# Stochastic Subsets for BVH Construction

Lorenzo Tessari\* <sup>1</sup>, Addis Dittebrandt\* <sup>1, 2</sup>, Michael Doyle<sup>1</sup>, Carsten Benthin<sup>1</sup>

<sup>1</sup>Intel, <sup>2</sup>KIT

**EUROGRAPHICS 2023** 

# Ray Tracing



Use cases: Primary Visibility, NEE, Path Tracing, ...

# Bounding Volume Hierarchies (BVHs)



# **BVH Traversal**



### **BVH** Construction

- Tradeoff between build time & quality/traversal efficiency
- General goal: Better quality in less build time
- Targeted for GPUs



### Previous Work

- Top-Down
  - Binning [Wald 2007]
  - Progressive Refinement [Jakub et al. 2017]
- Bottom-Up
  - Agglomerative clustering [Walter et al. 2008]
  - Parallel locally ordered clustering (PLOC) [Meister and Bittner 2017]
  - PLOC++ [Benthin et al. 2022]





### Previous Work

- Incremental construction
  - Greedy [Goldsmith and Salmon 1987]
  - Online [Bittner et al. 2015]
- Linear BVH [Lauterbach et al. 2009, Karras 2012]
- Topological optimization
  - Treelet restructuring (TRBVH / ATRBVH) [Karras and Aila 2015, Domingues and Pedrini 2015]
  - Parallel reinsertion [Meister and Bittner 2018]





### Top-Down Construction

- Superior quality to other build algorithms [Aila et al. 2013]
- Problem: Repeated access of all primitives  $O(N \log N)$



# Key Concept: Stochastic Subsets



- Primitive subset can preserve highlevel structure of a mesh
- Needs to be chosen in a representative fashion (e.g., stochastically)
- Top-levels of BVH show aggregated behavior of the data

### Stochastic Subset BVH Construction

Idea: Operate on subset for first levels to achieve speedup



### Stochastic Subset BVH Construction

Idea: Operate on subset for first levels to achieve speedup





#### Requirements

- Follow primitive distribution
- Selection proportional to primitive size
- Guaranteed selection of large primitives

→ Combination of **Spatial Ordering**, **Importance Sampling** & **Stratification** 





→ Combination of **Spatial Ordering**, **Importance Sampling** & **Stratification** 





→ Combination of **Spatial Ordering**, **Importance Sampling** & **Stratification** 

#### In the paper:

- Weight clampling
- Defensive sampling



#### Defensive sampling



Varying Subset Size

Colored: Subset Primitives; Color: Spatial Ordering

### Stochastic Subset BVH Construction

Idea: Operate on subset for first levels to achieve speedup



### Stochastic Subset BVH Construction

Idea: Operate on subset for first levels to achieve speedup



### Primitives Insertion

For each primitive, find best leaf to insert into



### **Primitives Insertion**

Use approximate neighborhood [Meister et al. 2017]







### Stochastic Subset BVH Construction

Idea: Operate on subset for first levels to achieve speedup



# Evaluation

### Environment

- Intel® Alchemist A770 GPU (32 Xe cores).
- Intel® Core i5 9600K @ 3.7 GHz
- 16GB DDR4 RAM
- Ubuntu 20.04 LTS

oneAPI DPC++ / SYCL

• Subset size of 20%



# Compared Builders

- GPU implementation of top-down binned SAH builder [Wald 2007]
  - Also used as interior builder
- Other state of the art builders:



# Binary BVH Host Build Time (ms)



# Quality Metric: Binary BVH SAH Cost



# Hardware Ray Throughput with AO (GRays/s)





# Discussion

### Discussion

• The relative overhead impacts the final speedup



### Discussion

- Currently benefits  $O(N \log N)$  algorithms
- Not directly applicable to O(N) approaches in its current form

Higher memory footprint for additional buffers



### Conclusion

- New primitive in BVH construction
  - Now possible to importance sample multiple features of the scene
- Retains quality of top-down builder at 1.5x avg. (~1.9x max.) speedup
- Reducing the gap to faster builders (e. g. PLOC++)
  - Untapped theoretical speedup still on the table



https://cg.ivd.kit.edu/stochbvh.php

Thanks for your attention! Questions?

Contact: <a href="mailto:lorenzo.tessari@intel.com">lorenzo.tessari@intel.com</a>, <a href="mailto:addis.dittebrandt@kit.edu">addis.dittebrandt@kit.edu</a>

# Backup

# Introduction - Surface Area Heuristic (SAH)

Quantifies intersection cost through bounding box areas



# Subset Sampling - Weight Clamping





→ Duplicates

# Subset Sampling - Weight Clamping



# Subset Sampling - Weight Clamping

$$\operatorname{clamp} \ge \operatorname{stratum} \cdot \sum_{j}^{N} \min(\operatorname{weight}_{j}, \operatorname{clamp})$$



Find smallest **k** which satisfies weight<sub>k</sub>  $\leq$  stratum  $\cdot \sum_{j=1}^{N} \min(\text{weight}_{j}, \text{weight}_{k})$ 

# Subset Sampling - Defensive Sampling



Small, highly tessellated flower in San Miguel.

Forcing some more uniform selection levels the cluster size after insertion.

### Primitives Insertion - Metric

Metric: Increase of SAH [Bittner et al. 2013]

- Only need to evaluate leaf and ancestor nodes
  - Search can be parallelized in groups



# Throughput

• much fewer primitives in the first levels ...



# Throughput

- much fewer primitives in the first levels ...
- ... but also less throughput
- there is still a net speedup, but less than anticipated

