
Eurographics Conference on Visualization (EuroVis) 2025
W. Aigner, N. Andrienko, and B. Wang
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 3

Random Access Segmentation Volume Compression
for Interactive Volume Rendering

M. Piochowiak , F. Kurpicz , and C. Dachsbacher

Karlsruhe Institute of Technology, Germany

H01 773.1 GB
ours: 14.6 GB
13.2 ms/frame

CELLS 4000 MB
ours: 176.4 MB

24.7 ms/frame

AZBA 385.4 MB
ours: 2.5 MB

23.8 ms/frame

FIBER 5693.5 MB
ours: 90.7 MB
34.2 ms/frame

Figure 1: H01, CELLS, AZBA, and FIBER data sets compressed with our full random access multi-resolution CSGV-R segmentation volume
compression. Renderings are in FullHD with a static camera and accumulate one indirect ambient occlusion ray per pixel per frame over 256
frames. The CSGV-R volumes (b = 64 with stop bits) are rendered in the compression domain, accelerated with a voxel cache of 1 GiB size,
plus an empty space cache except for H01. DDA ray marching accesses the multi-resolution volumes so that 1 voxel approximately maps to one
pixel in the image. The renderings contain no decompression artifacts from caching or streaming as seen in other techniques.

Abstract
Segmentation volumes are voxel data sets often used in machine learning, connectomics, and natural sciences. Their large sizes
make compression indispensable for storage and processing, including GPU video memory constrained real-time visualization.
Fast Compressed Segmentation Volumes (CSGV) [PD24] provide strong brick-wise compression and random access at the brick
level. Voxels within a brick, however, have to be decoded serially and thus rendering requires caching of visible full bricks,
consuming extra memory. Without caching, accessing voxels can have a worst-case decoding overhead of up to a full brick
(typically over 32.000 voxels). We present CSGV-R which provide true multi-resolution random access on a per-voxel level. We
leverage Huffman-shaped Wavelet Trees for random accesses to variable bit-length encoding and their rank operation to query
label palette offsets in bricks. Our real-time segmentation volume visualization removes decoding artifacts from CSGV and renders
CSGV-R volumes without caching bricks at faster render times. CSGV-R has slightly lower compression rates than CSGV, but
outperforms Neuroglancer, the state-of-the-art compression technique with true random access, with 2× to 4× smaller data sets
at rates between 0.648% and 4.411% of the original volume sizes.

CCS Concepts
• Computing methodologies → Rendering; • Information systems → Data compression;

1. Introduction

Segmentation volumes are commonly used in various of domains
such as connectomics, machine learning, or natural sciences. It is
desirable to exploit the computational resources and parallel process-
ing of GPUs when working with large-scale segmentation volumes,
but the available GPU memory can quickly become a limiting fac-
tor. Working with compressed segmentation volumes could alleviate

this problem, however, existing compression methods are either not
suitable for GPU-based processing and rendering, or have significant
shortcomings, most notably not offering strong compression and
random access at the same time.

The state-of-the-art method Fast Compressed Segmentation Vol-
umes (CSGV) [PD24] encodes individual bricks of segmentation
volumes in a multi-resolution fashion and allows random access on

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European
Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0003-1980-6146
https://orcid.org/0000-0002-2379-9455
https://orcid.org/0000-0003-4690-3574

2 of 12 M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering

this level. However, within a brick, voxels can only be decoded from
a stream of stored operations in a strictly serial manner, prohibiting
true random access. This has downsides, e.g. for rendering the vol-
umes: First, a cache for decoded bricks is needed which stores many
more voxels than required and consumes significant memory—up to
gigabytes in addition to the compressed data. At high rendering res-
olutions where many bricks are requested at the finest level-of-detail,
the cache size may easily exceed the available GPU memory. Due to
diminishing returns of improving compression rates, we suggest that
novel methods address this dependency on large caches to reduce
overall rendering memory. Second, there is no feasible way of access-
ing a voxel if it is not in the cache. For tasks with incoherent random
single voxel accesses, the decoding overhead would be significant as
bricks always have to be decoded up to the requested voxel.

In this paper, we introduce a novel compressed data structure for
segmentation volumes with true random access to voxels. Building
on the compact multi-resolution encoding of CSGV, a key compo-
nent of our Random Access Compressed Segmentation Volumes
(CSGV-R) is using wavelet tree encodings for indexing the com-
pressed data. Wavelet trees are used in text indexing and related
fields, and to the best of our knowledge, we are the first to adapt and
use them in a rendering context. Our data structure does not require
the serial variable bit-length asymmetric numerical systems (ANS)
encoding [Dud13] as CSGV, and is thus more GPU-friendly. We
reduce the implementation and query overhead of our wavelet trees
to surpass CSGV’s render performance. Our random access removes
the need for caching on the brick level: we evaluate rendering seg-
mentation volumes without any caching, and with caching individual
voxels directly. To summarize, our contributions are:

• a GPU-friendly, true random access and lossless compression
method for segmentation volumes,

• an efficient renderer with optional, random access-enabled caching
of individual voxels (using Cuckoo hashing), and

• an optimized Huffman-shaped wavelet matrix GPU-shader imple-
mentation for indexing compressed volume data.

2. Related Work and Background

In the following, we introduce related works from segmentation
volume compression and visualization, as well as wavelet trees.

2.1. Segmentation Volume Compression

A large body of work exists on gray-scale image and volume com-
pression [BTB∗22, BRGIG∗14]. Such compressors are applied to
imaging data if it is paired with segmentation volumes [MJB∗21].
But they are rarely directly used for segmentation volumes as com-
pression of those is usually lossless [MHL∗17, Goo16, PD24] and
their content, integer classification labels, behaves different than
image data. An exception are lossless image compressors like
PNG [ATAS21]. Lossless general purpose compression, e.g. gzip, is
used in compressed file formats like hdf5 [HDF] and NIfTI [LM14].
For binary segmentations, sparse-voxel-octrees [LK10] and directed-
acyclic-graphs [KSA13] can be applied. For data with more la-
bels, label values and occupancy can be decoupled within local
bounding boxes [WPD24] but compression rates are limited. Com-
presso [MHL∗17] encodes label regions within small windows as bor-
der bit masks and label palettes. Windows can be randomly accessed,

but strong compression rates are only achieved when additionally
applying a global LZMA compression, which makes random access
impossible and is not parallelizable. The Mixture Graph [ATAS21]
creates a graph-compacted multi-resolution hierarchy of label dis-
tributions. The Google Neuroglancer precomputed format [Goo16]
is a brick-wise encoding storing a palette of labels for each brick
and a fixed number of bits per voxel indexing into it. This is the
fastest format, offers true random access down to the voxel level, but
has sub-par compression rates. CSGV [PD24] is the state-of-the-art
segmentation volume compressor in terms of compression rates and
operates brick-wise as well. It encodes a multi-resolution hierarchy
of labels as a stream of label assignment operation. The stream
is compressed with an ANS [Dud13] variable bit-length encoding.
While bricks can be randomly accessed, access within a brick, cover-
ing up to several thousand voxels, must happen strictly serially. Our
multi-resolution segmentation volume compressor is an alternative
to CSGV that offers random access down to the voxel level as in
Google Neuroglancer but with compression rates close to CSGV.

2.2. Segmentation Volume Visualization

Segmentations are often visualized within labeling or proofreading
frameworks as 2D slices or rasterized 3D triangle meshes [PHK04,
BBB∗17, BSL18, AABH∗16]. Meshing of voxel regions is either
a preprocess, or only supported for few labels [Lem10, QDB11,
LC87]. Portable visualization methods are often web based [Goo16,
BBB∗17] while offline rendering may use photorealistic render-
ers [Ble18,VMM∗23] and distributed hardware [MAF07] with longer
render times and lower accessibility. For large-scale segmentation
volumes, distant storage formats allow partially streamed access with
caching [MSL22] as implemented by Google Neuroglancer [Goo16]
and Webknossos [BBB∗17] that both render 2D slices and subset
3D meshes. Ray marching can be used when voxel data is directly
rendered instead of meshed representations [ATAS21, PD24]. If
volumes fit into main memory, renderers on single GPU consumer
hardware may stream and cache partial volumes from main memory
to GPU video memory (VRAM) [BAAK∗13, BMA∗18]. Alterna-
tively, a compressed representation of the volume is stored in VRAM
to partially decode and cache visible regions in a faster, fully GPU-
based pipeline [PD24]. With compression domain rendering, caching
is not required [WPD24, Goo16]. Werner et al. [WPD24] encode
label occupancy inside separate bounding boxes, making their com-
pression suitable for hardware accelerated raytracing. The method
requires sparsity in the data and achieves weaker compression than
CSGV. The Mixture Graph [ATAS21] solves the problem of color
filtering, which can only be applied with post-classification trans-
fer functions [EHK∗06] for multi-resolution segmentation volumes.
The Volume Conductor [LAB∗24] solves visual clutter in densely
labeled volumes with label-based visibility management. Volume
Puzzle [AAAT∗22] offers semi-automatic transfer function creation
for segmentation volumes. Our renderer stores random access com-
pressed volumes in VRAM for a fully GPU-based compression do-
main rendering pipeline with optional voxel caching.

2.3. Access and Rank Queries on Bit Vectors

A bit vector is a text B over the binary alphabet {0,1}. On bit
vectors, we are interested in two types of queries: access(i) = B[i]

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering 3 of 12

0

00

000

0000

0 1

01 1000

X X X

Y Y

Z Z

=

X X X
Y Z Z Y

Y
X X

Z Z Y
X

0 1 2 3 4 5 6 0 1 2 3 0 1

0 1 ...

