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Figure 1: A golden statue submerged in a heterogeneous cloud volume (scattering albedo 100%, 404M 4D voxels with motion blur, the phase
function approximates Mie scattering by an equal mixture of two Henyey-Greenstein lobes of mean cosines g = 0.98 and g = −0.4). The
image is rendered up to a maximum path length of 10 vertices. We importance sample the multiple scattering contribution by bridges which
take into account the phase functions and the geometry terms of the measurement contribution. In an approximate equal time comparison,
this leads to much improved rendition of the multiple scattering (blue/magenta insets where the statue shadows the indirect illumination in
the volume). PT/NEE resolves the direct illumination better (orange inset near the white light), though neglecting the multiple scattering.

Abstract

Explicit sampling of and connecting to light sources is often essential for reducing variance in Monte Carlo rendering. In dense,
forward-scattering participating media, its benefit declines, as significant transport happens over longer multiple-scattering
paths around the straight connection to the light. Sampling these paths is challenging, as their contribution is shaped by the
product of reciprocal squared distance terms and the phase functions. Previous work demonstrates that sampling several of
these terms jointly is crucial. However, these methods are tied to low-order scattering or struggle with highly-peaked phase
functions.
We present a method for sampling a bridge: a subpath of arbitrary vertex count connecting two vertices. Its probability density
is proportional to all phase functions at inner vertices and reciprocal squared distance terms. To achieve this, we importance
sample the phase functions first, and subsequently all distances at once. For the latter, we sample an independent, preliminary
distance for each edge of the bridge, and afterwards scale the bridge such that it matches the connection distance. The scale
factor can be marginalized out analytically to obtain the probability density of the bridge. This approach leads to a simple
algorithm and can construct bridges of any vertex count. For the case of one or two inserted vertices, we also show an alternative
without scaling or marginalization.
For practical path sampling, we present a method to sample the number of bridge vertices whose distribution depends on
the connection distance, the phase function, and the collision coefficient. While our importance sampling treats media as
homogeneous we demonstrate its effectiveness on heterogeneous media.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing;
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1. Introduction

The fundamental path sampling technique in Monte Carlo render-
ing is to simulate the random walk of a photon. This analog path
tracing is usually enhanced by explicit connection of subpaths to
form more capable techniques, e.g. path tracing with next-event es-
timation (NEE) or full bidirectional path tracing. These are signif-
icant especially for importance sampling the light emission, which
analog path tracing from the sensor is incapable of. It has to rely
on randomly reaching a light source, which often severly limits its
sampling quality, even though it handles all remaining terms well.

In participating media, sampling straight line connections be-
tween two vertices is less effective. Common media, e.g. fog or
water, exhibit high albedo and highly-peaked forward scattering.
Thus a major share of the light transport happens via sequences
of multiple scattering events. These form paths around the straight
connection, as shown in the example in Fig. 2. It also demonstrates
how path tracing with next-event estimation struggles to sample
these paths. Like all methods based on analog path extensions, it
tends to get lost in less important regions of the medium.

Our goal is to explicitly sample this type of connecting subpath
between two vertices, which we refer to as a bridge. This is chal-
lenging, since we need to handle two aspects of the geometric con-
figuration along the bridge: the forward-scattering peak in the phase
functions leads to near-specular transport, and the geometric singu-
larity in the distance between vertices can cause infinite variance.
Therefore we need to importance sample the product of these terms
for robust sampling.

Fortunately, we can turn to our prior observation about analog
path tracing: it is mostly very good at sampling paths, with the crit-
ical flaw of terminating at a random point instead of our target. Our
main idea is to fix this after sampling a preliminary path: we rotate
and uniformly scale it, such that its endpoint will match the target.
By preserving angles, this transformation maintains the important
geometric properties of the initial sampling. The probability den-
sity (PDF) of this sampling technique involves marginalization, i.e.
for a given bridge we need to integrate over all ways in which we
could have sampled it. This turns out to be surprisingly simple for
our purposes and we derive an analytical result.

Sampling this way, we forego importance sampling of the direc-
tions at endpoints, though other vertex connection techniques share
this property. This is usually handled well by combination through
multiple importance sampling (MIS). We also cannot control the
total track length and thus transmittance, but typically this does not
cause a lot of variance in the case of forward scattering. All other
terms of the bridge are importance sampled by our algorithm.

In summary, we make the following contributions:

• a general formulation of the bridge sampling algorithm and its
PDF derivation (Section 3.1),

• our recommended instance of this algorithm, which samples dis-
tances on bridges of arbitrary vertex count based on scaling the
bridge (Section 3.2),

• a second instance without scaling or marginalization, which
works with one or two inserted vertices (Section 3.3),

• an algorithm for sampling the number of vertices on a bridge,
based on connection distance and medium properties (Section 4).
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xn
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Figure 2: Path distributions produced by different sampling algo-
rithms for connecting a subpath ending at x0 to a light source at
xn over 8 additional vertices in an infinite medium with Henyey-
Greenstein phase function and mean cosine g = 0.95. The ran-
dom walk of both path and light tracing is uninformed about the
goal vertex and struggles to focus on the important regions of path
space. Bridge sampling is conditional on both endpoints and suc-
cessfully samples paths near the straight line connection. The ref-
erence is the distribution of paths that would be optimal for im-
portance sampling, i.e. proportional to their measurement contri-
bution. It also shows paths that first follow the forward-scattering
phase function to the right, before turning towards the light source,
which in a complete renderer would be handled by MIS combina-
tion of our sampling and phase function sampling. We compute the
reference by resampling 30 paths from 6000000 candidates gener-
ated by path tracing with NEE.

