
Eurographics Symposium on Rendering 2022
A. Ghosh and L.-Y. Wei
(Guest Editors)

Volume 41 (2022), Number 4

Path Guiding with Vertex Triplet Distributions

Vincent Schüßler , Johannes Hanika , Alisa Jung and Carsten Dachsbacher

Karlsruhe Institute of Technology, Germany

Abstract
Good importance sampling strategies are decisive for the quality and robustness of photorealistic image synthesis with Monte
Carlo integration. Path guiding approaches use transport paths sampled by an existing base sampler to build and refine a
guiding distribution. This distribution then guides subsequent paths in regions that are otherwise hard to sample. We observe
that all terms in the measurement contribution function sampled during path construction depend on at most three consecutive
path vertices. We thus propose to build a 9D guiding distribution over vertex triplets that adapts to the full measurement
contribution with a 9D Gaussian mixture model (GMM). For incremental path sampling, we query the model for the last two
vertices of a path prefix, resulting in a 3D conditional distribution with which we sample the next vertex along the path. To make
this approach scalable, we partition the scene with an octree and learn a local GMM for each leaf separately. In a learning
phase, we sample paths using the current guiding distribution and collect triplets of path vertices. We resample these triplets
online and keep only a fixed-size subset in reservoirs. After each progression, we obtain new GMMs from triplet samples by
an initial hard clustering followed by expectation maximization. Since we model 3D vertex positions, our guiding distribution
naturally extends to participating media. In addition, the symmetry in the GMM allows us to query it for paths constructed by
a light tracer. Therefore our method can guide both a path tracer and light tracer from a jointly learned guiding distribution.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Monte Carlo light transport has become the standard technique
for realistic offline rendering. Good importance sampling strate-
gies to keep variance low are crucial for its efficiency. However,
designing sampling techniques that work well for a wide range
of scenes is difficult, due to the strong dependency on visibility
and materials. A promising approach is path guiding [VHH*19]
where path sampling techniques adapt to the scene using informa-
tion (e.g. incident illumination on surfaces) gathered from previ-
ously sampled paths. A path tracer augmented with guiding can
often explore difficult regions of the path space, which would other-
wise require bidirectional techniques, regularization (e.g. via vertex
merging [GKDS12]), or Markov chains [Has70]. Guiding can thus
often provide an unbiased, or more temporally stable alternative.

The gathering, representation, and exploitation of this informa-
tion is decisive for the resulting path guiding algorithm: It has to be
precise enough to capture small “islands” in the high-dimensional
path space that contribute much energy to the image. And at the
same time, the representation needs to provide enough “fuzziness”
to allow further exploration of the path space beyond discovered
islands, but without extensive memory requirements.

Previous work has demonstrated path guiding, for example,
based on the incident radiance at surface points [VKŠ*14; MGN17;

RHL20], i.e. by approximating a 4D signal (two surface vertices,
or vertex plus direction). This, however, is not enough information
to account for the BSDFs when guiding paths at interactions. At
the other extreme, Reibold et al. [RHJD18] store complete paths
for guiding, but they can only sample similar paths and thus can-
not share information about individual interactions between guide
paths.

At the core of our work is the question: what is the simplest
model which is as general as necessary for path guiding? It has
to be at least as expressive as the physical equations defining the
problem. Here we observe that all terms in the measurement con-
tribution function depend on a maximum of three consecutive path
vertices. That is, (sets of) vertex triplets are able to represent all de-
pendencies in path space such as visibility, or distances and phase
functions in participating media. Furthermore there is bidirectional
symmetry in the transport equations: the adjoint operator is mostly
the same due to reciprocity. We want to leverage this and use a sin-
gle model trained by both light tracing and path tracing which can
also be used to guide both directions.