=

0 1 2 3 4 5 6 0 1 2 3 0 1

=

0 1 2 3 4 5 6 0 1 2 3 0 1

=

0 1 2 3 4 5 6 0 1 2 3 0 1

| | | |

X

Y

Z

X

Y

Z

Figure 2: A wavelet tree that encodes a text T of operations ω ∈ Σ in its conceptual form and as a compressed Huffman-shaped wavelet matrix.
Wavelet tree traversal for access(8) = T [8] = Z is highlighted in red: Symbols are constructed bit-by-bit from the level-wise bit vectors,
starting from the top. A bit vector access yields the next bit α which also determines if descending left 0 or right 1 to the next level. A rankα

determines the read index in the next level. The Huffman-shaped wavelet matrix is a pointer-less memory layout of a wavelet tree. It stores
symbols as their variable bit-length canonical Huffman-codes (CHC) to compress T . CHC are constructed from the Huffman-tree (right) in
which frequent symbols have shorter lengths. Our CHC create an efficient tree layout where any 1 bit terminates a character. Thus, no right
children exist and rank0 queries return the index in the next level if a 0 bit was read in the current level. Note that explicit symbols are added
for readability only: only the bit vector W and the wavelet tree level start indices W1 . . .W4 within it are stored in memory.

and rankα(i)= |{ j < i : B[j] =α}| for α∈{0,1}which returns the
number of times α occurred before i. On bit vectors, these queries can
be answered in constant time [Jac89]. In practice, the currently most
space-efficient approach maintaining reasonable query performance
is called flat rank [Kur22]. Flat rank only requires 3.51 % additional
space. The general idea is to partition the bit vector into blocks and
to store the number of 1-bits in the bit vector up to each of the blocks
in an array (see [Kur22] and our supplemental for details) .

2.4. Wavelet Trees

Wavelet trees [GGV03] are compressible index data structures
with applications in text indexing [FM00, GNP20], text compres-
sion [GVX11, Mak12], and computational geometry [MN06]. They
generalize, among others, access and rank queries from binary alpha-
bets to alphabets of size σ and can answer these queries in O(logσ)
time. We now give a brief overview of wavelet trees along the variants
in Figure 2. Due to space constraints, we omit some general details
and refer to the excellent surveys on wavelet trees [GVX11,Mak12].

Structure of a Wavelet Tree. Each node of the wavelet tree (left
in Figure 2) represents a subset of the whole text T and has up to
two children. These subsets contain all characters of T that are in a
subset of the alphabet, i.e. wavelet trees partition the alphabet, not
the space of the text. The root at the top considers the entire alphabet
and thus represents the whole text. Now, the left child of the root
represents all characters in the lower half of the alphabet and the
right child represents all characters in the upper half of the alphabet.
In other words, when the root considers the alphabet Σ = [1,σ],
the left child considers Σℓ = [1,σ/2] and the right child considers
Σr = [σ/2+1,σ] minus rounding. The remaining nodes are defined
recursively and we stop at depth ⌈logσ⌉.

We use bit vectors to represent the characters. If a character is in

the lower half of the alphabet, we mark it with a 0-bit. It is marked
with a 1-bit otherwise. At each node, we only look at characters
in the subset represented by the node, i.e., the total length of all bit
vectors on the same level of the tree is always |T |. The red path
in Figure 2 highlights the query for accessT (8) = T [8] starting at
position i = 8 in the root node and descending left or right depending
on the bit α at i. All characters that share the same bit will belong
to the same node in the next level. Thus, rankα(i) in the current
node determines the next index in the node in the following level.
In our example, this descend through the tree iteratively extends
the bit-prefix of a given character until all bits are known. rankT

ω

operates similarly: as the same character ω ∈ Σ always ends in the
same node, a bit vector rank in that node is equal to rankT

ω. To find
the node, the direction bit α in level l is not obtained through an
access but is the l-th bit of the code of ω (see our supplemental for
details).

In memory, wavelet trees are not stored using pointers: The
level-wise wavelet tree concatenates all bit vectors on the same
level [CKV24]. A more efficient representation is the wavelet ma-
trix [CNP15], which is a level-wise wavelet tree where the nodes on
the same level have been reordered to save one access and/or rank
query per level in practice. Since these are only pointer-less memory
representations of wavelet trees, we always refer to the structure as
wavelet tree, as is convention in literature.

Improving Wavelet Tree Queries. However, originally designed
as an alternative representation of the wavelet tree for large alpha-
bets, the wavelet matrix [CNP15] layout provides also faster queries
in practice without any disadvantages. Furthermore, because of
their similarity, all the results for wavelet trees are also applica-
ble to wavelet matrices. There has been further effort to improve
query performance of wavelet trees (and matrices) using multi-ary
trees [FMMN07, CKV24] and wavelet forests [HBG∗24].

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 12 M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering

Figure 3: CSGV encodes segmentation volume bricks as a multi-
resolution grid, here in 2D. Each grid node contains an operation
determining if it copies the label from a parent , neighbor , or
the palette . CSGV operates along the serialized operation stream
(black line). Our random access CSGV-R follows the operations from
the accessed node up to a palette operation (red arrows).

Wavelet Tree Construction. Babenko et al. [BGKS15] and Munro
et al. [MNV16] presented the best sequential construction algo-
rithms that require only O(n logσ/

√
logn) time. There exists

a lot more (theoretical and practical) work on the efficient con-
struction of wavelet trees in many different models of computa-
tion [Shu20, Shu15, FEFS17, dFdS17, CNS11, Tis11, Kan18, EK19,
DFK20, DEF∗21, DFKT23]. It should be noted that, to the best of
our knowledge, the only GPU implementation of wavelet trees is by
NVIDIA as part of their NVBIO library [NPS20].

Compressing Wavelet Trees. Wavelet trees can easily be com-
pressed. To this end, we can build the wavelet tree for the Huffman
compressed text [Huf52] (right in Figure 2). This type of wavelet
tree is called the Huffman-shaped wavelet tree, because the depth
of the leaves now depends on the length of the codewords of the
characters represented. These Huffman-shaped wavelet trees require
only |T |⌈H0(T)⌉(1+o(1)) bits of space. Here, H0(T) denotes the
0-th order entropy, i.e., the least amount of space achievable when
encoding each symbol of the text separately. Note that we cannot
use Huffman-codes directly, instead we have to use bit-wise negated
CHC [DEF∗21], which do not worsen any theoretical guarantees but
provide the benefit of smaller codes being lexicographically greater.
This allows for us to have trees, where the shorter levels are all on the
right-hand side of the tree, simplifying navigating the tree. For our
special case in Figure 2, no right children exist at all because of the
given CHC pattern. Most access queries terminate in early depths.
Section 3 includes pseudo code for our streamlined access and rank
queries. In this work, we use wavelet trees to compress our segmen-
tation volume encoding in form of such streamlined Huffman-shaped
wavelet matrices, supporting random access and rank queries.

2.5. Fast Compressed Segmentation Volumes

Segmentation volumes are 3D grids storing integer labels for each
voxel. Voxels with the same label usually form a contiguous region
and partition the space into separate object regions. While segmenta-
tion volumes may assign multiple labels to a single voxel, we focus
on the most common case where each voxel v ∈ N3 is assigned to
exactly one label λ ∈ [0,232). CSGV [PD24] is a brick-wise com-
pression for such volumes: Therefore, the volume is split into equally
sized bricks of b3 voxels with b = 2i, i∈N ; b typically being 16, 32,
or 64. Each brick is (de-)compressed completely independently. For

each brick, CSGV first builds a multi-resolution grid of its volume
by halving b i-times; the resulting elements are denoted as nodes
(Figure 3). This grid represents [L = log2(b)]+ 1 levels-of-detail
(LODs) indexed with l ∈ [0,L]. Each node is assigned the most fre-
quent label of its 23 child nodes on the next finer LOD which cover
the same region in the segmentation volume. The grid nodes are then
serialized from coarsest to finest LOD and along a Morton Z-order
curve within an LOD.

CSGV encodes the grid nodes’ labels along this indexing order
with one operation per node, and stores a palette of labels. Instead of
storing the nodes’ indices into the palette explicitly, an index pointer
ip is initialized to the first palette entry and incremented each time
the next palette entry is read. The possible operations for a node are

copy the label of the parent node,
copy the label of an axis-aligned neighbor node,
read the label at ip from the palette and advance ip,
re-read the label at ip−1 from the palette,

δ re-read the label at ip−δ from the palette.

The neighbor operations = { X , Y , Z } always refer to the neigh-
bor nodes outside of the current 23 voxel block, i.e. neighbors with a
different parent. If the labels of these neighbors have not yet been
decoded, their parents are referenced instead (red cross in Figure 3).
δ requires additionally storing the value δ in the operation stream.

In a plain CSGV Nibble-wise encoding, 3 bits per node suffice
to store its operation. An additional stop bit is used to mark nodes
for which all child nodes have the same label. These child nodes
can be omitted in the encoding stream resulting in an Octree-like
sparsification. For better compression, CSGV uses a variable bit-
length encoding (range ANS encoder [Dud13]) to compress the
brick’s operation stream. Note that CSGV always decodes a brick
fully up to a certain LOD: The brick’s operation stream is traversed
from the coarsest LOD up to the last node of the target LOD. During
processing of the node operations, the output array temporarily stores
the labels set by coarser LODs to keep track of parent labels and
constant regions from stop bits.

