
CELLS (raw 4.0 GB)

coarsest LOD

10.1 MB

1.02 ms

nest LOD (lossless)

+ 76.3 MB (2.16%)

5.31 ms

C.ELEGANS (raw 112.8 GB)

coarsest LOD

0.4 GB

0.98 ms

nest LOD (lossless)

+ 2.1 GB (2.25%)

9.25 ms

MOUSE (raw 150.0 GB)

coarsest LOD

1.8 GB

2.0 ms

nest LOD (lossless)

+ 10.3 GB (8.06%)

189.54 ms

em
issive

m
etallic

plastic

fi

fi

fi

SVDAG Compression for Segmentation Volume Path Tracing
Mirco Werner†, Max Piochowiak†, and Carsten Dachsbacher

(† joint first authors)

1
Hi, I'm Mirco and I'm presenting our paper SVDAG Compression for Segmentation Volume Path Tracing. I want to start with a quick introduction about segmentation volumes.

Speaker notes

Segmentation Volumes

CELLS (Rosenbauer et al. 2020) C.ELEGANS (Witvliet et al. 2021) MOUSE (Motta et al. 2019)

Segmentation Volume: V (x) = l ∈ N

2

Segmentation volumes are voxel data sets that are commonly used in a variety of domains like medicine, connectomics, or computational biology. These volumes store an integer label for each voxel. This segments the space into separate
object regions, for example neurons in a mouse brain which you can see on the right.

Speaker notes

Segmentation Volumes

CELLS (Rosenbauer et al. 2020)

4 GB (32 bit/voxel)

C.ELEGANS (Witvliet et al. 2021)

113 GB (8 bit/voxel)

MOUSE (Motta et al. 2019)

150 GB (8 bit/voxel)

Segmentation Volume: V (x) = l ∈ N

3
Segmentation volumes can become quite large, even for small label counts that allow to store volumes with few bits per voxel. These sizes easily exceed GPU memory, hindering interactive visual exploration and rendering.

Speaker notes

Typical Rendering Workflow

Google Neuroglancer

4

Therefore, rendering workflows are typically a two stage process: First, interactive exploration is done in a low-fidelity visualization framework. Pictured here is Google neuroglancer which can display 2D slices of volumes as well as a small
number of precomputed meshes of object region.

Speaker notes

Typical Rendering Workflow

Brick-Wise Compression

stores voxels in bricks
label palette per brick

 bits per voxel

Palette

Neuroglancer Precomputed Format

[Piochowiak*2023]
Fast Compressed Segmentation Volumes for Scientific Visualization, IEEE Vis

⌈log ​(∥palette∥)⌉2

5

Google neuroglancer uses a form a brick-wise compression: the neuroglancer precomputed format. This compression technique operates on a voxel basis: The volume is split into small bricks. For each brick, a palette of occurring voxel labels is
stored. Voxels inside a brick then index into the palette using only a small number of bits. This voxel format is fast to compute and is suitable for 2D visualization methods. However, for 3D visualization, it does not directly map to raytracing
hardware and typically relies on slower ray marching. More evolved brick-wise formats that achieve stronger compression additionally require larger caches for on-the-fly decompression during rendering.

Speaker notes

Typical Rendering Workflow

Blender manual CC-BY-SA 4.0 [Velicky*2023]
Dense 4D nanoscale reconstruction of living brain tissue, Nature methods

6

Therefore, in a second step, often other external software is used to generate high quality renderings for science communication or publication purposes, for example with path tracing in Blender Cycles. To that end, the volume data has to be
meshed or converted into another format first.

Speaker notes

Typical Rendering Workflow

7
This existing process to generate high quality images is therefore typically slow: It requires switching between different data formats and software. The often CPU-bound rendering process takes minutes or hours to render one frame.

Speaker notes

Compression for Segmentation Volumes
(our data structure)

8

With our method, we solve these problems using a compressed data format that allows hardware accelerated GPU path tracing directly on the compressed large scale segmentation volumes. Our method offers precision and compression as in
voxel-based representations as well as the rendering performance and hardware suitability of mesh based representations.

Speaker notes

9
Here I'm showing a video of our final framework. As you can see, we can interactively explore the segmentation volume. Once the camera is static, path tracing noise quickly vanishes and the image converges to the path-traced reference.

