w.bitLength — 1) do 1
ONeSpefore < rankl (W +1) — Z4 1] 2
I 4 i — onespefore 3:
4

1
2
3
4: if w.lastBit = O then
5
6
7

operation stream index i, wavelet matrix bit vector W

from brick header: Wj level starts, Z; [I] = rank} (W)
Output number of @ in T before i: rankgy (i)

: for1=0...4do

ONeSpefore < rankl (W +1) — Z1[1]

[< i — Onespefore

: return onespefore

return onespefore
. else
return i — onespefore

> bit vector rank; in level

> rankg in level, only for g§* .
wavelet trees fundamentals and access(i) = T|i] queries are de-

scribed in detail in the main document, we give a more compre-
hensive explanation of rankz)(i) queries for ® € X in the following.

Compressed Segmentation Volumes (CSGV-R) compression, the
longest bit vectors store the wavelet matrices which compress one
segmentation volume brick each. These bricks have at most 643
operation symbol entries and the wavelet matrix only stores few bits
per symbol. Our flat rank structure can cover bit vectors up to a
length of 220 4+ 5% 2!! bits, which is more than enough even for
worst case bricks.

Figure S2 gives an exemplary rank query on a general wavelet
tree and on our streamlined compressed Huffman-shaped wavelet
matrix. Because of how wavelet trees partition the alphabet of a
text, all identical characters in 7 end up in the same node. Thus, as
we are interested in the number of times a certain character ® € ¥
occurs in 7 before a position i, we only need to find ®’s final tree
node in which a single binary rank returns the overall result. Wavelet
tree (left in Figure S2) rank queries behave similar to access queries:

2. Rank Queries on Wavelet Trees We start at index i in the root node and repeatedly descend to the

Wavelet trees [GGV03,GVX11,Mak12] are compressible random-
access data structures that generalize access and rank queries from
binary alphabets to texts T over arbitrary sized alphabets X. While

left or right child node until all bits of the respective character ®
were visited. The main difference is that ® is not the result, but an
argument of the rank query. The respective traversal bit o is therefore

M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering — Supplemental 3of4
local shading shadow rays ambient occlusion

CELLs FIBER HOl1 AZBA | CELLS FIBER HOl1 AZBA | CELLS FIBER HOl AZBA

CSGYV Nibble brick cache 10.2 5.5 - 9.8 11.6 7.3 - 11.8 15.8 8.6 - 16.1
CSGV rANS brick cache 11.8 6.0 4.1 10.3 13.1 7.8 42 12.4 18.1 9.2 4.8 17.2
no cache 381.9 11.4 - 55.7 | 492.0 18.3 - 69.7 | 4722 20.2 - 67.0

CSGV-R Nibble voxel cache 13.1 6.4 - 9.0 15.8 9.1 - 11.1 18.1 11.7 - 13.1
no stop bits voxel cache (es) 10.6 5.9 - 8.7 12.3 8.4 - 10.9 14.4 10.8 - 12.6
no wavelet trees brick® cache 51.3 8.6 - 15.6 52.8 10.4 - 18.1 85.9 12.6 - 27.6
brick® cache (sm) 42.3 79 - 13.9 434 9.9 - 16.3 64.5 12.6 - 242

no cache 25.3 7.6 - 19.2 329 12.7 - 25.0 37.4 15.4 - 31.1

CSGV-R voxel cache 10.1 6.4 - 9.3 12.8 9.2 - 11.6 13.2 11.9 - 133
10 ston bi voxel cache (es) 54 5.8 - 79 6.7 8.1 - 10.0 8.1 10.7 - 12.2

stop bits

brick® cache 8.6 4.7 - 9.6 9.9 6.5 - 11.5 11.8 7.5 - 14.3

brick cache (sm) 8.1 4.5 - 9.3 9.4 6.4 - 11.2 11.3 74 - 139

no cache 449 12.8 6.5 28.6 59.5 225 8.6 37.9 70.4 29.6 14.1 47.2

voxel cache 9.7 6.3 1.2 8.8 12.4 9.0 1.3 10.9 13.2 11.9 1.8 13.0

CSGV-R+sb voxel cache (es) 6.1 7.1 75.8 8.1 7.6 9.9 79.9 10.2 9.4 13.3 109.1 12.6
brick® cache 11.6 5.8 21.4 11.2 12.8 7.5 21.6 13.2 15.2 8.6 22.1 16.7