3. Random Access Segmentation Volume Compression

The ANS stream compression used in CSGV makes random ac-
cess impossible. Therefore, we will compact the stream of node
operations T [i] : N 7→ Σ with a Huffman-shaped wavelet tree, which
enables variable bit-length compression and random access. The
operation δ in CSGV requires storing the δ values as additional val-
ues in the operation stream. As these δ-values increase the number
of different occurring values in the stream, we omit this operation
in our CSGV-R and only support the most frequent back reference
distance δ = 1 that is directly encoded as . That is, our alphabet
is Σ = { , X , Y , Z , , } with a size of |Σ|= 6.

Variable bit-length compression is beneficial as the operations used
in CSGV occur in vastly different frequencies. We use Huffman-
shaped wavelet trees mapping symbols to bit patterns, their bit-wise
negated canonical Huffman codes (CHC) [DEF∗21]. The CHCs are
constructed from the Huffman tree, i.e. from the operation frequen-
cies. In CSGV, parent references are the most frequent symbols,
neighbor references are less frequent, and palette accesses and back

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering 5 of 12

Figure 4: Stop bits (red nodes) can create a negative offset within
the operation stream for a node. Stop bits on coarser levels that are
in an earlier region along the Z-curve remove (2d)∆L node index
predecessors. Nodes that are in a removed region must use the index
of the parent that sets the stop bit instead (red arrow). Numbers
inside nodes are their Morton codes n inside their LOD.

Algorithm 1 idx(&n,&l̄) computes the index of a multi-grid node
given by its Morton code n in its LOD l̄ within the operation stream.
n and l̄ are passed by reference. Tl is the stream index of the first
node in each LOD, S is the stop bit vector.

Input grid node given as the Morton code n in its LOD l̄
Output operation stream index of the node

1: o f f set← 0
2: for l̄′ = 0 . . . l̄ do
3: nparent ← ⌊n/23(l̄−l̄′)⌋ ▷ parent node index in its LOD
4: if accessS(Tl̄′ +nparent −offset) = 1 then
5: l̄← l̄′

6: n← nparent ▷ Return parent if it sets a stop bit
7: break

8:
offset← offset+ rankS

1(Tl̄′ +nparent −offset)

− rankS
1(Tl̄′)

9: offset← 8 ·offset
10: return (Tl̄ +n−offset)

references occur the least. The pattern is consistent across data sets
and domains [PD24], which makes it possible to determine Huff-
man codes once. Conveniently for Huffman coding, the operation
distribution roughly follows (1/2)1...7. Figure 2 (right) shows the
resulting CHCs for our alphabet Σ. The maximum length of a bit
pattern is 5 which means that our Huffman-shaped wavelet tree uses
5 levels. Note that the CHCs follow a simple layout, similar to RICE
coding [RP71] where the number of consecutive 0 bits determines
the operation. For this reason, our wavelet trees contain no right
child nodes, i.e. any 1 bit terminates a symbol (Figure 2 middle).

Wavelet Tree Compression. When compressing a volume brick, we
first encode its label multi-grid from coarsest to finest level into a list
of operations as in CSGV. Recall that we do not use δ , and replace
it by instead, possibly creating additional palette entries. The
operation stream T is subsequently compressed as a Huffman-shaped
wavelet tree with our hard coded CHCs. We store it as a wavelet
matrix [CNP15] and refer to its resulting level-wise concatenated bit
vector as W and to the level start indices inside W as W0 . . .W4. W is
constructed with the prefix counting algorithm [DEF∗21]. Next to W
we store a flat rank structure [Kur22] for constant time rank queries.

Stop Bits. CSGV introduces two variants of each operation where
a marker stop bit determines if the covered region by a grid node is
constant in all finer levels. Respective nodes in the finer levels are

then excluded in the encoding, resulting in storage akin to Octrees.
We decouple these stop bits from the operation codes to keep the
alphabet size and depth of the wavelet trees limited. The stop bits
S[i] : i 7→ {0,1} are stored in a separate bit vector that follows after
the operation list with its own flat rank data structure. We implement
two variants of CSGV-R, with and without using S.

Brick Headers. The brick headers store the start offset of each
CSGV LOD within the operation and stop bit lists as T0 . . .TL,
the palette size, and the information to query the wavelet matrix.
The latter includes the number of 1 bits before each level in W as
Z1[0] . . .Z1[4]. Figure 5 shows the final memory layout of a com-
pressed brick not true to scale. Note that the levels of the wavelet
tree l are not the LODs of the multi-resolution grid l in the CSGV
encoding. Queries for all CSGV LODs start within the first wavelet
tree level.

3.1. Random Access Decoding

Next we discuss the fundamental differences of the non-random
access CSGV and our random access CSGV-R. CSGV operates
serially within a brick: To access the label of a brick node T [i], all
previous nodes T [j], j < i must be decoded first. In practice, full
bricks are decoded up to a certain LOD and cached, and if all of the
brick’s nodes will be accessed later, costs amortize quickly. However,
if only few nodes will be accessed, for example due to occlusion in a
renderer or when a task requires sampling random voxels globally,
the brick-wise caching poses a significant memory overhead.

Mainly two reasons make the serial decoding necessary for CSGV:
The variable bit-length ANS compression makes a direct mapping
of an operation stream index i to its memory location impossible.
And no explicit palette indices are stored for and instead the
index is effectively the number of preceding in the operation
stream. Obtaining the i-th operation in T is an access(i) = T [i]
query. Computing the palette index at operation i where T [i] =
translates to rank (i) = |{ j < i : T [j] = }|. Our wavelet tree
answers both queries in constant time given our constant Σ.

To resolve parent and neighbor references, CSGV uses the tem-
porary information stored in the partially decoded brick. Random
accesses are not possible as such a partial decoding does not exist in
this case. In CSGV-R we instead start at the accessed grid node and
follow the indirections introduced by and as a chain of oper-
ations from grid node to grid node until either or is reached
(red arrows in Figure 3). Then, a rank query returns the index to
the brick palette at which the label of the accessed node is looked up.

Grid nodes can either be referred to by their index in the operation
stream i, or by their coordinate in the grid. In the latter case, the
coordinate is a tuple of the node’s 1D Morton code n of its coordinate
within its LOD l̄. The LOD 0 is the coarsest level consisting of one
node and L is the finest LOD with b3 nodes. Figure 4 shows n within
the nodes. Note that the Morton code of the parent of node n is
⌊n/2d⌋ where d = 2 in 2D. The operation of a node is obtained as
access(i) ⇐⇒ access(idx(n, l̄)). idx returns the operation stream
index i for the tuple (n, l̄). idx computes the negative offset from n
to i within a level that occurs because earlier nodes were removed
by stop bits on coarser levels (Figure 4). Recall that the stop bit

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 12 M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering

...
...

Figure 5: Memory layout of a compressed brick (not true to scale). The LOD operation starts are the indices i at which new CSGV multi-grid
levels start in T (not to be mistaken for the wavelet matrix level start indices Wl). The wavelet matrix bit vector W and stop bit vector S are
accompanied by a flat rank structure for constant time rank queries. The palette of uncompressed labels is stored in reverse order as in CSGV.

Algorithm 2 Operation Stream Wavelet Matrix access
Input operation stream index i, wavelet matrix bit vector W

from brick header: Wl level starts, Z1[l] = rankW
1 (Wl)

Output operation ω = T [i] ∈ { , X , Y , Z , , }
1: for l = 0 . . .4 do
2: bit← accessW (Wl + i) ▷ bit vector access
3: if bit = 1 then ▷ any 1 bit terminates symbol
4: return l ▷ level = | CHC 0 bits | = ω

5: onesbefore← rankW
1 (Wl + i)−Z1[l]

6: i← i−onesbefore
7: return 5 ▷ five consecutive 0 bits are

vector S[i] stores for each node i if its covered region is missing in
the operation stream on all finer levels. rankS

1(i) returns the number
of 1 bits, i.e., stop bits, before i in S. The brick headers store the
stream index of the first grid node, n = 0, in each LOD, denoted
T0 . . .TL. Here, the mapping of a grid node to its index is

i = idx(n, l̄) = Tl̄ +n−∑
l<l̄

rankS
1(Pl(n, l̄)) ·23(l̄−l)

where Pl(n, l̄) is the index of the (grand-)parent node of n in LOD
l̄. While it initially may seem that Pl introduces a recursion by
requiring an operation index mapping itself, it can be computed itera-
tively along with the inner sum in idx(n, l̄) as shown in Algorithm 1.
Because all inner operations require constant time, idx(n, l̄) can be
answered in O(L) = O(logb) time.

3.2. Wavelet Tree Implementation

On the GPU, our CSGV-R are buffers of concatenated compressed
bricks, each with the layout from Figure 5. Vulkan buffer device
addresses allow to pass references to brick bit vectors and headers
to the decoding functions. Our bit vectors and flat ranks are stored
as arrays of 64 bit words where the bit index order inside a word
goes from the least to the most significant bit. Our wavelet trees are
implemented as Huffman-shaped wavelet matrices as in Figure 2.

Wavelet Matrix Access. accessW (i) of the i-th bit in a bit vector
W is computed as (words[i / 64] » (i & 63)) & 1 and
uses one integer division, one bit shift and two bit-wise ands. Our
RICE-coding like CHC (Section 3) results in the operation number
simply being the number of zeros before the first 1 bit in a Huffman-
shaped wavelet tree symbol. Additionally, this completely eliminates
the 1 branch and the tracking of interval starts from the general
Wavelet Matrix access query [CNP15] as laid out in Algorithm 2.