2. Background and related work

Realistic rendering is commonly formalized by expressing the mea-
surement I j of pixel j as the integral of the measurement contribu-
tion function f j over all paths x̄ ∈ P between sensors and light
sources:

I j =
∫
P

f j(x̄)dx̄. (1)

The measurement contribution of a path x̄ = (x0,x1, . . . ,xk) is

f j(x̄) =W j(x0,x1)Le(xk,xk−1)G(x0,x1)T (x0,x1)

·
k−1

∏
i=1

fs(xi−1,xi,xi+1)G(xi,xi+1)T (xi,xi+1),
(2)

with pixel response W j, emitted radiance Le, BSDF or phase func-

tion fs, transmittance T (a,b) = exp
(
−

∫ ∥a−b∥2
0 µt(a+ t ωa→b)dt

)
© 2024 The Authors.
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with extinction coefficient µt and geometry term G(x,y) =

C(x,y)C(y,x)∥x− y∥−2
2 , where C(x,y) is the cosine term if x is

on a surface. Note that fs and Le include the scattering and absorp-
tion coefficients µs or µa respectively if they describe a volumetric
interaction. For a more thorough definition and explanation of all
terms and for an overview of volumetric rendering, we refer to the
survey by Novak et al. [NGHJ18].

Extended next-event estimation in volumes. Rendering partici-
pating media is hard, especially in the presence of high frequency
content in the phase functions (most commonly: very peaked for-
ward scattering, but Mie theory also predicts backward peaks) since
this poses angular constraints on paths with high throughput. Even
without this, the geometry terms G contained in the measurement
contribution are a challenge. The inverse square distance term is un-
bounded if path vertices come closer together. If light sources are
contained in a volume this term can cause infinite variance in the es-
timator. To counter this, equiangular sampling includes the offend-
ing G term in the importance sampling [KF12]. This method works
best for isotropic phase functions, since these are omitted from the
PDF. To address this, Georgiev et al. [GKH*13] propose joint im-
portance sampling of distances and phase functions, but resort to
tabulation and thus still result in suboptimal sampling for generic
and spiky phase functions. Once More Scattered NEE (OMNEE)
solves the special case of a single additional scattering vertex be-
tween a vertex and the light source for homogeneous media and ar-
bitrary forward scattering phase functions [HWD22]. Our method
works for full-sphere phase functions and can insert an arbitrary
number of extra vertices, and we show an equivalent formulation
for the special case of a single vertex. Multiple vertex next event es-
timation (MVNEE) [WHD17] adds multiple vertices on the way to
the light, too. As pointed out by the authors and confirmed by our
results, the resulting PDF is not ideal, especially for longer paths.

Glossy light transport. Solving for a path with multiple ver-
tices which fulfills angular constraints dictated by the phase func-
tions is similar in spirit to highly glossy/specular light transport
on surfaces. This has been explored for Markov chain rendering
[Jak13] as well as for extending Monte Carlo next event estima-
tion [HDF15]. Our formulation is much simpler and works without
an iterative predictor/corrector scheme since path vertices in the
medium are less constrained as compared to surfaces.

Product Sampling. Sampling the product of material properties
and incident light [HEV*16] has been explored for volumetric scat-
tering [HZE*19], by casting both incident light and phase func-
tion to a Gaussian mixture model and subsequently computing the
product of all mixed-term Gaussians in closed form. As shown pre-
viously, the product of incident light and a peaky phase function
can become bi-modal [HWD22]. This means a product importance
sampling scheme can not simply rely on the product of two Gaus-
sian approximations, which would remain unimodal. Thus, such an
approach will require many lobes in a Gaussian mixture to obtain
good accuracy.

Caching light transport. Employing memory to store light paths
to compute volumetric light transport has been explored in great
detail [KGH*14]. This incurs an implementation, memory, and

Table 1: Summary of our notation.

Term Description

x ∈ X , x′ ∈ X ′ (Preliminary) path vertex position
ω ∈Ω, ω

′ ∈Ω
′ (Preliminary) path edge direction

d ∈ D, d′ ∈ D′ (Preliminary) path vertex distance
ωa→b, ω

′
a→b direction from xa to xb (x′a to x′b)

ωi, ω
′
i direction from xi−1 to xi (x′i−1 to x′i)

di, d′
i distance between xi−1 and xi (x′i−1 and x′i)

x̄i, j ∈ X̄ the sequence (xi,xi+1, . . . ,x j)
ω̄i, j ∈ Ω̄ the sequence (ωi,ωi+1, . . . ,ω j)
d̄i, j ∈ D̄ the sequence (di,di+1, . . . ,d j)
x̄, ω̄, d̄ shorthand for x̄0,n, ω̄0,n, d̄0,n
x̄′, ω̄

′, d̄′ analogous to above

runtime overhead to evaluate the PDF of all active estimators to
compute the multiple importance sampling weights. Path guiding
[VHH*19] employs memory to explicitly store sampling densi-
ties to guide random walks towards high contribution paths. This
approach also handles visibility, while our importance sampling
scheme does not. A specialized class of algorithms is concerned
with subsurface scattering, and guides transport paths back to the
surface [Kd14].

Approximations for high-order scattering. Analytic expressions
for multiple scattering are hard to obtain and represent a well-
researched area [dEo16]. These formulations are especially useful
for extremely long paths and when the visibility between transport
vertices is known to be unobstructed or can be ignored. With this
paper, we address a scattering regime up to the lower two-digit ver-
tex counts.

Time-of-flight imaging. Connections via additional scattering
vertices in media [JMM*14] or on surfaces [PVG19] can also be
used to control the total track lengths of light paths. This is impor-
tant when considering the time-of-flight of light, while we focus on
the more common steady-state simulation. Our sampling aims to
fulfill angular constraints on multiple additional scattering vertices
in media, while track length is only of secondary concern.

3. Sampling vertex bridges

Our goal is to connect two vertices x0 and xn via a chain of n edges,
while importance sampling all inner phase functions and reciprocal
squared distance terms. To accomplish this, we first sample a pre-
liminary subpath x̄′0,n starting from x′0 = x0, which we call a bridge.
Next, we rotate and scale the bridge around x0, such that its end-
point x′n matches the target xn, as shown in Fig. 3. This affine trans-
formation preserves angles between edges and therefore the phase
function PDF under mild assumptions (see Section 3.1). Therefore,
we can easily make use of stock phase function sampling while
constructing the bridge. Since we stay in solid angle domain, all
reciprocal squared distance terms are sampled naturally as well.
Please see Table 1 for a description of our notation.