Speaker notes

Compression for Segmentation Volumes - Observations

key observation: large uniform areas with the same label

10

How do we compress the segmentation volumes? For this, let's first take a look at a segmentation volume, on the right side in 3D and on the left side in 2D. You can clearly observe that there are large uniform areas where all voxels are
assigned to the same label.

Speaker notes

Compression for Segmentation Volumes - Observations

key observation: large uniform areas with the same label
compression idea: decouple label and voxel occupancy

11
Based on this observation, our compression idea is to decouple the label information from the voxel occupancy.

Speaker notes

Compression for Segmentation Volumes - Observations

key observation: large uniform areas with the same label
compression idea: decouple label and voxel occupancy

AABB per label region

12
Therefore, we can define an AABB per label region. All solid voxels that are assigned to this AABB now all implicitly have the same label and the label does not have to be stored for each individual voxel.

Speaker notes

Compression for Segmentation Volumes - Observations

key observation: large uniform areas with the same label
compression idea: decouple label and voxel occupancy

AABB per label region
voxel occupancy becomes binary attribute inside region

13
This allows for much easier and stronger compression of voxel occupancy, since voxel occupancy, i.e. solid/empty, becomes a binary attribute inside the region.

Speaker notes

Data Structure - Level 1 (blocks) decouple label from voxel occupancy

split AABBs into blocks of fixed size ()

bl
oc

ks

16 16

16

163

14
To make our compression work, we introduce a three level data structure. The goal of the first level is to decouple the label information from the voxel occupancy. Therefore, we split the AABBs into blocks of fixed size, 16 by 16 by 16.

Speaker notes

Data Structure - Level 1 (BVH w/ blocks) decouple label from voxel occupancy

split AABBs into blocks of fixed size ()
BVH for hardware-accelerated raytracing

blocks = BVH leaves, store label information BVH

B
V

H
w

/b
lo

ck
s

16 16

16

163

15
For efficient rendering, we can then build a BVH for hardware-accelerated raytracing. Our blocks are the BVH leaves and store the label information. All solid voxels that are assigned to an block now all implicitly have the same label.

Speaker notes

Data Structure - Level 2 (SVOs) encode voxel occupancy

sparse voxel octree (SVO) [Laine*2010] in each block

BVH

B
V

H
w

/b
lo

ck
s

SV
O

s

16 16

16

16 16

16

16

Our second level of our data structure now encodes the actual voxel occupancy inside the blocks. Our first idea was to construct a SVO in each block. You can see a visualization of this on the left, where each block that contains the label
information, here colored, stores this SVO.

Speaker notes

Data Structure - Level 2 (SVOs) encode voxel occupancy

sparse voxel octree (SVO) [Laine*2010] in each block
identical subtrees

BVH

B
V

H
w

/b
lo

ck
s

SV
O

s

16 16

16

16 16

16

17
Now when we take a look at the voxel occupancy inside each block, we can see that there are often identical subregions. This means, the SVO contains identical subtrees and therefore stores redundant information.

Speaker notes

Data Structure - Level 2 (SVDAGs) encode voxel occupancy

sparse voxel directed acyclic graph (SVDAG)
[Kämpe*2013] in each block

BVH

B
V

H
w

/b
lo

ck
s

SV
D

A
G

s

16 16

16

16 16

16

18

Luckily, Kämpe and colleques found a solution for this by using a SVDAG instead. The idea here is that equal subtrees from the SVO are merged to transform this tree structure into a directed acyclic graph. This process is again shown here on
the left with some of the now unused original SVO nodes grayed out and re-directed pointers. After this step we now have one SVDAG in each block.

Speaker notes

Data Structure - Level 2 (SVDAGs) encode voxel occupancy

sparse voxel directed acyclic graph (SVDAG)
[Kämpe*2013] in each block

identical subtrees across blocks with different labels
(no label information stored) BVH

B
V

H
w

/b
lo

ck
s

SV
D

A
G

s

16 16

16

16 16

16

19
Of course, there are also identical subtrees across blocks with different labels. Since we just encode the binary voxel occupancy in the SVDAGs, we can merge all these individual SVDAGs...

Speaker notes

Data Structure - Level 2 (SVDAG) encode voxel occupancy

single large SVDAG across all blocks

BVH

B
V

H
w

/b
lo

ck
s

SV
D

A
G

16 16

16

16 16

16

20
into a single large SVDAG that is shared across all blocks. Again visualized here on the left.