Algorithm 3 Operation Stream Wavelet Matrix rank
Input operation stream index i, wavelet matrix bit vector W

from brick header: Wl level starts, Z1[l] = rankW
1 (Wl)

Output number of in T before i: rank (i)
1: for l = 0 . . .4 do
2: onesbefore← rankW

1 (Wl + i)−Z1[l]
3: i← i−onesbefore
4: return onesbefore

Wavelet Matrix Rank. We use an adapted flat rank [Kur22] for
constant time rank queries on our bit vectors at 5% space overhead
(details in the supplemental). Wavelet matrix rank only occurs for

. Our rank implementation collapses from the generalized form
(cf. [CNP15]) to the efficient implementation shown in Algorithm 3:
Hardcoding the character’s CHC (00001) removes all branching. A
generalized wavelet matrix implementation must track where tree
node intervals start within a level [CNP15]. We can optimize out all
of this: a single interval exists per level (0l prefix) which starts at the
level start index Wl in W . We unroll the loop in our implementation.

4. Rendering of CSGV-R Encoded Volumes

We implemented a segmentation volume renderer using ray marching
in Vulkan compute shaders. One thread per pixel marches along a
ray from the camera through the volume using digital differential
analyzer (DDA) traversal [AW87]. We access brick LODs so that
one decoded voxel approximately maps to one pixel in the output
image. For coarser LODs, the DDA step size is increased accordingly.
The label of an accessed brick is mapped to opacity and color by a
transfer function. Opacity values above a threshold are interpreted as
surface interactions where a local diffuse shading model is evaluated
and the thread either terminates or continues to pursue an indirect
shadow or ambient occlusion ray, depending on the shading mode.

For accessing voxel labels, CSGV caches visible bricks, fully de-
coded up to an LOD. When their renderer requests a voxel from a
brick that is not available, the brick is scheduled for decoding in the
next frame; akin to shading atlas streaming [MVD∗18] bricks are
assigned to free regions in the cache. Our CSGV-R is not dependent
on a cache and the renderer can directly access voxels from encoded
bricks. However, as is discussed in section 5.2, operating the ren-
dering completely in the compression domain is slow and should
thus only be used if memory budgets are strict. For other cases, we
introduce a voxel cache with variable size to store decoded labels of
single voxels. It operates without the one frame latency of CSGV as
voxels not in the cache can be decoded directly.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering 7 of 12

Figure 6: Cuckoo hashing uses two hash functions h1(k) and h2(k)
mapping keys into distinct positions in two hash tables M1 and
M2. When keys are inserted in one table, starting from M1, ejected
elements are recursively swapped between their two positions.

4.1. Voxel Caching

For our optional voxel cache we use a hash map which stores labels
λ for tuples of voxel coordinates v ∈ N3 (measured in the finest
resolution) and requested LODs l. We use Cuckoo hashing [PR04]
to map the tuple (v, l) to positions in the hash map p. Cuckoo hash-
ing defines two hash functions for each element, h1(k) and h2(k)
mapping element keys k to positions in two different hash tables as
M1[h1(k)] and M2[h2(k)]. As any element can only be found at either
of those two positions, the lookup function operates in constant time.
When inserting an element, it is stored at M1[h1(k)]. If this position
was already occupied by an element k′, k′ is moved to its second
location M2[h2(k

′)], possibly ejecting another element that is then
moved from M2 to its other position in M1 and so on (Figure 6). This
ejection loop continues either until an element is inserted into an un-
occupied position, a predetermined loop depth is reached, or a cycle
is detected (an element is inserted into a position that it occupied
before). To construct the hash functions, Pagh and Rodler [PR04]
use an XOR combination of three functions from the (c,k) universal
family [CW77] given by Dietzfelbinger et al. [DHKP97]:

ha(x) = (ax mod 232)/232−m

where a is an odd number and m is the most significant bit (MSB) of
the power-of-two hash table size. As our query tuples are three or
four-dimensional, we opt for the pcg family [O’N14, JO20] instead.
In the original Cuckoo hashing [PR04], the keys in the table must be
identical to the access tuples. For our tuple (v, l) this would require
four 32 bit integers. Pagh and Rodler [PR04] propose to store such
long keys outside the table and smaller pointers to the keys inside
the table. In the following, we detail our specific approach which
allows us to use a small hash of the tuple as the key instead.

CSGV-R Cuckoo Caching. We use one single table M to hold M1
and M2 at the same time, as discussed by Pagh and Rodler [PR04].
M is an array storing the label λ and a 32 bit key k to identify hash
collisions at each position. The first hash function for our method is
used to determine the first position of a 4D tuple (v, l) in M as

h1(v, l) = h19(s.x) ⊕ h47(s.y) ⊕ h101(s.z) mod |M|

where we compute s = pcg3d(⌊v/2l⌋ ·2l) using the pcg3d 3D hash
function [JO20] (see Figure 7) and ⊕ is a bitwise XOR. Rounding
voxel coordinates down to powers-of-two forces hash table collisions
for voxels from different LODs belonging to the same spatial region.
This is desirable as we will never access different LODs of a region
at the same time during rendering. Shader vector arithmetic allows
to compute up to four ha(x) simultaneously. At M[h1(v, l)], we store
the voxel’s label λ and the 32 bit key k of the 4D lookup position

Figure 7: Insertion of a label λ for voxel v in LOD l with our adapted
Cuckoo hashing. (λ′,k′) is ejected from its first position and can be
swapped into its second positions. (λ′′,k′′) cannot be moved to its
alternative location as it is ejected from its second position.

(v, l). The key is computed with another hash function as

k = hk(v, l) = h5(t.x) ⊕ h149(t.y) ⊕ h61(t.z) ⊕ h2887(t.w)

with t = (pcg4d(⌊v/2l⌋ ·2l , l) being a 4D vector. We use the MSB
of k to track if an element is stored at its first (set to 0) or second
position (set to 1). The alternative hash table position of an element
is determined with with u = pcg2d(hk(v, l),h1(v, l)) as

h̃2(v, l) = h7(u.x) ⊕ h31(u.y) ⊕ h97(u.x) ⊕ h173(u.y) mod |M| .

When an element (λ,k) inserted at p ejects a previous element
(λ′,k′) for which p is the first position, the ejected element is moved
to its second position p′. Given our definition of h̃2 we can compute
p′ = h2(k

′, p) with u = pcg2d(k′, p), set the MSB of k′ to 1 and
insert (λ′,k′) at p′. If p already is the second position for (λ′,k′),
then the element cannot be moved back to its first position since
the input parameters for h1 are not available. Instead, the element
is removed until the renderer accesses the associated voxel for the
element again. Then a cache miss will occur and (λ′,k′) will be re-
inserted. Note that elements still follow the Cuckoo hashing pattern
of alternating between their first and second positions, and lookups
operate in constant time accessing at most both positions. We limit
the ejection recursion to a depth of 1 to terminate the Cuckoo hashing
ejection loops earlier and thus limiting thread divergence.

4.2. Empty Space Caching

A naive implementation of the above described hashing will suffer
from the fact that cache space is quickly exceeded if many voxels are
mapped to transparent by the transfer function. As the ray marcher
cannot determine if a label is visible before reading it from the cache
or decoding it, an empty space skipping solution is required to reduce
the number of accessed voxels. As in CSGV we can easily skip bricks
which do not contain any visible labels by testing and marking the
label palettes in another shader before rendering [PD24]. However,
this is not yet sufficient and we thus add a more fine-granular empty
space skipping bit vector E that stores one bit for 23 voxels, which
we refer to as empty block, on the finest LOD of the full volume.
Each bit in E is 1 if and only if all voxels in that empty block have an
invisible label. For such invisible empty blocks, E stores only 1

8 bits
per voxel, while the hash table M would require 64 bit per invisible
voxel (32 for λ and 32 for k). Note that for partially visible empty
blocks, all of its voxels have to be decoded and cached in M.

We construct E on-the-fly during rendering: It is initialized to
E = (000 . . .000)2 and reset whenever the visibility transfer function

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 12 M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering

Algorithm 4 getLabelOfVoxel(uvec3 v, uint l). We use a Cuckoo
hashing variant for voxel label caching and an optional empty space
skipping bit vector (gray). Insertions in E and M are atomic.

Input voxel coordinate in finest LOD v, accessed LOD l
Output label λ

1: if brickInvisible(v/b) then ▷ brick skipping as in CSGV
2: return INVISIBLE ▷ b is the brick size

3: e← index of v’s empty block in E
4: if accessE(e) = 1 then ▷ Check if E marks v invisible
5: return INVISIBLE

6: p1← h1(v, l) ▷ ≤ 2 lookups for (v, l) in M
7: k← hk(v, l)& (0111 . . .1111)2
8: (k1,λ1)←M[p1]
9: if k1 = k then

10: return λ1
11: else
12: p2← h2(k, p1)
13: (k2,λ2)←M[p2]
14: if k2 = (k | (1000 . . .0000)2) then
15: return λ2

16: λ← decodeLabel(v, l) ▷ CSGV-R random access

17: if ¬labelVisible(λ) then ▷ Check if voxel set fully invisible
18: allInvisible← True
19: for all v′0 with empty block index e do
20: if labelVisible(decodeLabel(v′0,0) then
21: allInvisible← False
22: if allInvisible then
23: E[e]← 1
24: return INVISIBLE

25: M[p1]← (k,λ) ▷ Insert in M, possibly swap ejected (k1,λ1)
26: if (k1,λ1) ̸= ∅∧ (k1 & (1000 . . .0000)2) = 0 then
27: p′← h2(k1, p1)
28: M[p′]← (k1 | (1000 . . .0000)2,λ1)

29: return λ

changes. Algorithm 4 contains our voxel access method, including
the handling of the optional empty space bit vector E in gray. Putting
everything together: we decode a voxel (v, l) if v is not inside a
completely invisible brick not yet marked as empty in E, and not
stored in the label hash map M. When such a newly decoded voxel
is not visible, all voxels that share its empty block are decoded as
well. This is done on the finest LOD regardless of l. If none of them
is visible, the empty block is marked invisible in E for later accesses.
Otherwise, M is used to cache the label of (v, l) as before.