The remaining challenge is to sample suitable vertex distances
and compute the PDF of the resulting vertices. In this section, we

© 2024 The Authors.
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x′n−1
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ω
′
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ω
′
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ω
′
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Figure 3: Our goal is to connect the endpoints x0 and xn via a
subpath with n−1 additional vertices and importance-sampled di-
rections ω̄2,n = (ω′

2, . . . ,ω
′
n). We sample a preliminary path x̄′0,n

beginning from x′0 = x0 and ω
′
1 = ω

′
0→n, and then proceed via free-

flight and phase function sampling. To connect x0 and xn, we rotate
and scale this path around x0 such that x′n ends up at xn. Notably,
this affine transformation preserves angles and thus phase function
importance sampling weights.

present two alternatives for distance sampling. The first one sam-
ples preliminary independent distances using the exponential distri-
bution and realizes the correct bridge length through scaling (Sec-
tion 3.2). It is simple to implement for any number of vertices, but
incurs a non-constant Jacobian for its projection step. The second
alternative can get rid of this factor by directly sampling solutions
to the constrained problem (Section 3.3), i.e. it always samples a
unit scale factor, but is limited to inserting a maximum of two ver-
tices. Beforehand, we will derive the PDF of our sampling scheme,
independently from any distance sampling.

3.1. PDF derivation

To implement our sampling scheme into the Monte Carlo rendering
framework, we need to compute the PDF of sampling a bridge. This
is not a simple change of variables, since the dimensionalities do
not match: We sample n vertices, but we need a PDF for only the
inner n−1 vertices x̄1,n−1, since xn is predetermined.

We approach this in two steps. Firstly, we match the dimension-
ality by lifting x̄1,n−1 to an auxiliary space. To do so, we pad x̄1,n−1
with the auxiliary vertex x′n. This allows us to define a bijective map
to the preliminary vertices x̄′1,n, since their scale is determined by
x′n. In the second step, we marginalize out x′n and obtain the PDF
on x̄1,n−1.

Mapping to the auxiliary space. We define the bijective map
from auxiliary space X̄×X ′

n to preliminary vertices X̄ ′ by

m(x̄1,n−1,x
′
n) = x0 +

r
s
(R(x1−x0), . . . ,R(xn−x0)) = x̄′1,n, (3)

where R is the shortest rotation from ω0→n to ω
′
0→n and r and s are

the preliminary and the target connection distance, respectively:

r :=
∥∥x′n−x′0

∥∥
2 , s := ∥xn−x0∥2 . (4)

Since R is orthogonal and x′n maps to itself, the Jacobian of m is:

detJm(x̄1,n−1,x
′
n) =

∣∣∣∣diag
( r

s , . . . ,
r
s
)
∗

0 I3

∣∣∣∣= ( r
s

)3(n−1)
. (5)

With the product PDFs of phase function sampling p
Ω̄′(ω̄

′
2,n) and

distance sampling pD̄′
(
d̄′

1,n
)
, we can now derive the PDF in the

auxiliary space X̄×X ′
n, using d′

i =
r
s di:

pX̄×X′
n
(x̄1,n−1,x

′
n) = pX̄′(m(x̄1,n−1,x

′
n))
∣∣detJm(x̄1,n−1,x

′
n)
∣∣

= pX̄′(x̄′1,n)
( r

s

)3(n−1)

=

(
n

∏
i=1

1
( r

s di)2

)
p

Ω̄′(ω̄
′
2,n)pD̄′

( r
s

d̄1,n

)( r
s

)3(n−1)

=

(
n

∏
i=1

1
d2

i

)
p

Ω̄′(ω̄
′
2,n)pD̄′

( r
s

d̄1,n

)( r
s

)n−3
.

(6)

Marginalization. The remaining step is to marginalize out the
auxiliary vertex x′n. We illustrate the configuration in Fig. 4. Since
we chose ω

′
1 =ω0→n and ω1 is fixed by x1, R is already determined

by ω
′
1 = Rω. Note that this works only because of the symmetry of

the construction: the shortest rotation between ω
′
1 and ω1 is the

same as between ω0→n and ω
′
0→n. With R fixed, x′n is on the line

x′n = x0 + rRω0→n and we must only integrate over r. We multiply
by r2 for the change to the spherical domain:

pX̄ (x̄1,n−1)

=
∫

Ω′

∫ ∞

0
pX̄×X′

n
(x̄1,n−1,x

′
n)r2 dr dδω0→n(ω

′
0→n)

=

(
n

∏
i=1

1
d2

i

)
p

Ω̄
(ω̄′

2,n)
∫ ∞

0
pD̄′

( r
s

d̄1,n

) rn−1

sn−3 dr.

(7)

3.2. Distance sampling based on scaling

Next, we need to choose a specific distance sampling distribution.
It should allow to compute the value of the marginal integral and
result in a favorable PDF. Motivated by free-flight sampling, we
pick the exponential distribution with scale parameter λ

pD̄′(d̄′
1,n) =

n

∏
i=1

λexp(−λd′
i ) = λ

n exp(−λ
∥∥d̄′

1,n
∥∥

1), (8)

and insert it into the marginal integral from Eq. (7):∫ ∞

0
pD̄′

( r
s

d̄1,n

) rn−1

sn−3 dr

=
λ

n

sn−3

∫ ∞

0
exp

(
−

λ
∥∥d̄1,n

∥∥
1

s
r

)
rn−1 dr

=
λ

n

sn−3 (n−1)!

(
λ
∥∥d̄1,n

∥∥
1

s

)−n

=
s3(n−1)!∥∥d̄1,n

∥∥n
1

.

(9)

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



V. Schüßler, J. Hanika, C. Dachsbacher / Bridge Sampling for Connections via Multiple Scattering Events 5 of 13

x0 = x′0
φ

rx′1

x′n

x1

ω
′
1

ω1

xn

R

Figure 4: For marginalization, we need to integrate over all x′n
which we could have sampled to construct the bridge x̄0,n. Since
the rotation R is already determined by our fixed choice of ω

′
1, x′n

is on a line (green) and the integration is just over radius r. The
depicted x′n is at r = s. Also note the rotational symmetry of the
construction: for each value of φ, the shortest rotation between ω

′
1

and ω1 is the same as between ω0→n and ω
′
0→n.