Speaker notes

Data Structure - Level 3 (Occupancy Fields) improve traversal performance

store occupancy directly in SVDAG leaf in bitmask
 bits

less VRAM accesses

BVH

B
V

H
w

/b
lo

ck
s

SV
D

A
G

oc
cu

pa
nc

y
el

ds

16 16

16

16 16

16

4 4

4

fi

43

4 =3 64

21

The goal of our third and last level is to improve traversal performance. As you can imagine, loading large SVDAG nodes during traversal introduces many unaligned and random VRAM accesses. We can re-define an area of 4 by 4 by 4 voxels
as an SVDAG leaf node. The voxel occupancy inside a leaf can be stored directly in the leaf node using a bitmask using just 64 bits. We call this bitmask or bitfield occupancy field. With this optimization less VRAM accesses are required during
traversal since we reach leaf nodes quicker with less steps.

Speaker notes

Data Structure

BVH

B
V

H
w

/b
lo

ck
s

SV
D

A
G

oc
cu

pa
nc

y
el

ds
16 16

16

16 16

16

4 4

4

fi

22
With that we have compressed the segmentation volume into our three-level data structure.

Speaker notes

Compressed Segmentation Volume Path Tracing
(traversal of our data structure)

23
Now let's continue with how we perform path tracing on our compressed segmentation volume. So how we traverse our data structure.

Speaker notes

GPU Traversal

BVH

B
V

H
w

/b
lo

ck
s

SV
D

A
G

oc
cu

pa
nc

y
el

ds

16 16

16

16 16

16

4 4

4

fi

hardware-accelerated ray
tracing

invokes custom
intersection shader

24

You might have already noticed that this data structure maps really well to GPU hardware. This means for our first level, we can just input our blocks into a BVH builder and then use hardware-accelerated ray tracing to find intersections with the
blocks. Once an block is intersected with, a custom intersection shader is invoked.

Speaker notes

GPU Traversal

BVH

B
V

H
w

/b
lo

ck
s

SV
D

A
G

oc
cu

pa
nc

y
el

ds

16 16

16

16 16

16

4 4

4

fi

hardware-accelerated ray
tracing

invokes custom
intersection shader

query label and pointer to
the SVDAG root node
(multi-level) 3D-DDA
traversal of SVDAG and
occupancy field

25
In this custom intersection shader, we query the label information to load material properties and query the pointer to the SVDAG root node. Using multi-level 3D-DDA we can then manually traverse the SVDAG and the occupancy fields.

Speaker notes

Level of Detail

block SVDAG leaf occupancy field
(16)3 (4)3 (1)3

26

Our method naturally allows for a level of detail scheme. Here on the slide you can see three possible levels of detail. On the left, we stop traversal directly after hitting a block. In the center, we traverse the SVDAG all the way down to a leaf
node. And on the right, the individual voxels can be rendered by also traversing the occupancy fields. It's of course possible to dynamically choose the level of the detail based on the distance from the intersected block to the camera.

Speaker notes

Transfer Function Editing

0:00 / 0:07

27
Another interseting property of our method is that it allows for interactive editing of the transfer function. We can quickly adjust the material attributes corresponding to a specific label by updating the material buffer.

Speaker notes

Transfer Function Editing

0:00 / 0:09

28
When we would like to disable entire label regions, we can disable the corresponding blocks and quickly re-build the BVH to achieve an optimized traversal performance.

Speaker notes

Results

29
Now let's take a look at some results.

Speaker notes

Datasets

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

30
We evaluated our method on these three datasets. The rather small CELLS dataset with only a raw size of 4 GB and the large CELEGANS and MOUSE datasets with up to 150 GB raw size.

Speaker notes

Memory (mem) and Compression Rate (CR)

blocks + BVH + SVOS
mem. [MB] CR

CELLS 253.97 6.35%
C.ELEGANS 14322.37 12.7%
MOUSE 62911.29 41.95%

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

31
Let's start with the memory and the compression rate. Remember that the reported memory is exactly the memory required for the rendering on the GPU.