Led by these requirements, we devise a 9D (three volume ver-
tices) bidirectional model of the transport operator. The model is
parametrized over incident vertex, scattering vertex, and outgoing
vertex, and the quantity we are seeking to match is the measure-
ment contribution function of the full path passing through this

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-6284-8707
https://orcid.org/0000-0002-7648-1782
https://orcid.org/0000-0003-4690-3574

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

triplet. We use a Gaussian mixture model (GMM) to store this func-
tion, since it allows us to analytically compute conditionals and
marginals as required during path sampling. To aid spatial strati-
fication, we store such GMMs in cells of an octree. Each individ-
ual Gaussian component of these mixtures models the dependence
of the measurement contribution on the input dimensions as lin-
ear correlation, which alleviates issues with interpolation between
cells. In summary our paper makes the following contributions:

• a general, 9D, bidirectional model of the transport operator in-
cluding both surface and volume transport (section 3 and 4),

• bidirectional guided path construction using this model (sec-
tion 5),

• effective training of the model using reservoir-based resampling
and a clustering approach based on principal component analy-
sis (PCA) (section 6).

2. Background and related work

Our goal in rendering is to compute the path integral [Vea97] for
every pixel j:

I j =
∫
P

f j(x̄)dx̄, (1)

where P is the path space and x̄ = (x0,x1, . . . ,xk−1) ∈ Pk ⊂ P is
a path of length k. The measurement contribution function (MCF)
f j is defined as

f j(x̄) =W j(x0,x1)Le(xk−1,xk−2)G(x0,x1)T (x0,x1) (2)

·
k−2

∏
i=1

fs(xi−1,xi,xi+1)G(xi,xi+1)T (xi,xi+1),

G(x,y) = D(x,y)D(y,x)
∥x−y∥2 , (3)

D(x,y) =

{
|n(x) ·ωx→y| if x is on a surface,
1 if x is in a medium,

(4)

where W j is the response of pixel j, Le is emitted radiance, T is
transmittance, fs is the BSDF or the phase function multiplied by
the scattering coefficient µs, n(x) is the surface normal, and ωx→y
is the normalized direction from x to y.

Monte Carlo integration is the common method to compute the
path integral, partly because discontinuities and high dimensional-
ity make other approaches less appealing. Unfortunately, its effi-
ciency strongly depends on available importance sampling strate-
gies. Usually, no single sampling strategy has low variance across
the whole path space. Combination of different strategies using
MIS [VG95] is essential for robustness. However, in absence of a
good strategy, Monte Carlo often undersamples important regions
of the path space. Since it cannot explore them reliably, this mani-
fests in bright outliers and high variance.

2.1. Path guiding

Path guiding techniques use information from previously sampled
light transport paths to construct new sampling densities which
guide newly sampled paths to regions with high measurement con-
tribution. They mostly differ in the model and data structure to rep-

resent this information, as well as the learning method to update
approximations over time.

Directional representations Most methods approximate the inci-
dent radiance field in the scene, which can then be used during
forward path tracing to sample directions. Early works reconstruct
hemispherical histograms of incident radiance for guiding paths ei-
ther from photon maps [Jen95] or 5D trees [LW95]. Hey and Pur-
gathofer [HP02] estimate the width of cones around important di-
rections from a photon map. Vorba et al. [VKŠ*14] introduce 2D
Gaussian mixture models (GMMs) that are fitted using online ex-
pectation maximization (EM). They train and render bidirection-
ally, but need to learn two separate unidirectional models instead
of a unified bidirectional model like ours. Similar to Lafortune and
Willems [LW95], Müller et al. [MGN17] introduce a 5D spatio-
directional tree (SD-tree) to approximate incident radiance, which
does not require expensive fitting and can be used for sampling
directly. Zhu et al. [ZXS*21] use a neural network to combine
light and camera path samples to reconstruct an SD-tree for guid-
ing. Bako et al. [BMDS19] train a neural network to reconstruct a
local radiance field from neighboring samples and use it to guide
importance sampling at the first bounce.

High dimension Reibold et al. [RHJD18] take an opposite ap-
proach by identifying difficult paths and reconstructing a sampling
density in the high-dimensional path space. While this helps explor-
ing particularly difficult and coherent regions in path space, their
method suffers from the curse of dimensionality in less coherent
regions. Similar problems occur in methods that learn in primary
sample space [GBBE18; ZZ19]. In addition, primary sample space
poses problems with recognizing coherent paths, as this informa-
tion is quickly lost in higher dimensions.