This leads to Algorithm 1 and the PDF in product vertex area mea-
sure:

pX̄ (x̄1,n−1) =

(
n

∏
i=1

1
d2

i

)
p

Ω̄
(ω̄′

2,n)
s3(n−1)!∥∥d̄1,n

∥∥n
1

. (10)

Algorithm 1 Sample bridge from x0 to xn

n← sample vertex count with probability Pn ▷ see Section 4
x′0← x0
p← Pn
ω
′
1← ω0→n

for i← 1, . . . ,n do
if i > 1 then

ω
′
i ← sample phase function given ω

′
i−1

p← p pΩ(ω
′
i) ▷ phase function PDF

d′
i ←− ln(1− rand()) ▷ rand() ∈ [0,1)

x′i ← x′i−1 +d′
i ω

′
i

compute rotation R such that x′n−x0 =
∥x′n−x0∥2
∥xn−x0∥2

R(xn−x0)

for i← 1, . . . ,n do
xi← x0

∥xn−x0∥2
∥x′n−x0∥2

RT (x′i−x0)

ω← RT
ω
′
i

di←
∥xn−x0∥2
∥x′n−x0∥2

d′
i

logp← lgamma(n)−n ln∑
n
i=1 di ▷ log space to handle large n

p← p ∥xn−x0∥3
2 exp(logp) ▷ product solid angle PDF

Discussion. The scale parameter λ does not appear in the re-
sult, which means that sampling of preliminary distances is scale-
invariant in this case. This indicates that the result is not related to
free flights (see Appendix A for an alternative view) and we cannot
use it to sample transmittance. Still, as we will show, the resulting

PDF is suitable for our purposes. We canceled part of the s−(n−3)

term, with only a constant s3 remaining. The total travelled dis-
tance

∥∥d̄1,n
∥∥

1 has low variance with strong forward scattering, and
the factorial varies only with bridge length.

3.3. Constraint-based distance sampling for n = 2 and n = 3

With scaling-based sampling we still incur a non-constant Jaco-
bian, which is an additional source of variance. The Jacobian oc-
curs, since we take infeasible paths, i.e. with unfit

∥∥x′n−x′0
∥∥

2, and
project them to feasible paths that achieve the fixed connection
distance ∥xn−x0∥2. In this section, our goal is to uniformly sam-
ple the space of feasible paths to get rid of the Jacobian term. We
achieve this for the case of one or two inserted vertices, i.e. n = 2 or
n = 3, and show how generalization to higher dimensions remains
difficult.

Space of feasible paths. To describe the space of feasible paths,
we define the linear map O from preliminary vertex distances d̄′ to
the vector x′n−x′0, i.e. x′n−x′0 = Od̄′:

O =

 | | |
ω
′
1 ω

′
2 . . . ω

′
n

| | |

 ∈ R3×n. (11)

This uses the edge directions ω
′
i that are already determined by

phase function sampling. d̄′ produces a feasible path, if it satisfies
the constraints on

1. connection distance
∥∥Od̄′

∥∥
2 = ∥xn−x0∥2 = s,

2. distance positivity ∀i ∈ {1, . . . ,n} : d′
i > 0.

0.0 0.5 1.0

d′
1

0.0

0.5

1.0

d′ 2

0.0 0.5 1.0
x

y

θ

x′2
d2ω′

2

d1ω′
1

O

Figure 5: Constraint-based sampling for n = 2 with ω
′
1,ω

′
2 in the

xy-plane and ω
′
1 ·ω′

2 = cosθ. O maps a pair of distances d′
1,d

′
2 to

x′2. The feasible region (orange), i.e. where d′
1,d

′
2 > 0 and in this

example
∥∥Od̄′∥∥

2 = 1, is an arc of length θ. We can sample valid
distances uniformly by first sampling a point on this arc uniformly
and then solving for distances using O.

Algorithm idea. The first constraint tells us that O maps all feasi-
ble distances to a region on the sphere (or circle if n = 2) with ra-
dius s= ∥xn−x0∥2, which we call the feasible region. The distance
positivity constraint restricts the feasible region to an intersection
of n halfspaces, which results in an arc for n = 2 (see Fig. 5) and
a spherical triangle for n = 3. If O is invertible, we can pick a ran-
dom point y in the feasible region defined by O−1y > 0 and solve
for a distance vector d̄′ = O−1y. Unfortunately, this is in general
not the case, as rank(O)≤ 3, but we can generalize our idea using
the singular value decomposition (SVD).

© 2024 The Authors.
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Sampling algorithm. We describe our algorithm for the general
case, even though we will later show that it achieves the desired
PDF only for n = 2 and n = 3. First, we compute a SVD of O =
UΣV T , i.e. U ∈ R3×3 and V ∈ Rn×n are orthogonal matrices, k =
rank(O) and

Σ =

(
Σ̃ 0
0 0

)
∈ R3×n, Σ̃ = diag(σ1, . . . ,σk). (12)

We refer to the column vectors of U and V as ui and vi. The im-
age of O is im(O) = ⟨u1, . . . ,uk⟩ and its null space is ker(O) =
⟨vk+1, . . . ,vn⟩.

Our idea of choosing a random point y in the feasible region of
the image im(O) followed by inversion is still applicable, only that
the inversion is generally not unambiguous. We need to additionally
sample a point in the feasible region of the null space ker(O) if
k < n. To sample d̄, we follow these steps:

1. Sample y′ ∈ Rk uniformly in the feasible region of the image
im(O).

2. Set y1,...,k := Σ̃
−1y′.

3. Sample yk+1,...,n uniformly in the feasible region of the null
space ker(O).

4. Set d̄ =V c̄.

We can define both feasible regions again using inequalities on the
sampled distances, analogous to the invertible case.