5. Evaluation

We evaluate the implementation of our method on a system using
an AMD Ryzen 7 5800x 8-core CPU with 64GB RAM and an RTX
4070 TI Super GPU with 16GB VRAM at fixed GPU clock speeds.
We will release the source code of our CSGV-R compression. The
evaluation data sets are shown in Figure 1 and listed in Table 1:

• CELLS [RBS20] is a densely labeled Cellular Potts Model [GG92]

Data Set Voxels Labels Orig. Size [GB]

CELLS 1000×1000×1000 1,067,196 4.000 (4B)
FIBER 1579×1092×1651 26,372 5.694 (2B)
H01 5120×6144×6144 1,296,889 773.094 (4B)
AZBA 470×1224×670 204 0.385 (1B)

Table 1: Dimensions and sizes of the evaluated segmentation vol-
umes. Bytes per voxel in the uncompressed volume given in ().

tumor growth simulation. We only show tumor and blood cells,
but label regions of roughly 103 voxels occupy the volume fully.

• FIBER [MSJ∗22] is an X-ray scan of a fiber reinforced polymer
with instance segmented glass fibers. Elongated regions span mul-
tiple bricks and create complex partial visibility during rendering.

• H01 is a large subset of the H01 petavoxel fragment of a human
cerebral cortex [SCJB∗24]. It is a typical example of connec-
tomics volumes with larger but complex and interleaving labeled
structures, and vast volume dimensions.

• AZBA [KSY∗21] is a fully segmented zebrafish brain with char-
acteristics commonly seen in medical data sets: a smaller number
of labeled regions with a high variation in size. We render it with
large semi-transparent areas creating high voxel access loads.

5.1. Compression Rates

Table 2 shows results for our CSGV-R compression in different
configurations and a comparison with CSGV. Larger b improve
compression rates for both, which is due to the more expensive
encoding at brick borders and label duplicates in palettes. When not
using any variable bit-length encoding, the operation stream encodes
the volumes for a brick size b = 64 with compression rates between
6.4% and 1% (CSGV Nibble). With the non-random access ANS
variable bit length coding, improved rates are between 2.8% and
0.4%, and close to the entropy (CSGV rANS). Our random access
wavelet matrix compression (CSGV-R+stop bits) yields compression
between 4.4% and 0.6%. ANS achieves better compression as its
fractional bit encoding can follow relative symbol frequencies more
closely. Our Huffman codes encode operations only with an integer
number of bits. Furthermore, CSGV encodes the combination of
stop bit and operation code in a single combined symbol while we
store the stop bits in a separate bit vector to limit wavelet tree depth,
and thus query times. Encoding the operation stream as a wavelet
matrix is computationally more expensive than with ANS and results
in longer compression times. With stop bits, fewer brick nodes exist
and must be compressed in total which improves timings.

Comparisons with other segmentation volume compressors are
shown in (Table 3). General purpose compressors like gzip used in
the hdf5-format [HDF] achieve sub-par compression results. Com-
presso achieves strong compression when paired with a global
LZMA but then random access is not possible. CSGV [PD24]
achieves strong compression and at least supports random access
to bricks, however, random voxel access or compression domain
queries are not supported. Due to its simple brick-wise paletting,
Neuroglancer [Goo16] is a fast format with random access down to
the voxel level; however, its compression rates are the worst of all
evaluated methods. Our CSGV-R with the stop bit vector achieves
compression rates that are roughly twice of the CSGV rates, but still
significantly better than Neuroglancer, the only other true random ac-

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering 9 of 12

CSGV Nibble CSGV rANS CSGV-R CSGV-R + stop bits
b CR Time (s) GB/s CR Time (s) GB/s CR Time (s) GB/s CR Time (s) GB/s

C
E

L
L

S 16 6.833% 2.376 1.684 3.436% 2.016 1.984 6.111% 3.47 1.153 5.528% 2.549 1.569
32 6.561% 1.773 2.256 2.996% 1.781 2.246 5.489% 3.211 1.246 4.653% 2.308 1.733
64 6.425% 2.473 1.618 2.802% 2.412 1.658 5.257% 3.858 1.037 4.411% 2.919 1.37

F
IB

E
R 16 2.97% 3.401 1.674 1.488% 3.95 1.442 9.031% 8.514 0.669 2.899% 4.018 1.417

32 2.558% 2.464 2.311 0.979% 2.585 2.202 8.299% 7.539 0.755 1.759% 2.896 1.966
64 2.496% 3.883 1.466 0.894% 3.978 1.431 8.379% 9.299 0.612 1.593% 4.338 1.313

H
01

16 2.83% 276.978 2.791 1.616% 283.78 2.724 5.005% 594.828 1.3 2.644% 348.655 2.217
32 2.608% 228.101 3.389 1.361% 231.258 3.343 4.449% 539.476 1.433 2.005% 279.779 2.763
64 2.566% 312.467 2.474 1.31% 307.957 2.51 4.336% 619.911 1.247 1.882% 345.899 2.235

A
Z

B
A 16 1.871% 0.349 1.103 1.399% 0.703 0.548 17.656% 1.124 0.343 3.314% 0.376 1.024

32 1.079% 0.279 1.383 0.495% 7.532 0.051 16.061% 1.023 0.377 0.958% 0.292 1.319
64 0.968% 0.47 0.821 0.366% 0.984 0.392 18.1% 1.431 0.269 0.648% 0.469 0.822

Table 2: Compression rates of different data sets and brick sizes b and compression times when using 16 threads in parallel. CSGV Nibble uses
4 plain bit per node, rANS uses range ANS coding with two frequency tables as in [PD24]. We evaluate our CSGV-R with and without using the
stop bit vector while others always include stop bits. Compression rates are given as compressed size / original size fraction.

cess format. In some data sets, e.g. AZBA and FIBER, our CSGV-R
even outperforms Compresso with LZMA.

5.2. Rendering

We evaluate our random access CSGV-R in a DDA-ray marching
renderer with a wide range of configurations. In Table 4 We list
average render times per frame measured for a camera path around
the data sets and compare it to CSGV. We use b = 32 except for
H01 where b = 64. When using a cache during rendering, the cache
size is 1 GiB except when rendering H01 with CSGV where a larger
cache is required for which we chose 4 GiB. For shadow and ambient
occlusion rays, we cast one indirect ray per pixel per frame. Render-
ing with CSGV-R generally outperforms the brick-serial decoding of
CSGV, inter alia by not requiring separate caching [MVD∗18] and
decoding shader stages (no cache or voxel cache) which also reduces
implementation complexity. Further, it reduced the number of un-
necessarily decoded voxels and achieves a higher thread coherence
during decoding. While using stop bits improves compression ratios,
the additional querying of the stop bit vector for the operation stream
index computation puts a strain on the decoding performance. Espe-
cially for data sets like CELLS, in which label regions are small and
few stop bits are set, frame times are almost doubled. The different
caching and decoding modes are discussed in the following.

Random Access Decompression. As our CSGV-R compression of-
fers true random access, we can perform rendering without any cache
(no cache). However, such voxel accesses come at a cost: chasing
along the operations up to a palette operation, traversing the wavelet
matrix for each of these access as well as the final palette index
rank query. As a consequence, caching decoded individual voxels
(voxel cache) with our voxel hash table and custom Cuckoo hashing
(Section 4.1) significantly improves performance, in some cases up
a factor of 5. As a large portion of the voxel cache cells contain
invisible labels, we introduced the optional empty space bit vector
that we fill on-the-fly during rendering (voxel cache (es)). While this
improves render times for CELLS and AZBA, we measured minimal
changes for FIBER, and performance even decreases significantly for

H01. This is presumably due to the large dimensions of H01 which
results in many distant memory reads in the longer empty space bit
vector. Moreover, setting the empty space bit flags requires querying
23 voxels in the finest and most expensive LOD, while common
accesses in H01 are usually to coarser and faster accessible LODs.

Brick-wise Decompression Stage. CSGV only supports caching
full bricks [PD24], decompressed by a separate shader up to a re-
quested LOD with a one frame latency (brick cache). Cache regions
for the bricks in their requested LODs are assigned as in shading
atlas streaming [MVD∗18]. The decoding shader must decompress
bricks serially using one thread per brick, i.e. each thread in a GPU
wavefront accesses different global memory regions and different
work loads leading to thread divergence. We implemented an alterna-
tive brick-wise decompression shader stage for our CSGV-R where
one wavefront cooperatively decompresses one brick for CSGV-R
modes): Threads in the wavefront iterate over output voxels in the re-
quested LOD and read its volume label with random access as usual.
To further improve performance, the brick’s wavelet tree is copied
to shared memory before decoding (brick cachec (sm)). For FIBER,
this cooperative decoding of bricks achieves the fastest rendering.