Speaker notes

Memory (mem) and Compression Rate (CR)

blocks + BVH + SVOS
mem. [MB] CR

CELLS 253.97 6.35%
C.ELEGANS 14322.37 12.7%
MOUSE 62911.29 41.95%

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

32
The total memory consists of a comparitively small share required for the blocks and for the constructed BVH. Most memory is required for the SVO or SVDAG to encode the voxel occupancy.

Speaker notes

Memory (mem) and Compression Rate (CR)

blocks + BVH + SVOS
mem. [MB] CR

CELLS 253.97 6.35%
C.ELEGANS 14322.37 12.7%
MOUSE 62911.29 41.95%

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

33
With our initial idea of using SVOs in each block you can see...

Speaker notes

Memory (mem) and Compression Rate (CR)

blocks + BVH + SVOS
mem. [MB] CR

CELLS 253.97 6.35%
C.ELEGANS 14322.37 12.7%
MOUSE 62911.29 41.95%

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

34
...that the MOUSE cortex requires a total of 63 GB to encode the voxel occupancy which results in a poor compression rate of only 41.95%.

Speaker notes

Memory (mem) and Compression Rate (CR)

blocks + BVH + SVOS blocks + BVH + SVDAG
mem. [MB] CR mem. [MB] CR

CELLS 253.97 6.35% 86.34 2.16%
C.ELEGANS 14322.37 12.7% 2534.28 2.25%
MOUSE 62911.29 41.95% 12095.48 8.06%

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

35
When we use our large shared SVDAG instead...

Speaker notes

Memory (mem) and Compression Rate (CR)

blocks + BVH + SVOS blocks + BVH + SVDAG
mem. [MB] CR mem. [MB] CR

CELLS 253.97 6.35% 86.34 2.16%
C.ELEGANS 14322.37 12.7% 2534.28 2.25%
MOUSE 62911.29 41.95% 12095.48 8.06%

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

36
...the MOUSE cortex requires only 12 GB of memory which is an overall compression rate of 8%.

Speaker notes

Memory (mem) and Compression Rate (CR)

blocks + BVH + SVOS blocks + BVH + SVDAG
mem. [MB] CR mem. [MB] CR

CELLS 253.97 6.35% 86.34 2.16%
C.ELEGANS 14322.37 12.7% 2534.28 2.25%
MOUSE 62911.29 41.95% 12095.48 8.06%

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

37
And for the other two datasets we achieve even compression rates up to 2%. These volume sizes now fit into the VRAM of a modern high-end consumer GPU.

Speaker notes

Rendering Performance
SVOS [ms]

f nest LOD coarsest LOD

1
bo

un
ce CELLS 8.19 0.4

C.ELEGANS − −
MOUSE − −

32
bn

c. CELLS 11.42 0.81
C.ELEGANS − −
MOUSE − −

fi

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

38

Moving on to rendering performance, we show here path tracing with 1 bounce in the first row and up to 32 bounces using throughput-based Russian roulette in the second row for the three datasets. Also we report numbers either using the
finest LOD, i.e. we render the individual voxels, and with the coarsest LOD, i.e. terminate traversal directly when hitting a block. Again, using our initial SVOs we can only render the CELLS dataset since the other two exceed our GPU memory.

Speaker notes

Rendering Performance
SVOS [ms] SVDAG [ms]

f nest LOD coarsest LOD f nest LOD coarsest LOD

1
bo

un
ce CELLS 8.19 0.4 2.95 0.51

C.ELEGANS − − 5.61 0.55
MOUSE − − 126.73 0.98

32
bn

c. CELLS 11.42 0.81 5.31 1.02
C.ELEGANS − − 9.25 0.98
MOUSE − − 189.54 2.0

fi fi

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

39
When using the SVDAG...

Speaker notes

Rendering Performance
SVOS [ms] SVDAG [ms]

f nest LOD coarsest LOD f nest LOD coarsest LOD

1
bo

un
ce CELLS 8.19 0.4 2.95 0.51

C.ELEGANS − − 5.61 0.55
MOUSE − − 126.73 0.98

32
bn

c. CELLS 11.42 0.81 5.31 1.02
C.ELEGANS − − 9.25 0.98
MOUSE − − 189.54 2.0

fi fi

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

40
...you can see that the frametime is reduced significantly.