Spatial correlation While in the model of Reibold et
al. [RHJD18] the 4D or 6D Gaussian distributions of consec-
utive path vertices account for the correlation of vertex positions,
this information is not present in purely directional models.
This can lead to problems when the far field approximation of
directional models breaks and spatial interpolation would be
necessary. Müller et al. [Mül19] demonstrate how this can lead to
artefacts on the borders of spatial regions of their SD-trees. They
propose a spatial filtering as a countermeasure, effectively blurring
the directional representation. Ruppert et al. [RHL20] reproject
directional mixture components using a mean depth value. While
this can be accurate for diffuse emission at the hit point, it
neglects visibility and angular constraints at glossy surfaces. Dodik
et al. [DPÖM21] explicitly represent the correlations in a 5D
spatio-directional mixture model. This is conceptually close to our
approach, although using incident radiance as a target function.
The use of vertex positions in our model is another interesting
difference: while the directional approach assumes a far-field
incident radiance distribution and can deviate using correlation,
our positional model starts with the parallax assumption and needs
correlations to approximate parallel outgoing directions. Neural
path guiding [MMR*19] learns a conditional model to sample
the outgoing direction given an incident direction and position.
Training and using this neural network for sampling is expensive
and requires two GPUs to be competitive.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

Product guiding Local caches of incident radiance disregard the
fact that the contribution of a full path also depends on the lo-
cal BSDF at a vertex where the guiding cache is queried. Prod-
uct path guiding [HEV*16] approaches this problem by combin-
ing an approximation of the BSDF with the incident radiance ap-
proximation during sampling and computing a product of GMMs.
Similar approaches are adopted by other methods using mixture
models [HZE*19; RHL20; DPÖM21]. Diolatzis et al. [DGJ*20]
demonstrate a method to achieve product sampling with SD-trees.

One common challenge of product guiding is to find general
models for representing complex materials. These need to be accu-
rate, efficient to store, support textured parameters and still support
the efficient combination with the incident light representation. We
take a different approach in directly approximating the full mea-
surement contribution with our model.

Volume guiding Path guiding in participating media is more chal-
lenging due to the necessity of distance sampling. Reibold et
al. [RHJD18] directly sample 3D vertex positions or distances only
from their 6D Gaussian representation. This is similar to our work,
but still suffers from problems of high dimensionality. Distance
sampling can also be achieved by stepping through a voxel data
structure [HZE*19]. In contrast, our method can produce samples
directly without incremental traversal of a data structure. Deng et
al. [DWWH20] use SD-trees for directional guiding in media, but
do not have a strategy for distance sampling.

2.2. Glossy light transport

Sampling chains of glossy interactions reliably is a hard light
transport problem, as it is neither solved efficiently by bidirec-
tional connection nor density estimation. Manifold walks [JM12;
KHD14] have been proposed to efficiently explore these types of
paths, leveraging the tridiagonal structure of the specular constraint
derivative matrix. This structure is induced by the transport oper-
ator and also motivates our approach with vertex triplets. Unfor-
tunately, manifold walks rely on derivatives that require locally
smooth geometry. This assumption is broken by realistic scenes
with high-frequency detail. While data-driven approaches cannot
hope to achieve the same level of accuracy, they can act on global
information, which is sometimes more relevant, for instance with
highly detailed displacements.

3. Overview and theoretical background

The goal of our method is to learn a vertex triplet distribution that
can be used to locally guide path sampling. We refer to this as the
guiding distribution and model it using Gaussian mixture models
(GMM). In this section, we provide an overview and a theoretical
foundation of our model. We begin by justifying our choice of tar-
get function (section 3.1), before defining the GMM and giving an
intuition on how to sample it (section 3.2). Further, we sketch how
learning works and how it integrates into a renderer (section 3.3).