brick® cache (sm) 11.0 5.6 224 10.9 12.3 73 22.6 12.9 14.6 8.4 23.6 16.3

Table S1 Extended version of Table 4 from the main document. The table contains average milliseconds per frame when rendering a camera
path (2649, 1401, 2649, 2070 frames) for the CELLS, FIBER, HO1, and AZBA data sets with different cache and shading modes. HO1 uses
b = 64, others b = 32. The cache size is 4 GiB for HO1 with Fast Compressed Segmentation Volumes (CSGV) and 1 GiB for others. For
CSGV-R without stop bits, the compressed HO1 does not fit into VRAM. CSGV uses rANS compression and only supports brick caching.
With shadow rays and ambient occlusion, one secondary ray is cast per frame per pixel after the primary hit. Our random access CSGV-R can
decode bricks cooperatively within a subgroup (brick®) where each thread decodes one output voxel. As one brick is decoded per subgroup (as
opposed to one brick per thread in CSGV) we can additionally copy the encoding to shared memory before (brick® (sm)) To assess the effect of
wavelet trees in our encoding apart from compression, CSGV-R Nibble implements our random access scheme without wavelet trees. This has
low performance as it lacks constant-time palette index rank@y (i) queries and must therefore compute palette indices using a for loop over all

operations j < i per output voxel.

not obtained through an access on the current node’s bit vector but
directly from ®’s bit code instead. The lookup position in the next
level is updated with ranke (i) in the current node as usual. Once
the tree node of the final character bit o is reached, a last rankq,(i)
returns the overall result of the wavelet tree rankg query.

In our implementation, we store wavelet trees in form of a pointer-
less Huffman-shaped wavelet matrix [CNP15] (right in Figure S2).
The Huffman-shaped wavelet matrix compresses the text T by as-
signing variable numbers of bits to symbols. The respective bit codes
are given by the CHC of the symbols. Our CHC follow a simple pat-
tern, similar to RICE coding [RP71], where any 1 bit terminates the
character. Thus, the resulting wavelet matrix contains no right child
nodes which allows for a very efficient implementation of queries
without branching. Furthermore, as only one node exists per level
(the O' prefix), we can optimize out the iterative tracking of node bit
vector intervals within wavelet matrix levels that an implementation
for arbitrary symbol frequencies requires [CNP15]. Our resulting
streamlined wavelet tree rank for a Huffman-shaped wavelet matrix
with the layout from Figure S2 is extremely simple (Algorithm S2).
For our CSGV segmentation volume encoding, we only ever need
to compute a wavelet matrix rank for the symbol @ in practice.
Hard-coding the symbol as in Algorithm S3 streamlines the imple-
mentation even further.

3. Effect of Wavelet Trees on Render Timings

Table S1 lists additional render timings for our methods. We compare
our random access CSGV-R compression utilizing wavelet trees
against the serially operating previous work CSGV [PD24] which
uses ANS [Dud13] for variable bit-length coding. For assessing the
benefits of wavelet trees apart from compression, we add timings for
CSGV Nibble which serially decodes one brick per thread from a
stream of plain 4-bit operation codes. Comparing the serial modes
from previous work CSGV, the rANS decoder has only minimal
overhead. However, our random access CSGV-R wavelet tree modes
are even faster than CSGV Nibble in almost all cases.

The reasons for this are two-fold: First, while it may initially
seem that wavelet tree queries are expensive due to the necessary tree
traversal, the actual overhead is not as problematic. The layout of
our Huffman-shaped wavelet matrix (Figure S2) allows for extensive
implementation optimizations as presented in the algorithms in the
main document and this supplemental. Our alphabet is extremely
small compared to usual wavelet tree tasks, limiting the tree depths.
Further, most wavelet tree access queries terminate at early depths
of the tree - for the most frequent operation 4, immediately in the
first level - and a wavelet matrix rank is only computed once per
output voxel. Second, our random access decoding maps better to
GPU hardware leading to strong performance increases: When not
using caching or with voxel caching, our CSGV-R removes the need
for the to shading atlas streaming-like shader stages [MVD™ 18] that

4 of 4 M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering — Supplemental

CSGYV requires for the brick cache management. Voxels are decoded
directly in the rendering shader. Even with brick caching, CSGV-
R achieves faster timings as it can cooperatively decode one single
brick per subgroup (brick® cache) which improves utilization of GPU
caches. This also allows copying brick encodings to shared memory
before decompression (brick® cache (sm)) which is even faster by a
small margin. The serially operating CSGV on the other hand must
decode one brick per thread, i.e. many different bricks within the
same subgroup (brick cache). As brick encoding lengths differ, this
can lead to stalling threads within subgroups.