PDF derivation. We can use the result from Eq. (7) and insert the
value of the marginal integral. Since in this case r = s, the integral
vanishes completely, and we simplify using r

s = 1:∫ ∞

0
pD̄′

( r
s

d̄1,n

) rn−1

sn−3 dδs(r) = pD̄′
(
d̄1,n
)

s2

= pY1,...,k

(
y1,...,k

)
pYk+1,...,n

(
yk+1,...,n | y1,...,k

)
s2

= pY ′
1,...,k

(
y1,...,k

)( k

∏
i=1

σk

)
pYk+1,...,n

(
yk+1,...,n | y1,...,k

)
s2

=
1

Vimg

(
k

∏
i=1

σk

)
1

Vnull(y1,...,k)
s2,

(13)

where we define Vimg and Vnull as the volumes of the feasible re-
gions in the image and null space, respectively. If n = 2, this PDF
is equivalent to OMNEE [HWD22] (see Appendix B).

Discussion Our sampling achieves the goal of keeping the part of
the PDF in Eq. (13) constant if k = n. Otherwise sampling the null
space introduces a non-constant term, since the volume of its feasi-
ble region depends on y1,...,k. Therefore we would have to sample
y1,...,k non-uniformly in order to cancel this term. In addition, just
computing the volume of a feasible region in null space quickly
turns intractable: the general case of computing the volume of a
halfspace intersection in n dimensions is NP-hard [DF88]. In sum-
mary, this approach does not seem promising for scaling to many
vertices.

4. Sampling the number of vertices

One key advantage of bridge sampling is that it provides the free-
dom to choose the vertex count for a connecting subpath. So far, we

only addressed sampling bridges of predetermined vertex counts,
leaving aside the question of choosing a suitable vertex count.

The reference for vertex count is the analog scattering process in
the medium: We would like to match the distribution of the num-
ber of bridge vertices to the collision count of paths in the medium
weighted by their contribution. Several medium properties influ-
ence this distribution. High density in relation to connection dis-
tance leads to more collision events on average. Losses of contribu-
tion due to these collisions are reduced by a high scattering albedo
(reduced absorption) and a strong forward scattering phase function
(reduced out-scattering).

The sampling decision for bridge vertex counts needs to con-
sider these effects subject to medium properties. This is not a sim-
ple task, even when assuming a homogeneous medium. For exam-
ple in transmittance estimation, collision along a connection in the
medium is described by a Poisson process [GMH*19]. This tells us
the distribution of collision counts for the given track length, i.e.
the connection distance. In our case, the track length is not known
in advance, since it is itself a result of our bridge sampling.

Therefore we resort to precomputing the expected contribution
in a homogeneous medium. For each vertex count and phase func-
tion parameter, we store the precomputed contribution as a 1D
function of the product sµt . During sampling, we recover a dis-
tribution for sampling by evaluating this function for each possible
vertex count and normalizing to the sum (see Algorithm 2). In the
following, we explain our precomputation.

4.1. Defining the bridge estimator

We define the n-bridge estimator that computes the transport be-
tween two vertices a = x0 and b = xn with n− 1 scattering events
in between as:

Bn =
fbridge(x̄1,n−1)

pX̄ (x̄1,n−1)
, B1 =

T (a,b)
s2 (14)

where fbridge is the measurement contribution for the bridge sub-
path without phase functions and cosines at a and b:

fbridge(x̄1,n−1) =

(
n

∏
i=1

T (xi−1,xi)

d2
i

)(
n−1

∏
i=1

µs fs(. . .)

)
. (15)

B1 introduces no additional vertices and represents the determinis-
tic connection done by conventional next-event estimation. For the
complete transport, we sum over all estimators: B∞ = ∑

∞
n=1 Bn.

As the contribution of many Bn will be quite low, depending on the
configuration, our goal is to stochastically evaluate only a single
term with probability Pn:

B1 =
Bn

Pn
. (16)

This is a good estimator of the sum, as each Bn has low variance
individually. To handle the residual variance of Bn, we target the
square root of its second moment [VKK18, Appendix B]:

Pn ∼
√
E[B2

n] (17)

by precomputing it for homogeneous media.
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4.2. Precomputing
√
E[Bn]2 for homogeneous media

With the assumption of a homogeneous medium, we can precom-

pute an approximation to
√
E[B2

n] for use as Pn, which is the prob-
ability for constructing n− 1 inner bridge vertices. We assume an
infinite medium with constant µs, µt , and phase function, as well as
full visibility and perfect importance sampling of the phase func-
tion. Note that our assumptions do not have to strictly hold in prac-
tice, since we use them for importance sampling only. Together
with the PDF from Eq. (10), Bn reduces to:

Bn =
µn−1

s
∥∥d̄1,n

∥∥n
1 exp

(
−µt

∥∥d̄1,n
∥∥

1

)
s3(n−1)!

. (18)

The only remaining random variable in the estimator is the total
track length of the bridge

∥∥d̄1,n
∥∥

1 =: DΣ. By linearity, we can thus

reduce
√
E[B2

n] to the expectation of a function bn of µtDΣ:

√
E[B2

n] =

√√√√√E

(µn−1
s Dn

Σ
exp(−µtDΣ)

s3(n−1)!

)2


=

µn−1
s

√
E
[
bn (µtDΣ)

2
]

µn
t s3(n−1)!

,

(19)

with bn(x) := xne−x. The distribution of DΣ depends on the phase
function, number of vertices n, and the connection distance s. For
each combination of 2≤ n≤ nmax and phase function parameters,
we precompute and store an approximation to the 1D function

b̃n(sµt) =

√
E
[
bn(sµtD′

Σ
)2
]

(n−1)!
, (20)

where D′
Σ := s−1DΣ is the normalized track length. In our com-

puted approximations, we always use the Henyey-Greenstein phase
function. The resulting functions tend to look very smooth (see
Fig. 6) and we approximate each function using a single cubic
spline. We use Monte Carlo integration with our bridge sampling
to evaluate Eq. (20) during precomputation.

4.3. Importance sampling n

To recover a probability distribution for sampling n, we follow Al-
gorithm 2. We evaluate Eq. (19) using the spline approximation and
medium parameters for each n up to nmax and normalize. We show
vertex count distributions computed by our algorithm in Fig. 7. We
can choose between bridge sampling and next-event estimation by
including n = 1 with

√
E[B1]2 = B1 (see Eq. (14)).