Speaker notes

Rendering Performance
SVOS [ms] SVDAG [ms]

f nest LOD coarsest LOD f nest LOD coarsest LOD

1
bo

un
ce CELLS 8.19 0.4 2.95 0.51

C.ELEGANS − − 5.61 0.55
MOUSE − − 126.73 0.98

32
bn

c. CELLS 11.42 0.81 5.31 1.02
C.ELEGANS − − 9.25 0.98
MOUSE − − 189.54 2.0

fi fi

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

41
The CELLS and CELEGANS datasets can be fully path traced even with up to 32 bounces with over 60 FPS on this lossless representation.

Speaker notes

Rendering Performance
SVOS [ms] SVDAG [ms]

f nest LOD coarsest LOD f nest LOD coarsest LOD

1
bo

un
ce CELLS 8.19 0.4 2.95 0.51

C.ELEGANS − − 5.61 0.55
MOUSE − − 126.73 0.98

32
bn

c. CELLS 11.42 0.81 5.31 1.02
C.ELEGANS − − 9.25 0.98
MOUSE − − 189.54 2.0

fi fi

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

42
And still, the much more sparse and harder to ray trace MOUSE dataset can still be interactively path-traced to some degree.

Speaker notes

Rendering Performance
SVOS [ms] SVDAG [ms]

f nest LOD coarsest LOD f nest LOD coarsest LOD

1
bo

un
ce CELLS 8.19 0.4 2.95 0.51

C.ELEGANS − − 5.61 0.55
MOUSE − − 126.73 0.98

32
bn

c. CELLS 11.42 0.81 5.31 1.02
C.ELEGANS − − 9.25 0.98
MOUSE − − 189.54 2.0

fifi
MOUSE (raw 150.0 GB)

coarsest LOD nest LOD (lossless)fi

CELLS (raw 4.0 GB) C.ELEGANS (raw 112.8 GB) MOUSE (raw 150.0 GB)

43

By using dynamic LOD or by always using the coarsest LOD while the camera is moving, we can ensure exploration of the MOUSE dataset with more than 60 FPS. Once the camera is static, the finest LOD can be used to render the converged
image. On the right side you can see the MOUSE cortex with coarsest LOD and with the finest lossless LOD. For these large datasets, from further away, you can barely see a differences. This means that using this coarser LOD during
exploration is indeed a viable option.

Speaker notes

Conclusion

44
In conclusion, we are able to unify this process of exploring and rendering large segmentation volumes into a single framework...

Speaker notes

Conclusion

introduced a
lossless SVDAG compression method

CELLS (raw 4.0 GB)

coarsest LOD

10.1 MB

1.02 ms

nest LOD (lossless)

+ 76.3 MB (2.16%)

5.31 ms

C.ELEGANS (raw 112.8 GB)

coarsest LOD

0.4 GB

0.98 ms

nest LOD (lossless)

+ 2.1 GB (2.25%)

9.25 ms

fi

fi

45
... by introducing a lossless SVDAG compression method...

Speaker notes

Conclusion

introduced a
lossless SVDAG compression method
and a hardware-accelerated path tracing framework

CELLS (raw 4.0 GB)

coarsest LOD

10.1 MB

1.02 ms

nest LOD (lossless)

+ 76.3 MB (2.16%)

5.31 ms

C.ELEGANS (raw 112.8 GB)

coarsest LOD

0.4 GB

0.98 ms

nest LOD (lossless)

+ 2.1 GB (2.25%)

9.25 ms

fi

fi

46
... and a hardware-accelerated path tracing framework...

Speaker notes

Conclusion

introduced a
lossless SVDAG compression method
and a hardware-accelerated path tracing framework

for interactive rendering of segmentation volumes

CELLS (raw 4.0 GB)

coarsest LOD

10.1 MB

1.02 ms

nest LOD (lossless)

+ 76.3 MB (2.16%)

5.31 ms

C.ELEGANS (raw 112.8 GB)

coarsest LOD

0.4 GB

0.98 ms

nest LOD (lossless)

+ 2.1 GB (2.25%)

9.25 ms

fi

fi

47
that allows for interactive rendering of segmentation volumes.

Speaker notes

Conclusion

introduced a
lossless SVDAG compression method
and a hardware-accelerated path tracing framework

for interactive rendering of segmentation volumes

strong compression and rendering performance

CELLS (raw 4.0 GB)

coarsest LOD

10.1 MB

1.02 ms

nest LOD (lossless)

+ 76.3 MB (2.16%)

5.31 ms

C.ELEGANS (raw 112.8 GB)

coarsest LOD

0.4 GB

0.98 ms

nest LOD (lossless)

+ 2.1 GB (2.25%)

9.25 ms

fi

fi

48
We thereby achieve strong compression rates and high rendering performance.

Speaker notes

Thank you!