5.3. CSGV Caching Overhead and Latency

While CSGV achieves smaller compressed volumes, it always re-
quires extra memory during rendering for the cache of visible bricks.
CSGV-R encoded volumes do not have this overhead and can be
rendered as long as they fit into VRAM. The first time a brick in
CSGV is accessed, it is not present in the cache. Before it gets
decompressed, a random sample from the brick palette or the most
frequent label in the brick (the first palette entry) can be used as
a placeholder. This, however, results in visible popping artifacts
(Figure 8). In the worst case, the cache is not large enough to store
all accessed bricks when rendering a frame. In fact, the CSGV cache
barely fits all bricks for ambient occlusion configurations. Deeper
traversal as in path tracing will not allow decoding all visible voxels
in CSGV. In any case, especially when casting indirect rays for am-
bient occlusion, the latency of at least one frame reduces the number

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 12 M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering

data set size/#labels hdf5 Compresso + LZMA Neuroglancer CSGV rANS CSGV-R +stop bits

CELLS 4.0GB 7.221% 8.337% 2.753% 13.622% 2.802% 5.257% 4.411%
1M labels 21.8s 33.0s 138.5s 10.8s 15.9s 25.5s 17.7s

FIBER 5.7GB 3.051% 26.70% 5.861% 3.658% 0.892% 8.379% 1.593%
26K labels 47.4s 139.2s 654.1s 11.0s 19.4s 61.8s 18.4s

H01∗ 4.295GB 3.678% 2.284% 0.342% 3.882% 1.273% 4.313% 1.830%
5.7K labels 18.0s 19.6s 53.4s 6.3s 9.0s 23.0s 9.2s

AZBA 0.385GB 2.166% 88.357% 1.901% 2.801% 0.366% 18.100% 0.648%
204 labels 7.0s 9.0s 47.2s 1.2s 2.3s 9.1s 1.9s

Table 3: Comparison of compression rates and single-threaded compression time (excluding file import) of our CSGV-R and other compressors.
General purpose compressors as gzip in hdf5 do not achieve strong compression for segmentation volumes. Compresso (window size 8,8,1)
offers strong compression when combined with LZMA encoding, but then random access is not possible. CSGV (b = 64) has strong compression
rates, but only random access on a brick level. Neuroglancer (block size 8) encodes volumes with true random access, but has significantly
worse compression rates than our method, CSGV-R (b = 64). For H01 we evaluate a representative 10243 sub-volume based on an average gzip
compressed size as not all our implementations support large chunked volumes. Best random access and overall compression is highlighted.

local shading shadow rays ambient occlusion
CELLS FIBER H01 AZBA CELLS FIBER H01 AZBA CELLS FIBER H01 AZBA

CSGV rANS brick cache 11.8 6.0 4.1 10.3 13.1 7.8 4.2 12.4 18.1 9.2 4.8 17.2

CSGV-R
no stop bits

no cache 25.3 7.6 - 19.2 32.9 12.7 - 25.0 37.4 15.4 - 31.1
voxel cache 10.1 6.4 - 9.3 12.8 9.2 - 11.6 13.2 11.9 - 13.3
voxel cache (es) 5.4 5.8 - 7.9 6.7 8.1 - 10.0 8.1 10.7 - 12.2
brickc cache (sm) 8.1 4.5 - 9.3 9.4 6.4 - 11.2 11.3 7.4 - 13.9

CSGV-R+sb

no cache 44.9 12.8 6.5 28.6 59.5 22.5 8.6 37.9 70.4 29.6 14.1 47.2
voxel cache 9.7 6.3 1.2 8.8 12.4 9.0 1.3 10.9 13.2 11.9 1.8 13.0
voxel cache (es) 6.1 7.1 75.8 8.1 7.6 9.9 79.9 10.2 9.4 13.3 109.1 12.6
brickc cache (sm) 11.0 5.6 22.4 10.9 12.3 7.3 22.6 12.9 14.6 8.4 23.6 16.3

Table 4: Average milliseconds per frame when rendering a camera path (2649, 1401, 2649, 2070 frames) for CELLS, FIBER, H01, and AZBA
with different cache and shading modes. H01 uses b = 64, others b = 32. The cache size is 4 GiB for H01 with CSGV and 1 GiB for others.
For CSGV-R without stop bits, the compressed H01 does not fit into VRAM. CSGV uses rANS compression and only supports brick caching.
With shadow rays and ambient occlusion, one secondary ray is cast per frame per pixel after the primary hit. Additional timings are in Table S1.

CSGV
brick cache

CSGV-R
voxel cache

Figure 8: The latency of CSGV’s brick cache creates artifacts when
bricks are not yet decoded and their palette is sampled instead. Our
CSGV-R always accesses correct labels.

of valid rendered samples per frame. CSGV-R with no cache or voxel
caching produces an artifact-free image in the first frame. As direct
voxel access is always available, the voxel cache does not have to fit
all visible areas and its size can therefore be chosen freely.

6. Conclusion

We presented a full random access and lossless compression for
segmentation volumes that outperforms the current state-of-the-art
with random access in terms of compression rates. At the same
time, its high query performance makes it suitable for GPU-based
processing as in rendering. Our CSGV-R representation enables a

variety of voxel access schemes while the CSGV method is limited
to brick caching which we outperform as well. Our method removes
rendering artifacts from CSGV while improving render performance
by a factor of up to 5 and allows us to render segmentation volumes
with over one million labels and sizes of up to 770 GB on a con-
sumer system. CSGV-R’s limitations are weaker compression rates:
while not all areas might be decoded at once, CSGV at least fits
larger volumes into GPU memory. Larger b decrease performance
disproportionately in CSGV-R as the deeper LOD hierarchies are
traversed per voxel. CSGV remains preferred for storage and serial
processing. More generally, we have shown how wavelet trees can
be leveraged as a random access variable bit-length compression in
high-performance rendering tasks and how they can be optimized
for faster queries with domain knowledge. In future work, we want
to explore how to further improve compression rates of our CSGV-R
volumes, for example through methods from bit vector compres-
sion, while maintaining rendering performance with more adaptive
multi-resolution empty space skipping and caching.

Acknowledgements. This work has been supported by the Helmholtz Asso-
ciation (HGF) under the joint research school “HIDSS4Health – Helmholtz
Information and Data Science School for Health” and the Pilot Program Core
Informatics. We thank the NIC Research Group Computational Structural
Biology, Jülich Research Center and the Computed Tomography group, Uni-
versity of Applied Sciences Upper Austria, Campus Wels, for providing data
sets. Open Access funding enabled and organized by Projekt DEAL.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering 11 of 12

References
[AAAT∗22] AGUS M., ABOULHASSAN A., AL THELAYA K., PINTORE

G., GOBBETTI E., CALÌ C., SCHNEIDER J.: Volume puzzle: visual
analysis of segmented volume data with multivariate attributes. In Proc.
IEEE Visualization and Visual Analytics (2022), pp. 130–134. doi:
10.1109/VIS54862.2022.00035. 2

[AABH∗16] AI-AWAMI A. K., BEYER J., HAEHN D., KASTHURI N.,
LICHTMAN J. W., PFISTER H., HADWIGER M.: Neuroblocks – visual
tracking of segmentation and proofreading for large connectomics projects.
IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016),
738–746. doi:10.1109/TVCG.2015.2467441. 2

[ATAS21] AL-THELAYA K., AGUS M., SCHNEIDER J.: The Mixture
Graph – A Data Structure for Compressing, Rendering, and Querying
Segmentation Histograms. IEEE Transactions on Visualization and Com-
puter Graphics 27, 2 (2021), 645–655. doi:10.1109/TVCG.2020.
3030451. 2

[AW87] AMANATIDES J., WOO A.: A Fast Voxel Traversal Algorithm
for Ray Tracing. In Proc. Eurographics - Technical Papers (1987),
Eurographics Association. doi:10.2312/egtp.19871000. 6

[BAAK∗13] BEYER J., AL-AWAMI A., KASTHURI N., LICHTMAN J. W.,
PFISTER H., HADWIGER M.: Connectomeexplorer: Query-guided visual
analysis of large volumetric neuroscience data. IEEE Transactions on
Visualization and Computer Graphics 19, 12 (2013), 2868–2877. doi:
10.1109/TVCG.2013.142. 2

[BBB∗17] BOERGENS K. M., BERNING M., BOCKLISCH T., BRÄUN-
LEIN D., DRAWITSCH F., FROHNHOFEN J., HEROLD T., OTTO P.,
RZEPKA N., WERKMEISTER T., ET AL.: webKnossos: efficient on-
line 3D data annotation for connectomics. Nature Methods 14, 7 (2017),
691–694. doi:10.1038/nmeth.4331. 2

[BGKS15] BABENKO M. A., GAWRYCHOWSKI P., KOCIUMAKA T.,
STARIKOVSKAYA T.: Wavelet trees meet suffix trees. In SODA (2015),
SIAM, pp. 572–591. doi:10.1137/1.9781611973730.39. 4

[Ble18] BLENDER O. C.: Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
URL: http://www.blender.org. 2

[BMA∗18] BEYER J., MOHAMMED H., AGUS M., AL-AWAMI A. K.,
PFISTER H., HADWIGER M.: Culling for extreme-scale segmentation
volumes: A hybrid deterministic and probabilistic approach. IEEE Trans-
actions on Visualization and Computer Graphics (Proc. IEEE Scientific
Visualization) 25, 1 (2018). doi:10.1109/TVCG.2018.2864847.
2

[BRGIG∗14] BALSA RODRÍGUEZ M., GOBBETTI E., IGLESIAS GUITIÁN
J., MAKHINYA M., MARTON F., PAJAROLA R., SUTER S.: State-of-
the-Art in Compressed GPU-Based Direct Volume Rendering. Computer
Graphics Forum 33, 6 (2014), 77–100. doi:https://doi.org/10.
1111/cgf.12280. 2

[BSL18] BERGER D. R., SEUNG H. S., LICHTMAN J. W.: Vast (volume
annotation and segmentation tool): Efficient manual and semi-automatic
labeling of large 3d image stacks. Frontiers in Neural Circuits 12 (2018).
doi:10.3389/fncir.2018.00088. 2