5. Results

5.1. Parametric unit test case

We evaluate our method primarily on a parametric unit test case, for
which we provide source code [SHD24]. Our test is a point light
source in an infinite homogeneous medium. We use the Henyey-
Greenstein phase function with mean cosine g. The scattering
albedo is set to 0.99 in our test cases to emphasize multiple scat-
tering. We parameterize the medium extinction by specifying sµt ,

0 5 10 15 20 25
0

1

b̃ n

vertex count n = 7

fit
ground truth

0 20 40 60
scale µt s

0

2

b̃ n

vertex count n = 47

0.30 0.46 0.62 0.79 0.95
mean cosine

Figure 6: b̃n and our stored approximation for two different vertex
counts and different mean cosines. With increasing mean cosine,
its peak shifts towards sµt = n. The function is smooth and mostly
approximated well by a spline.

Algorithm 2 Sample path length

P̃1← T (a,b)
s2 ▷ see Eq. (14)

norm← P̃1
for n = 2, . . . ,nmax do

spline← lookup(n, g)

P̃n← µn−1
s

µn
t s3 spline(sµt) ▷ see Eq. (19)

norm← norm +P̃n
select n with probability Pn =

P̃n
norm

which is the expected number of collisions along the distance s
between camera and light source. By default, we use our scaling-
based distance sampling for bridges. In our results, we use k to refer
to the path length as number of vertices, which includes camera and
light source. We abbreviate the number of samples per pixel as spp.

Normalization and errors. For comparison to reference images,
we use a relative root mean squared error (rRMSE), which is the
RMSE normalized by mean image brightness of the reference. We
also expose all renderings such that the reference achieves a fixed
mean brightness. This is to make noise patterns better comparable
between different sets of parameters. The numbers next to inset
labels in our result figures are always rRMSE errors.

Comparison to related work. We compare our bridge sampling
to other methods for extended next-event estimation in volumes:
equiangular sampling, MVNEE and OMNEE. In Fig. 8, we show
the behavior of these methods in a strongly forward scattering
medium (g = 0.95) with different combinations of medium extinc-
tions and path lengths. In Fig. 9, we show a similar comparison with
fixed extinction, but different combinations of mean cosines and
path length. These comparisons include only the forward-scattering
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0.00

0.02

0.04

P n

mean cosine g = 0.7
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n

0.00

0.05

0.10

P n

mean cosine g = 0.95

fit
ground truth

Figure 7: Our approximated distribution for importance sampling
n and its reference distribution. We show the distribution evaluated
with albedo 0.99 for different scale parameters sµt = 4,10,16,22,
where the peak shifts to the right with increasing scale. The less
peaked g = 0.7 leads to longer track length on average and there-
fore selects higher vertex counts. A lower albedo would reduce the
contribution of these paths and thus the tail of the distribution. Note
that we omit the next-event estimation n = 1 case in this plot.

part of the phase function, as OMNEE and MVNEE do not handle
backscattering. Our bridge sampling performs well consistently in
all these configurations. While OMNEE and MVNEE also show
good results for single scattering, they cannot sample longer paths
well. For OMNEE and equiangular, this is due to the reliance on
path tracing for k > 3. MVNEE explicitly constructs longer con-
necting subpaths, similar to our method. However, since it perturbs
vertices independently, its sampling does not reflect important ver-
tex correlations caused by phase functions and geometry terms. Our
bridge sampling shares the slight degradation of performance to-
wards lower mean cosine. Since it is targets the case of pronounced
forward scattering, this is expected and generally not concerning.
We list render times in Table 2. The runtime performance of our
method is comparable to previous methods, with an overhead over
path tracing with equiangular sampling of up to 2×. Note that this
test case might not reflect performance in a full renderer, due to the
absence of visibility tests and our implementation in Python, which
is JIT-compiled and executed on the GPU through JAX.

Table 2: Render times for computing the first row of Fig. 8.

time (ms) k = 3 k = 4 k = 5 k = 6 k = 7

Equiangular 5.89 6.55 7.43 8.59 9.80
MVNEE 8.89 11.33 13.65 15.59 16.49
OMNEE 8.90 7.13 7.22 8.74 9.07
Bridges 12.22 11.87 12.79 16.38 18.26

Scaling-based and constraint-based sampling. In Fig. 10, we
compare our scaling-based sampling (see Section 3.2) with our the-
oretically superior constraint-based sampling (see Section 3.3). We
demonstrate lower standard deviation of the constraint-based es-
timator when not considering transmittance. However, we do not
observe this difference in practice, even when rendering a thin
medium. This can be attributed to the difference in the distribution
of sampled track lengths as shown in Fig. 11. Depending on the
angular configuration, constraint-based sampling can lead to much
longer track lengths on average, increasing transmittance variance.
Therefore it tends to lose its theoretical benefit if transmittance is
significant. An intuitive explanation for this behavior is that in com-
parison to constraint-based sampling, our scaling-based approach is
closer to sampling the transmittance term.

Forward-only and full sphere phase function. We examine the
variance increase that comes with enabling backwards scattering in
our method in Fig. 12. This usually has only a very moderate effect,
especially for higher values of g. Even for these, bridge sampling
can sometimes construct paths with large track length when back-
ward scattering is enabled. These would produce outlier samples
because of their low PDF, but this effect is usually counterbalanced
by their low transmittance. In extremely thin media this is not the
case and bridge sampling produces outlier samples.

Vertex count sampling. We evaluate our method for sampling the
vertex count of a bridge in Fig. 13. Besides our presented second
moment-based method, we compare against using the first moment
in its place, and the Poisson distribution, which is the method used
by MVNEE. Since Poisson tends to have a light tail, we further
compare against a version of Poisson with a scaled parameter. Sam-
pling the vertex count well seems to matter only starting at longer
paths, i.e. above 10 vertices. In these cases, our sampling outper-
forms Poisson, which starts to show outliers. Our second moment-
based sampling shows similar results to our first moment-based
sampling, although it can be more robust in thinner media.