CELLS (raw 4.0 GB)

coarsest LOD

10.1 MB

1.02 ms

nest LOD (lossless)

+ 76.3 MB (2.16%)

5.31 ms

C.ELEGANS (raw 112.8 GB)

coarsest LOD

0.4 GB

0.98 ms

nest LOD (lossless)

+ 2.1 GB (2.25%)

9.25 ms

MOUSE (raw 150.0 GB)

coarsest LOD

1.8 GB

2.0 ms

nest LOD (lossless)

+ 10.3 GB (8.06%)

189.54 ms

em
issive

m
etallic

plastic

fi

fi

fi

Code available on GitHub:

https://github.com/MircoWerner/

SegmentationVolumeCompression

49
Our code is publicly available on GitHub. With that said, thank you for your attention!

Speaker notes

https://github.com/MircoWerner/SegmentationVolumeCompression
https://github.com/MircoWerner/SegmentationVolumeCompression

References

[Rosenbauer*2020]
ROSENBAUER, J., BERGHOFF, M., and SCHUG, A. “Emerging Tumor Development by Simulating Single-cell Events”. bioRxiv (2020). DOI:
10.1101/2020.08.24.264150

[Witvliet*2021]
WITVLIET, D., MULCAHY, B., MITCHELL, J. K., et al. “Connectomes across development reveal principles of brain maturation”. Nature 596.7871 (2021), 257-261.
DOI: 10.1038/s41586-021-03778-8

[Motta*2019]
MOTTA, A., BERNING, M., BOERGENS, K. M., et al. “Dense connectomic reconstruction in layer 4 of the somatosensory cortex”. Science 366.6469 (2019),
eaay3134. DOI: 10.1126/science.aay3134

[Velicky*2023]
VELICKY, P., MIGUEL, E., MICHALSKA, J.M. et al. Dense 4D nanoscale reconstruction of living brain tissue. Nat Methods 20, 1256-1265 (2023).
https://doi.org/10.1038/s41592-023-01936-6

[Laine*2010]
LAINE, S. and KARRAS, T. “Efficient sparse voxel octrees”. Proc. ACM SIGGRAPH Symposium on Interact. 3D Graph. and Games. New York, NY, USA: ACM,
2010, 55-63. DOI: 10.1145/1730804.1730814

[Kämpe*2013]
KÄMPE, V., SINTORN, E., and ASSARSSON, U. “High resolution sparse voxel DAGs”. ACM Transactions on Graphics 32.4 (July 2013). DOI:
10.1145/2461912.2462024

50

Appendix

51
...

Speaker notes

SVDAG Node Memory Layout

52

Datasets

CELLS (raw 4.0 GB)

1000× 1000× 1000 = 1.0 ·109

15.39% solid
118251 labels

C.ELEGANS (raw 112.8 GB)

661× 11044× 15448 = 112.77 ·109

5.45% solid
234 labels

MOUSE (raw 150.0 GB)

5446× 8381× 3286 = 149.98 ·109

15.57% solid
96 labels

53
We evaluated our method on these three datasets. The rather small CELLS dataset with only a raw size of 4 GB and the large CELEGANS and MOUSE datasets with up to 150 GB raw size.

Speaker notes

Datasets

CELLS (raw 4.0 GB)

1000× 1000× 1000 = 1.0 ·109

15.39% solid
118251 labels

C.ELEGANS (raw 112.8 GB)

661× 11044× 15448 = 112.77 ·109

5.45% solid
234 labels

MOUSE (raw 150.0 GB)

5446× 8381× 3286 = 149.98 ·109

15.57% solid
96 labels

54

As you can see in the bottom row, the CELLS dataset contains more than 100k labels while the other two datasets contain only a few hundreds of labels. However, keep in mind, that since we decouple labels and voxel occupancy, our
compression of the voxels works and scales independently from the actual number of labels.