[BTB∗22] BEYER J., TROIDL J., BOORBOOR S., HADWIGER M., KAUF-
MAN A., PFISTER H.: A Survey of Visualization and Analysis in High-
Resolution Connectomics. Computer Graphics Forum 41, 3 (2022),
573–607. doi:https://doi.org/10.1111/cgf.14574. 2

[CKV24] CEREGINI M., KURPICZ F., VENTURINI R.: Faster wavelet
tree queries. In DCC (2024), IEEE, pp. 223–232. doi:10.1109/
DCC58796.2024.00030. 3

[CNP15] CLAUDE F., NAVARRO G., PEREIRA A. O.: The wavelet matrix:
An efficient wavelet tree for large alphabets. Inf. Syst. 47 (2015), 15–32.
doi:10.1016/j.is.2014.06.002. 3, 5, 6

[CNS11] CLAUDE F., NICHOLSON P. K., SECO D.: Space efficient
wavelet tree construction. In SPIRE (2011), vol. 7024 of Lecture
Notes in Computer Science, Springer, pp. 185–196. doi:10.1007/
978-3-642-24583-1_19. 4

[CW77] CARTER J. L., WEGMAN M. N.: Universal classes of hash
functions (extended abstract). In Proceedings of the Ninth Annual ACM
Symposium on Theory of Computing (New York, NY, USA, 1977), STOC
’77, Association for Computing Machinery, p. 106–112. doi:10.1145/
800105.803400. 7

[DEF∗21] DINKLAGE P., ELLERT J., FISCHER J., KURPICZ F., LÖBEL
M.: Practical wavelet tree construction. ACM J. Exp. Algorithmics 26
(2021), 1.8:1–1.8:67. doi:10.1145/3457197. 4, 5

[dFdS17] DA FONSECA P. G. S., DA SILVA I. B. F.: Online construction
of wavelet trees. In SEA (2017), vol. 75 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, pp. 16:1–16:14. doi:10.4230/
LIPIcs.SEA.2017.16. 4

[DFK20] DINKLAGE P., FISCHER J., KURPICZ F.: Constructing the
wavelet tree and wavelet matrix in distributed memory. In ALENEX (2020),
SIAM, pp. 214–228. doi:10.1137/1.9781611976007.17. 4

[DFKT23] DINKLAGE P., FISCHER J., KURPICZ F., TARNOWSKI J.: Bit-
parallel (compressed) wavelet tree construction. In DCC (2023), IEEE,
pp. 81–90. doi:10.1109/DCC55655.2023.00016. 4

[DHKP97] DIETZFELBINGER M., HAGERUP T., KATAJAINEN J., PENT-
TONEN M.: A reliable randomized algorithm for the closest-pair prob-
lem. Journal of Algorithms 25, 1 (1997), 19–51. doi:https:
//doi.org/10.1006/jagm.1997.0873. 7

[Dud13] DUDA J.: Asymmetric numeral systems: entropy coding com-
bining speed of huffman coding with compression rate of arithmetic cod-
ing. arXiv preprint arXiv:1311.2540 (2013). doi:10.48550/arXiv.
1311.2540. 2, 4

[EHK∗06] ENGEL K., HADWIGER M., KNISS J., REZK-SALAMA C.,
WEISKOPF D.: Real-Time Volume Graphics. AK Peters/CRC Press, 2006.
2

[EK19] ELLERT J., KURPICZ F.: Parallel external memory wavelet tree
and wavelet matrix construction. In SPIRE (2019), vol. 11811 of Lecture
Notes in Computer Science, Springer, pp. 392–406. doi:10.1007/
978-3-030-32686-9_28. 4

[FEFS17] FUENTES-SEPÚLVEDA J., ELEJALDE E., FERRES L., SECO
D.: Parallel construction of wavelet trees on multicore architectures.
Knowl. Inf. Syst. 51, 3 (2017), 1043–1066. doi:10.1007/
s10115-016-1000-6. 4

[FM00] FERRAGINA P., MANZINI G.: Opportunistic data structures with
applications. In FOCS (2000), IEEE Computer Society, pp. 390–398.
doi:10.1109/SFCS.2000.892127. 3

[FMMN07] FERRAGINA P., MANZINI G., MÄKINEN V., NAVARRO G.:
Compressed representations of sequences and full-text indexes. ACM Trans.
Algorithms 3, 2 (2007), 20. doi:10.1145/1240233.1240243. 3

[GG92] GRANER F., GLAZIER J. A.: Simulation of biological cell sorting
using a two-dimensional extended potts model. Physical review letters 69,
13 (1992), 2013. doi:10.1103/PhysRevLett.69.2013. 8

[GGV03] GROSSI R., GUPTA A., VITTER J. S.: High-order entropy-
compressed text indexes. In SODA (2003), ACM/SIAM, pp. 841–850.
3

[GNP20] GAGIE T., NAVARRO G., PREZZA N.: Fully functional suffix
trees and optimal text searching in bwt-runs bounded space. J. ACM 67, 1
(2020), 2:1–2:54. doi:10.1145/3375890. 3

[Goo16] GOOGLE INC.: Neuroglancer. github.com/google/neuroglancer,
2016. 2, 8

[GVX11] GROSSI R., VITTER J. S., XU B.: Wavelet trees: From theory
to practice. In CCP (2011), IEEE Computer Society, pp. 210–221. doi:
10.1109/CCP.2011.16. 3

[HBG∗24] HONG A., BOUCHER C., GAGIE T., LI Y., ZEH N.: Another
virtue of wavelet forests. In SPIRE (2024), vol. 14899 of Lecture Notes in
Computer Science, Springer, pp. 184–191. 3

[HDF] HDF GROUP, THE: Hierarchical Data Format, version 5. https:
//github.com/HDFGroup/hdf5. 2, 8

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1109/VIS54862.2022.00035
https://doi.org/10.1109/VIS54862.2022.00035
https://doi.org/10.1109/TVCG.2015.2467441
https://doi.org/10.1109/TVCG.2020.3030451
https://doi.org/10.1109/TVCG.2020.3030451
https://doi.org/10.2312/egtp.19871000
https://doi.org/10.1109/TVCG.2013.142
https://doi.org/10.1109/TVCG.2013.142
https://doi.org/10.1038/nmeth.4331
https://doi.org/10.1137/1.9781611973730.39
http://www.blender.org
https://doi.org/10.1109/TVCG.2018.2864847
https://doi.org/https://doi.org/10.1111/cgf.12280
https://doi.org/https://doi.org/10.1111/cgf.12280
https://doi.org/10.3389/fncir.2018.00088
https://doi.org/https://doi.org/10.1111/cgf.14574
https://doi.org/10.1109/DCC58796.2024.00030
https://doi.org/10.1109/DCC58796.2024.00030
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1007/978-3-642-24583-1_19
https://doi.org/10.1007/978-3-642-24583-1_19
https://doi.org/10.1145/800105.803400
https://doi.org/10.1145/800105.803400
https://doi.org/10.1145/3457197
https://doi.org/10.4230/LIPIcs.SEA.2017.16
https://doi.org/10.4230/LIPIcs.SEA.2017.16
https://doi.org/10.1137/1.9781611976007.17
https://doi.org/10.1109/DCC55655.2023.00016
https://doi.org/https://doi.org/10.1006/jagm.1997.0873
https://doi.org/https://doi.org/10.1006/jagm.1997.0873
https://doi.org/10.48550/arXiv.1311.2540
https://doi.org/10.48550/arXiv.1311.2540
https://doi.org/10.1007/978-3-030-32686-9_28
https://doi.org/10.1007/978-3-030-32686-9_28
https://doi.org/10.1007/s10115-016-1000-6
https://doi.org/10.1007/s10115-016-1000-6
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/1240233.1240243
https://doi.org/10.1103/PhysRevLett.69.2013
https://doi.org/10.1145/3375890
https://doi.org/10.1109/CCP.2011.16
https://doi.org/10.1109/CCP.2011.16
https://github.com/HDFGroup/hdf5
https://github.com/HDFGroup/hdf5

12 of 12 M. Piochowiak, F. Kurpicz & C. Dachsbacher / Random Access Segmentation Volumes for Interactive Volume Rendering

[Huf52] HUFFMAN D. A.: A method for the construction of minimum-
redundancy codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.
doi:10.1109/JRPROC.1952.273898. 4

[Jac89] JACOBSON G.: Space-efficient static trees and graphs. In FOCS
(1989), pp. 549–554. doi:10.1109/SFCS.1989.63533. 3

[JO20] JARZYNSKI M., OLANO M.: Hash functions for gpu rendering.
Journal of Computer Graphics Techniques (JCGT) 9, 3 (October 2020),
20–38. 7

[Kan18] KANETA Y.: Fast wavelet tree construction in practice. In
SPIRE (2018), vol. 11147 of Lecture Notes in Computer Science, Springer,
pp. 218–232. doi:10.1007/978-3-030-00479-8_18. 4

[KSA13] KÄMPE V., SINTORN E., ASSARSSON U.: High resolution
sparse voxel dags. ACM Transactions on Graphics 32, 4 (7 2013). doi:
10.1145/2461912.2462024. 2

[KSY∗21] KENNEY J. W., STEADMAN P. E., YOUNG O., SHI M. T.,
POLANCO M., DUBAISHI S., COVERT K., MUELLER T., FRANKLAND
P. W.: A 3d adult zebrafish brain atlas (azba) for the digital age. eLife 10
(11 2021), e69988. doi:10.7554/eLife.69988. 8