Scaling to long paths. We examine the scalability of our approach
to long paths up to k = 100 vertices in Fig. 14. While there is notice-
able variance increase with more vertices, our sampling is still us-
able, while path tracing with equiangular connections hardly finds
any contributing paths. Nevertheless, even with g = 0.98 the dis-
tribution of radiance looks very diffuse after so many scattering
events, casting in doubt the importance of sampling the exact visi-
bility in these cases.

5.2. Renderer integration and heterogeneous media

We also implemented our bridge sampling in a spectral renderer
with support for heterogeneous media. To construct a bridge, we
read µt at the endpoint of the current path and use this to run Al-
gorithm 2. We continue to construct a tentative path following Al-
gorithm 1, assuming a homonegeous medium with unit extinction.
That is, in this step we do not evaluate the heterogeneous medium
at path edges or vertices. After path construction is finished, we
evaluate the transmittances along the path to compute the measure-
ment contribution. This includes testing each edge for visibility.
Unlike in Section 5.1, we do not directly connect camera and light
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Figure 8: Comparison of our sampling with different extinctions µt and path lengths k, g= 0.95, and 16 spp. Equiangular sampling struggles
with the peaked phase function, while all other methods handle the single scattering case k = 3 well. For k > 3, equiangular and OMNEE
have to rely on path tracing a prefix, worsening their results with longer paths. MVNEE also struggles to construct longer paths, since
its independent perturbations neglect vertex correlation. Our bridge sampling performs well consistently, with the error deteriorating only
slightly towards longer paths.
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Figure 9: Comparison of our sampling with different mean cosines g and path lengths k, sµt = 2 and 16 spp. Equiangular sampling
handles moderately forward scattering well, but cannot deal with highly peaked phase functions. Similar to OMNEE, the variance of our
bridge sampling increases with less pronounced forward scattering, due to a increased variance in the sampled track lengths. This also lets
variance increase faster with path length k. While this is generally not a problem, as our method is targeted at strong forward scattering, we
still achieve relatively low errors consistently.
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Figure 10: Comparison of our scaling-based bridge sampling against our constraint-based sampling with n = 2 (k = 3) and n = 3 (k = 4).
Left: Renderings with 16 spp in a thin medium with sµt = 0.1. Although constraint-based sampling sometimes achieves slightly lower error,
differences are negligible. Right: We compare the ratio of standard deviations σ of both estimators without transmittance as a function of
mean cosine g. In this theoretical comparison, constraint-based sampling achieves distinctly lower standard deviation especially for low g,
but the ratio approaches 1 towards g = 1.
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Figure 11: Histograms of sampled total track lengths for two differ-
ent angular configurations of bridges with 3 edges in a plane and
s = ∥xn−x0∥2 = 10. With near-parallel directions (left, cosθ =
0.98), the track length is close to s for both sampling methods.
Constraint-based sampling leads to a much wider distribution of
track lengths with near-orthogonal directions (right, cosθ = 0.02).

sources via bridges in this implementation. Therefore the single-
scattering contribution does not benefit from our method in the fol-
lowing comparisons.

In Figure 1, we show a medium with density varying in space and
time (for motion blur). We approximate Mie scattering with a 50%
mixture of two Henyey-Greenstein lobes with strong forward scat-
tering mean cosine of g = 0.98 and a backward lobe of g = −0.4
to show performance of the algorithm also in the presence of back-
ward scattering. Our sampling technique provides a clear benefit
over standard volumetric path tracing with next event estimation.
Note that this setup is intentionally challenging for our algorithm
since it contains spot emitters with non-diffuse angular character-

(a) 0.62(a) 0.62 (b) 0.83(b) 0.83

4× diff4× diff 4× diff4× diff

(a) 0.31(a) 0.31 (b) 0.34(b) 0.34

4× diff4× diff 4× diff4× diff

(a) 0.33(a) 0.33 (b) 154.91(b) 154.91

4× diff4× diff 4× diff4× diff

g = 0.5,sµt = 1.0 g = 0.9,sµt = 1.0 g = 0.9,sµt = 0.01

(a) Forward only (b) Forward + backward

Figure 12: Enabling backward scattering leads to a slight in-
crease in variance with g = 0.5. With stronger forward scattering
(g = 0.9), the backwards hemisphere has only negligible extra con-
tribution. In a very thin medium with sµt = 0.01, long paths caused
by backwards scattering produce outlier samples, best visible in
the difference image. For this comparison, we use a path length of
k = 5, 16 spp, and the same exposure for (a) and (b).

istics, heterogeneous volume properties, backward scattering, and
occlusion, violating all assumptions of our technique.

Figures 15 and 16 shows a scene with an occluder casting light
shafts into a medium with varying parameters. We compare our
method (Bridges) against path tracing with next-event estimation
(PT/NEE) and bidirectional path tracing (BDPT). BDPT handles
moderate forward-scattering (g = 0.5) well, but struggles with
strongly-peaked phase functions (g = 0.95). The sampling quality
of our method deteriorates with increasing medium heterogeneity.
One issue here might be our simplistic path length sampling, which
is based on the end vertex density. This leads to sampling longer
paths than necessary in dense regions of the medium.
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Figure 13: Comparison of different strategies for selecting vertex
counts for bridge sampling with 32 spp. We show this compari-
son in false-color to highlight outlier samples. Significant differ-
ences emerge only for many vertices (nmax > 10). Poisson sam-
pling undersamples these bridges with many vertices, even with a
scaled parameter, causing outliers. Using our first moment-based
sampling largely mitigates this problem, although only our second
moment-based sampling is robust in the case with sµt = 4,g = 0.9
(top row, center).

(a) 6.94(a) 6.94 (b) 0.34(b) 0.34 (a) 4.44(a) 4.44 (b) 0.56(b) 0.56 (a) 1.40(a) 1.40 (b) 1.03(b) 1.03

sµt = 20,k = 20 sµt = 50,k = 50 sµt = 100,k = 100

(a) Equiangular (b) Bridges

Figure 14: Our bridge sampling can scale to very long paths, as
shown in this comparison for paths with up to k = 100 vertices,
g = 0.98 and 16 spp. Variance eventually increases with k, but re-
mains at a moderate level. Note that the error for equiangular is
unreliable here, as it produces only few samples with significant
contribution.