Note that wavelet matrices are not only used for operation stream
compression but are an essential component of our CSGV-R random
access scheme as they also efficiently answer rank queries. For each
decoded output voxel, such a query must be computed once to obtain
the palette index of its label. To highlight the importance of fast rank
support, we implement a random access decoder that operates on a
plain 4-bit stream (CSGV-R Nibble). It does not use stop bits and, as
required by our random access scheme, does not use the g¢ operation.
While access queries are faster, performance is significantly worse
than with wavelet trees: For lack of an efficient rank@y (i) query,
palette indices must be obtained with an expensive for loop over all
brick operations 0.. . per output voxel.

References

[CNP15] CLAUDE F., NAVARRO G., PEREIRA A. O.: The wavelet matrix:
An efficient wavelet tree for large alphabets. Inf. Syst. 47 (2015), 15-32.
doi:10.1016/7.1s.2014.06.002. 3

[Dud13] DUDA J.: Asymmetric numeral systems: entropy coding com-
bining speed of huffman coding with compression rate of arithmetic cod-
ing. arXiv preprint arXiv:1311.2540 (2013). doi:10.48550/arXiv.
1311.2540. 3

[GGVO03] GRrossi R., GUPTA A., VITTER J. S.: High-order entropy-
compressed text indexes. In SODA (2003), ACM/SIAM, pp. 841-850.
2

[GVX11] GrossiR., VITTERJ. S., XU B.: Wavelet trees: From theory
to practice. In CCP (2011), IEEE Computer Society, pp. 210-221. doi :
10.1109/cCcpP.2011.16. 2

[Jac89] JACOBSON G.: Space-efficient static trees and graphs. In FOCS
(1989), pp. 549-554. doi1:10.1109/SFCS.1989.63533. 1

[Kur22] KURPICZ F.: Engineering compact data structures for rank and
select queries on bit vectors. In SPIRE (2022), vol. 13617 of Lecture
Notes in Computer Science, Springer, pp. 257-272. doi:10.1007/
978-3-031-20643-6_19. 1

[Mak12] MAKRIS C.: Wavelet trees: A survey. Comput. Sci. Inf. Syst. 9,
2 (2012), 585-625. doi1:10.2298/CSIS110606004M. 2

[MVD*18] MUELLER J. H., VOGLREITER P., DOKTER M., NEFF T.,
MAKAR M., STEINBERGER M., SCHMALSTIEG D.: Shading atlas
streaming. ACM Transactions on Graphics (Proc. SIGGRAPH) 37, 6
(Dec. 2018). doi:10.1145/3272127.3275087. 3

[PD24] PIOCHOWIAK M., DACHSBACHER C.: Fast compressed seg-
mentation volumes for scientific visualization. IEEE Transactions
on Visualization and Computer Graphics 30, 1 (2024), 12-22. doi:
10.1109/TVCG.2023.3326573. 1,3

[RP71] RICER., PLAUNT J.: Adaptive variable-length coding for efficient
compression of spacecraft television data. IEEE Transactions on Com-
munication Technology 19, 6 (1971), 889-897. doi:10.1109/TCOM.
1971.1090789. 3

https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.48550/arXiv.1311.2540
https://doi.org/10.48550/arXiv.1311.2540
https://doi.org/10.1109/CCP.2011.16
https://doi.org/10.1109/CCP.2011.16
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.2298/CSIS110606004M
https://doi.org/10.1145/3272127.3275087
https://doi.org/10.1109/TVCG.2023.3326573
https://doi.org/10.1109/TVCG.2023.3326573
https://doi.org/10.1109/TCOM.1971.1090789
https://doi.org/10.1109/TCOM.1971.1090789