Speaker notes

Memory (mem) and Compression Rate (CR)
AABBs + BVH + SVOS SVDAG

mem. [MB] mem. [MB] CR mem. [MB] CR

CELLS 5.63+ 4.42 + 243.92 6.35% + 76.29 2.16%
C.ELEGANS 248.13+ 186.24 + 13888.0 12.7% + 2099.91 2.25%
MOUSE 1032.11+ 786.44 + 61092.74 41.95% + 10276.93 8.06%

SVOS SVDAG

0

2

4

6

8

·108

MOUSE

#n
od

es

163

83

43

CELLS (raw 4.0 GB)

1000× 1000× 1000 = 1.0 ·109

15.39% solid
118251 labels

C.ELEGANS (raw 112.8 GB)

661× 11044× 15448 = 112.77 ·109

5.45% solid
234 labels

MOUSE (raw 150.0 GB)

5446× 8381× 3286 = 149.98 ·109

15.57% solid
96 labels

55

On the right side here, you can see the number of nodes in each of the levels, 16^3 8^3 4^3, of the SVOs or the SVDAG respectively. Because of similar topology, we can reuse a large fraction of the nodes corresponding to the 4 by 4 by 4
regions which explains the strong compression rates.

Speaker notes

Rendering Performance [ms] using finest (coarsest) LOD
w/ occupancy field w/o occupancy

SVOS SVDAG SVDAG

1
bo

un
ce CELLS 8.19 (0.4) 2.95 (0.51) 5.87 (0.42)

C.ELEGANS − 5.61 (0.55) 12.75 (0.47)
MOUSE − 126.73 (0.98) 134.72 (0.78)

32
bn

c. CELLS 11.42 (0.81) 5.31 (1.02) 8.66 (0.85)
C.ELEGANS − 9.25 (0.98) 18.72 (0.83)
MOUSE − 189.54 (2.0) 203.65 (1.67)

field

CELLS (raw 4.0 GB)

1000× 1000× 1000 = 1.0 ·109

15.39% solid
118251 labels

C.ELEGANS (raw 112.8 GB)

661× 11044× 15448 = 112.77 ·109

5.45% solid
234 labels

MOUSE (raw 150.0 GB)

5446× 8381× 3286 = 149.98 ·109

15.57% solid
96 labels

56
Finally, let's compare the SVDAG using our proposed occupancy fields with the SVDAG without this optimization.

Speaker notes

Rendering Performance [ms] using finest (coarsest) LOD
w/ occupancy field w/o occupancy

SVOS SVDAG SVDAG

1
bo

un
ce CELLS 8.19 (0.4) 2.95 (0.51) 5.87 (0.42)

C.ELEGANS − 5.61 (0.55) 12.75 (0.47)
MOUSE − 126.73 (0.98) 134.72 (0.78)

32
bn

c. CELLS 11.42 (0.81) 5.31 (1.02) 8.66 (0.85)
C.ELEGANS − 9.25 (0.98) 18.72 (0.83)
MOUSE − 189.54 (2.0) 203.65 (1.67)

field

CELLS (raw 4.0 GB)

1000× 1000× 1000 = 1.0 ·109

15.39% solid
118251 labels

C.ELEGANS (raw 112.8 GB)

661× 11044× 15448 = 112.77 ·109

5.45% solid
234 labels

MOUSE (raw 150.0 GB)

5446× 8381× 3286 = 149.98 ·109

15.57% solid
96 labels

57
Notice, that our occupancy fields signifintly reduce frametime by reducing the number of slow and random VRAM accesses.

Speaker notes

Compression Timings

58

CSGV [Piochowiak*2023] (memory)
blocks + BVH + SVOS blocks + BVH + SVDAG
mem. [MB] CR mem. [MB] CR

CELLS 253.97 6.35% 86.34 2.16%
C.ELEGANS 14322.37 12.7% 2534.28 2.25%
MOUSE 62911.29 41.95% 12095.48 8.06%

59

CSGV [Piochowiak*2023] (rendering performance)

SVOS [ms] SVDAG [ms]
f nest LOD coarsest LOD f nest LOD coarsest LOD

1
bo

un
ce CELLS 8.19 0.4 2.95 0.51

C.ELEGANS − − 5.61 0.55
MOUSE − − 126.73 0.98

32
bn

c. CELLS 11.42 0.81 5.31 1.02
C.ELEGANS − − 9.25 0.98
MOUSE − − 189.54 2.0

fi fi

60