Overhead Our method comes with some run-time overhead as
compared to simple next-event estimation. First, multiple edges
will have to be tested for visibility, incurring an extra cost in the
ray tracing when initially traversing the BVH from the root. Sec-
ondly, computing the transmittance in a heterogeneous medium has
a cost for each voxel that is accessed. Since next-event estimation
steps through voxels along the direct connection, this is going to be
cheaper than our longer track lengths.

To match the runtime of simple volumetric path tracing in Fig. 1,
we use a Russian roulette decision whether to construct a bridge at
an end vertex or not, with a survival probability of 30%. That is,
for this maximum path length of 10, sampling bridges is about 3×
as expensive as standard next event estimation. The probability of
30% turned out to result in about equal rendering time for a fixed
sample count in this scene, in turn increasing variance. Practical
applications should rather base this decision on a more global ar-
gument whether or not a connection is expected to yield a good
contribution [VK16].

In Fig. 17, we show our method on a scene with more interesting
geometry and visibility. We render with a maximum path length
of 14 vertices. Even though the medium is homogeneous in this
scene, the overhead of our method is higher than in Figs. 15 and 16
due to higher cost of visibility tests. Nevertheless, our method
achieves lower error in an equal-time comparison against PT/NEE
and BDPT.

6. Conclusion and future work

We presented bridge sampling, a technique to connect light trans-
port path end points to light sources via multiple scattering and
an arbitrary number of intermediate vertices. This technique can
sample all the reciprocal squared distance and internal phase func-
tion terms, for arbitrary phase functions (including both forward
and backward scattering). We showed how this works well for a
variety of parameters in homogeneous volumes, up to 100 extra
vertices and compared against current volume sampling techniques
specializing in peaked forward scattering. The technique is simple
to implement and, while based on consideration of homogeneous
volumes, has clear benefit when applied to heterogeneous volumes.

The resulting PDF does not consider the phase function or emis-
sion distribution function at either end point of the bridge. The
phase function can easily be included by the same strategy as stan-
dard next event estimation: in addition to sampling a bridge, also
extend the path by sampling the phase function. Including the emit-
ter term may be an interesting future problem to consider, espe-
cially for strongly directional spot lights. One approach could be to
generalize our method by using it to form connections in bidirec-
tional path tracing. This could also enable further applications of
our method where the light source is outside of the medium, e.g. to
subsurface scattering or rendering of clouds.

Since the marginalization over xn worked out analytically, in the
future it might be possible to use this approach to derive a closed
form formulation of the transport in homogeneous media with com-
plex phase functions.
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[Kd14] KŘIVÁNEK, JAROSLAV and D’EON, EUGENE. “A Zero-variance-
based Sampling Scheme for Monte Carlo Subsurface Scattering”. SIG-
GRAPH Talks. 2014, 66:1–66:1. DOI: 10/gfzq7n 3.

[KF12] KULLA, CHRISTOPHER and FAJARDO, MARCOS. “Importance
Sampling Techniques for Path Tracing in Participating Media”. Com-
puter Graphics Forum (Proceedings of the Eurographics Symposium on
Rendering) 31.4 (June 2012), 1519–1528. DOI: 10/f35f4k 3.
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Appendix A: Alternative view on scaling-based sampling

Sampling n independent exponentially distributed random numbers
and scaling them to unit L1 norm is a method to generate uniform
random points on the unit n-simplex with surface area 1

(n−1)! . This
is a special case of sampling the Dirichlet distribution with α = 1
[Dev86, p. 594]. An alternative view on our sampling algorithm is
that we first sample a point on the unit simplex and then project
it accordingly. Since the scaling transformation is bijective in this
case, this view does not require explicit marginalization.

Appendix B: Equivalence to OMNEE

We show that our constraint-based sampling (Section 3.3) has the
same PDF as OMNEE [HWD22] for the case n = 2 and forward-
only scattering. Without loss of generality, we can express O using
a rotation R̃ and the angle θ between ω

′
1 and ω

′
2:

O = R̃

0 sinθ

0 0
1 cosθ

 . (21)

With a =
√

1+ cosθ and b =
√

1− cosθ its SVD is

O = R̃
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 . (22)

The arc length of the feasible region is found as

s arccos(n1 ·n2) = s arccos(cosθ) = sθ (23)

using the normal vectors that define its intersected halfspaces

n1 =
1
z

a−1
√

1
2

b−1
√

1
2

 , n2 =
1
z

−a−1
√

1
2

b−1
√

1
2

 , (24)

where z =
√

1
2a2 +

1
2b2 . Inserting into Eq. (13), we obtain the result

from OMNEE

1
sθ

abs2 =
s
√

1− cos2 θ

θ
=

ssinθ

θ
. (25)
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Figure 15: A partially shadowed light source in a dense, forward-scattering (g = 0.95) medium of varying heterogeneity (het.), rendered
in equal time (180s). Our bridge sampling handles the multiple-scattering contribution well in homogeneous media, but deteriorates with
increasing heterogeneity.
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Figure 16: Equal-time comparison (180s) for different parameters of the scene from Fig. 15 with 33% heterogeneity. While BDPT does not
handle strongly-peaked phase functions (g = 0.95) well, it outperforms our sampling with less proncounced forward-scattering (g = 0.5).
Likewise, in thinner media (50%µt ), multiple-scattering is not as distinct and our method shows less improvement.

Reference PT/NEE BDPT Bridges

5984 spp5984 spp RMSE 2.242RMSE 2.242 1632 spp1632 spp RMSE 0.313RMSE 0.313 3328 spp3328 spp RMSE 0.294RMSE 0.294

Figure 17: Equal-time comparison (600s) with more complex geometry. The alley is mainly lit by a street lamp behind the corner and filled
with dense, homogeneous fog (HG mixture of g = 0.98 and g = −0.4) , leading to long paths with significant contribution. Our method is
slowed down by its increased number of visibility tests, but still outperforms PT/NEE and BDPT due to improved sampling quality.
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