In the subsequent sections, we discuss the complete algorithm:
details on the guiding distribution (section 4), its sampling (sec-
tion 5) and learning (section 6). We show an overview of all the
individual steps in fig. 1.

3.1. Target function

We use the full measurement contribution function of a path as tar-
get function for the GMM. We will show that this results in a con-
ditional PDF for the next path vertex which is proportional to the
product of all terms remaining until completion of the path. In par-
ticular, part of this result is that the PDF does not depend on the
terms that belong to the already sampled prefix.

First we observe that the measurement contribution function can
be factored into blocks B(xi−1,xi,xi+1) which only depend on
three consecutive vertices xi−1,xi,xi+1, i.e.

B(xi−1,xi,xi+1) = fs(xi−1,xi,xi+1)T (xi,xi+1)G(xi,xi+1) (5)

and we will use the shorthand Bi = B(xi−1,xi,xi+1) indexed by the
centre vertex. Note that we arbitrarily separated the product such
that T and G belong to one unique Bi. The complete measurement
contribution function can then be written as

f (x) =W (x0) ·G(x0,x1)T (x0,x1)
k−2

∏
i=1

Bi ·Le(xk−1). (6)

To extend a path in a unidirectional path tracer, we want to sample
an outgoing position xi+1 given a path prefix that has already xi−1
and xi. The PDF p(xi+1|xi,xi−1) of xi+1 should be proportional to

p(xi+1|xi,xi−1)∼ Bi ·
∫ k−2

∏
j=i+1

B j ·Le(xk−1)dxi+2..k−1. (7)

Next, we will show that this is the case if the Gaussian mixture is
adapted to the complete measurement contribution function. Con-
ceptually, the GMM approximates a function G of three vertices
xi−1,xi,xi+1. The model is fitted in a least squares sense against
the full measurement contribution function f , only holding these
three vertices fixed. Thus, this step integrates away all vertices x j
with j < i−1 or j > i+1:

G(xi−1,xi,xi+1) =
∫

f (x)d{x j<i−1x j>i+1}. (8)

Similarly we can define

G(xi−1,xi) =
∫

G(xi−1,xi,xi+1)dxi+1 (9)

=
∫

f (x)d{x j<i−1x j>i}, (10)

which additionally integrates out all possible xi+1. This will give
us, by definition of the conditional probability distribution:

G(xi+1|xi−1,xi) =
G(xi−1,xi,xi+1)

G(xi−1,xi)
. (11)

To analyse which terms of the measurement contribution func-
tion will stay in this expression and which will cancel out, we want
to separate the integrals of products in eqs. (8) and (10) into prod-
ucts of integrals. This is only possible if we can factor the integrand
into separable parts. Unfortunately the dependencies of the blocks
Bi on the vertices overlap, so in general this is not possible. For
instance, consider the minimal example

I1 =
∫

B1 ·B2 ·dxi=0..3 (12)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

learning update (section 6)

merge camera mixtures and build BVH (section 4.2)

for each octree leaf:

initialize mixture (section 6.3)

fit mixture using EM (section 6.2)

merge mixtures (section 4.1)

group triplets from reservoir by
mode (section 4.1). for each group:

path sampling progression (section 5)

begin path unguided or using
image plane sampling (section 5.4)

lookup local GMM and extend
path (section 5.1)

insert triplets into reservoirs (section 6.1)

Figure 1: Overview of the individual steps in our algorithm. During the learning phase, we alternate between learning (left) and path
sampling (right).

which is not separable because both Bi depend on x1 and x2. How-
ever, if we hold at least two consecutive vertices xi−1,xi fixed, we
can separate the integral:

I2(x1,x2) =
∫

B1 ·B2 ·dx0dx3 (13)

=
∫

B1dx0 ·
∫

B2dx3. (14)

This allows us to separate both eq. (8) and eq. (10) in the numerator
and denominator of eq. (11) into two integrals. Figure 2 illustrates
where this separation takes place: the prefix (the part of the path
that has already been sampled and is held fixed) will cancel out in
our conditional PDF, while the postfix (in this example the total
flux through all connections to all light sources) stays:

G(xi+1|xi−1,xi) =

���������∫
WT G

i−1
∏
j=1

B jdx1..i−2 ·Bi ·
∫ k−2

∏
j=i+1

B jLe(xk−1)dxi+2..k−1

���������∫
WT G

i−1
∏
j=1

B jdx1..i−2 ·
∫ k−2

∏
j=i

B jLe(xk−1)dxi+1..k−1

(15)

The denominator contains a postfix integral as normalization factor:
this is the same for all xi+1 we can possibly sample, since this ver-
tex is integrated away. The rest is identical to the sought-for eq. (7).