[Kur22] KURPICZ F.: Engineering compact data structures for rank and
select queries on bit vectors. In SPIRE (2022), vol. 13617 of Lecture
Notes in Computer Science, Springer, pp. 257–272. doi:10.1007/
978-3-031-20643-6_19. 3, 5, 6

[LAB∗24] LESAR Ž., ALHARBI R., BOHAK C., STRNAD O., HEINZL
C., MAROLT M., VIOLA I.: Volume conductor: interactive visibility
management for crowded volumes. The Visual Computer 40, 2 (2024),
1005–1020. 2

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high resolu-
tion 3d surface construction algorithm. Proc. ACM SIGGRAPH 21, 4 (8
1987), 163–169. doi:10.1145/37402.37422. 2

[Lem10] LEMPITSKY V.: Surface extraction from binary volumes with
higher-order smoothness. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (2010), pp. 1197–1204. doi:
10.1109/CVPR.2010.5539832. 2

[LK10] LAINE S., KARRAS T.: Efficient sparse voxel octrees. In Proc.
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (New
York, NY, USA, 2010), ACM, p. 55–63. doi:10.1145/1730804.
1730814. 2

[LM14] LAROBINA M., MURINO L.: Medical image file formats. Journal
of digital imaging 27 (2014), 200–206. 2

[MAF07] MORELAND K., AVILA L., FISK L. A.: Parallel unstructured
volume rendering in ParaView. In Visualization and Data Analysis 2007
(2007), Erbacher R. F., Roberts J. C., Gröhn M. T., Börner K., (Eds.),
vol. 6495, International Society for Optics and Photonics, SPIE, p. 64950F.
doi:10.1117/12.704533. 2

[Mak12] MAKRIS C.: Wavelet trees: A survey. Comput. Sci. Inf. Syst. 9,
2 (2012), 585–625. doi:10.2298/CSIS110606004M. 3

[MHL∗17] MATEJEK B., HAEHN D., LEKSCHAS F., MITZENMACHER
M., PFISTER H.: Compresso: Efficient Compression of Segmentation
Data For Connectomics. In Medical Image Computing and Computer-
Assisted Intervention (Cham, 2017), Springer, pp. 781–788. doi:10.
1007/978-3-319-66182-7_89. 2

[MJB∗21] MINNEN D., JANUSZEWSKI M., BLAKELY T., SHAPSON-COE
A., SCHALEK R. L., BALLÉ J., LICHTMAN J. W., JAIN V.: Denoising-
based image compression for connectomics. bioRxiv (2021). doi:
10.1101/2021.05.29.445828. 2

[MN06] MÄKINEN V., NAVARRO G.: Position-restricted substring search-
ing. In LATIN (2006), vol. 3887 of Lecture Notes in Computer Science,
Springer, pp. 703–714. 3

[MNV16] MUNRO J. I., NEKRICH Y., VITTER J. S.: Fast construction
of wavelet trees. Theor. Comput. Sci. 638 (2016), 91–97. doi:
10.1016/j.tcs.2015.11.011. 4

[MSJ∗22] MAURER J., SALABERGER D., JERABEK M., KASTNER J.,
MAJOR Z.: Quantitative investigation of local strain and defect formation

in short glass fibre reinforced polymers using X-ray computed tomography.
Nondestructive Testing and Evaluation 37, 5 (2022), 582–600. doi:
10.1080/10589759.2022.2075865. 8

[MSL22] MAITIN-SHEPARD J., LEAVITT L.: Tensor-
Store for High-Performance, Scalable Array Storage.
https://research.google/blog/tensorstore-for-high-performance-scalable-
array-storage/, 2022. 2

[MVD∗18] MUELLER J. H., VOGLREITER P., DOKTER M., NEFF T.,
MAKAR M., STEINBERGER M., SCHMALSTIEG D.: Shading atlas stream-
ing. ACM Transactions on Graphics (Proc. SIGGRAPH) 37, 6 (Dec. 2018).
doi:10.1145/3272127.3275087. 6, 9

[NPS20] NVIDIA CORPORATION, PANTALEONI J., SUBTIL N.: NVBIO.
https://nvlabs.github.io/nvbio/, 2020. 4

[O’N14] O’NEILL M. E.: PCG: A Family of Simple Fast Space-
Efficient Statistically Good Algorithms for Random Number Genera-
tion. Tech. Rep. HMC-CS-2014-0905, Harvey Mudd College, Clare-
mont, CA, 09 2014. URL: https://www.cs.hmc.edu/tr/
hmc-cs-2014-0905.pdf. 7

[PD24] PIOCHOWIAK M., DACHSBACHER C.: Fast compressed seg-
mentation volumes for scientific visualization. IEEE Transactions on
Visualization and Computer Graphics 30, 1 (2024), 12–22. doi:
10.1109/TVCG.2023.3326573. 1, 2, 4, 5, 7, 8, 9

[PHK04] PIEPER S., HALLE M., KIKINIS R.: 3d slicer. In 2004 2nd
IEEE international symposium on biomedical imaging: nano to macro
(IEEE Cat No. 04EX821) (2004), IEEE, pp. 632–635. 2

[PR04] PAGH R., RODLER F. F.: Cuckoo hashing. Journal of Algo-
rithms 51, 2 (2004), 122–144. doi:https://doi.org/10.1016/
j.jalgor.2003.12.002. 7

[QDB11] QUEY R., DAWSON P., BARBE F.: Large-scale 3d random poly-
crystals for the finite element method: Generation, meshing and remeshing.
Computer Methods in Applied Mechanics and Engineering 200 (04 2011),
1729–1745. doi:10.1016/j.cma.2011.01.002. 2

[RBS20] ROSENBAUER J., BERGHOFF M., SCHUG A.: Emerging tumor
development by simulating single-cell events. bioRxiv (2020). doi:
10.1101/2020.08.24.264150. 8

[RP71] RICE R., PLAUNT J.: Adaptive variable-length coding for efficient
compression of spacecraft television data. IEEE Transactions on Com-
munication Technology 19, 6 (1971), 889–897. doi:10.1109/TCOM.
1971.1090789. 5

[SCJB∗24] SHAPSON-COE A., JANUSZEWSKI M., BERGER D. R., POPE
A., WU Y., BLAKELY T., SCHALEK R. L., LI P. H., WANG S., MAITIN-
SHEPARD J., KARLUPIA N., DORKENWALD S., SJOSTEDT E., LEAVITT
L., LEE D., TROIDL J., COLLMAN F., BAILEY L., FITZMAURICE A.,
KAR R., FIELD B., WU H., WAGNER-CARENA J., ALEY D., LAU J.,
LIN Z., WEI D., PFISTER H., PELEG A., JAIN V., LICHTMAN J. W.: A
petavoxel fragment of human cerebral cortex reconstructed at nanoscale
resolution. Science 384, 6696 (2024), eadk4858. doi:10.1126/
science.adk4858. 8

[Shu15] SHUN J.: Parallel wavelet tree construction. In DCC (2015),
IEEE, pp. 63–72. doi:10.1109/DCC.2015.7. 4

[Shu20] SHUN J.: Improved parallel construction of wavelet trees and
rank/select structures. Inf. Comput. 273 (2020), 104516. doi:10.
1016/j.ic.2020.104516. 4

[Tis11] TISCHLER G.: On wavelet tree construction. In CPM (2011),
vol. 6661 of Lecture Notes in Computer Science, Springer, pp. 208–218.
doi:10.1007/978-3-642-21458-5_19. 4

[VMM∗23] VELICKY P., MIGUEL E., MICHALSKA J. M., LYUDCHIK J.,
WEI D., LIN Z., WATSON J. F., TROIDL J., BEYER J., BEN-SIMON Y.,
ET AL.: Dense 4d nanoscale reconstruction of living brain tissue. Nature
Methods 20, 8 (2023), 1256–1265. 2

[WPD24] WERNER M., PIOCHOWIAK M., DACHSBACHER C.: SVDAG
Compression for Segmentation Volume Path Tracing. In Vision, Modeling,
and Visualization (2024), Linsen L., Thies J., (Eds.), The Eurographics
Association. doi:10.2312/vmv.20241196. 2

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1007/978-3-030-00479-8_18
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.7554/eLife.69988
https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.1145/37402.37422
https://doi.org/10.1109/CVPR.2010.5539832
https://doi.org/10.1109/CVPR.2010.5539832
https://doi.org/10.1145/1730804.1730814
https://doi.org/10.1145/1730804.1730814
https://doi.org/10.1117/12.704533
https://doi.org/10.2298/CSIS110606004M
https://doi.org/10.1007/978-3-319-66182-7_89
https://doi.org/10.1007/978-3-319-66182-7_89
https://doi.org/10.1101/2021.05.29.445828
https://doi.org/10.1101/2021.05.29.445828
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1080/10589759.2022.2075865
https://doi.org/10.1080/10589759.2022.2075865
https://doi.org/10.1145/3272127.3275087
https://nvlabs.github.io/nvbio/
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://doi.org/10.1109/TVCG.2023.3326573
https://doi.org/10.1109/TVCG.2023.3326573
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.cma.2011.01.002
https://doi.org/10.1101/2020.08.24.264150
https://doi.org/10.1101/2020.08.24.264150
https://doi.org/10.1109/TCOM.1971.1090789
https://doi.org/10.1109/TCOM.1971.1090789
https://doi.org/10.1126/science.adk4858
https://doi.org/10.1126/science.adk4858
https://doi.org/10.1109/DCC.2015.7
https://doi.org/10.1016/j.ic.2020.104516
https://doi.org/10.1016/j.ic.2020.104516
https://doi.org/10.1007/978-3-642-21458-5_19
https://doi.org/10.2312/vmv.20241196