Note that we do not explicitly need to fit and store a GMM for
eq. (10), as we can take the conditional of the GMM that depends
on three vertices in closed form. This will transparently yield the
desired PDF in eq. (7). This analysis is merely provided as proof
for correctness as it might seem counterintuitive at first to use the
full measurement contribution function as the target of a model that
will be used to add vertices in unidirectional path tracing.

The symmetry of this result allows us to use this GMM for both
training and sampling of path tracing and light tracing at the same
time. This is a non-trivial result since when using partial through-
puts of prefixes or suffixes, the global scale may be off by orders
of magnitude. Previous work [VKŠ*14] therefore learn sampling

W Lexi−1 xi xi+1

W Lexi−1 xi xi+1

Figure 2: Parallel coordinates visualisation of path space. Sepa-
rability of the path space integral (illustrated in orange) can be
facilitated by holding consecutive vertices fixed. Since the BSDF fs
depends on three consecutive vertices (indicated as red bars), we
need to keep two fixed to be able to separate into two integrals. Top:
numerator, bottom: denominator of the conditional in eq. (11). The
green brackets show which terms can be separated, for instance
fs(xi−2,xi−1,xi) is the last term in the left integral. Interestingly
the prefix over dx0 · · ·xi−1 cancels out, but the postfix towards the
light does not.

for path and light tracing separately. The combination of guiding
information from path and light tracing has only been achieved pre-
viously by using neural networks [ZXS*21].

3.2. Gaussian mixture model for path guiding

In our case, a vertex triplet t = (xi−1,xi,xi+1) is interpreted as the
9D vector of concatenated 3D vertex positions. We will assume
i = 2 in this section to simplify notation, i.e. t = (x1,x2,x3), but our
equations also apply to the general case. To model the distribution

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

of triplets, we use a 9D Gaussian mixture model with full covari-
ance matrices, i.e. each of the K components represents a weighted
9D normal distribution N (t | µk,Σk):

p(t) =
K

∑
k=1

π
k N (t | µk,Σk), (16)

µk = (µk
1,µ

k
2,µ

k
3) ∈ R9, Σ

k =

Σ
k
11 Σ

k
12 Σ

k
13

Σ
k
21 Σ

k
22 Σ

k
23

Σ
k
31 Σ

k
32 Σ

k
33

 ∈ R9×9,

(17)

To simplify the notation, we will use π = π
k, µ = µk, Σ = Σ

k when-
ever writing about single components.

Guided Sampling sampling We use this GMM to locally guide
sampling decisions when extending paths. Given a path prefix
(. . . ,x1,x2), we compute the conditional of this mixture given the
last two vertices x1 and x2:

p(x3 | x1,x2)

=
K

∑
k=1

π
k N (x1,x2 | µk

1,2,Σ
k
1,2)

∑
K
l=1 πl N (x1,x2 | µl

1,2,Σ
l
1,2)

N (x3 | µk
3|1,2,Σ

k
3|1,2)

=:
K

∑
k=1

π̄
k N (x3 | µ̄k, Σ̄k).

(18)

For the computation of the marginal distributions N (x1,x2 |
µ1,2,Σ1,2) and conditional distributions N (x3 | µ3|1,2,Σ3|1,2) please
refer to appendix A. This results in a 3D GMM which we sample in
order to get the next vertex on the path. The details of this sampling
procedure are presented in section 5.

Spatial data structure Learning a single global mixture model for
an entire scene quickly turns infeasible. Similar to previous work,
we instead partition the scene with an octree, where each leaf node
contains a local GMM. For sampling and learning we then query
the octree for the local GMM using the middle triplet vertex x2. We
discuss the adaptation strategy for this octree in section 6.1.

3.3. Algorithm

Our algorithm has two distinct phases: learning and rendering. We
show an overview of all the individual steps in fig. 1. In the learning
phase, we iteratively sample from and update the guiding distribu-
tion after each progression. Once we reach the budget assigned to
learning, we keep the guiding distribution fixed and start the ren-
dering phase. Similar to most previous work, we discard the image
rendered up to this point, as this prevents potential strong noise
in the learning phase from affecting the final result. Alternatives
to this have been conceived, notably discarding outlier noise via
DBOR [ZHD18; RHJD18] or variance weighted blending [Mül19].
We consider this orthogonal to our approach and leave this question
outside of the scope of our work.

During the learning phase, we resample triplets of completed
paths online by storing them in reservoirs of fixed size local to each
octree leaf. After each progression, we learn a new GMM for each
octree leaf separately based on the triplets from the reservoir using

Figure 3: In our guiding distribution, each leaf of the octree con-
tains a local mixture used for sampling. These are constructed dur-
ing learning by merging individually fitted mode group mixtures.
The camera mixture is constructed for each leaf independently and
then merged into the global one.

expectation maximization (EM). We present details on the learning
procedure, including the collection of triplets, initialization of EM
and regularization of covariance matrices, in section 6.

4. The guiding distribution

In practice, there are additional details about our guiding distribu-
tion beyond the GMM introduced so far. We will discuss these in
the following, before moving on to sampling and learning. In par-
ticular, we partition triplets of different light transport modes (sec-
tion 4.1) and learn separate GMMs for each group. For sampling,
we combine the different GMMs again, keeping transport mode
data per component to inform sampling decisions. An important
special case is a separate 3D GMM at the camera for sampling the
image plane (section 4.2). We show an overview of the different
mixtures in our method in fig. 3.

4.1. Light transport modes

In addition to the positions of each path vertex, we also have dis-
crete metadata about the light transport attached to them. We refer
to this as the light transport mode and distinguish between vertices
in volumes, on surfaces, on the camera, and on environment maps.
On surfaces, we distinguish between reflection and transmission
events. Using this additional information for learning helps with
separating multimodal distributions. For sampling, we use it for
discrete decisions, e.g. to decide between sampling a volume or
a surface vertex, or whether to reflect or transmit at a smooth di-
electric surface (see section 5.3).

To integrate this into our method, we store modes together with
the vertex triplets. For learning, we partition the triplets into groups
with common combination of modes and build separate GMMs for
each group. We combine them subsequently into a single GMM,
storing the mode in each component. This becomes the local GMM
stored in the octree leaf, which we will use for sampling. To keep
the mixtures in relation, we need to scale the mixture component
weights π̃ that were normalized to each individual mixture before.
Consider N triplets with triplet weights wi, partitioned into groups
defined by the index sets I1, . . . , IG. For each mixture fitted to triplet
group g ∈ 1, . . . ,G we define its component weights as

Kg

∑
k=1

π̃
k
g = 1. (19)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

We combine the individual mixtures into a single mixture with K =

∑
G
g=1 Kg components and scale their weights proportionally to the

sum of triplet weights from group g:

π
k
g = π̃

k
g ·

∑i∈Ig
wi

∑
N
i=1 wi

. (20)

This will allow us to treat this as a single GMM for sampling, where
we just have to additionally compare light transport modes to select
for valid components.

4.2. Mixture at the camera

Guided sampling of the first path vertex x1 after the camera can be
important for allocating more samples to higher-variance areas in
the image, exploring newly discovered features, and also for sam-
pling distances in volumes. The latter is critical for sampling promi-
nent volumetric effects well, e.g. light shafts. For this purpose, we
maintain a camera GMM, which is only 3D and models the distri-
bution of x1. When starting a new path, we will use it to sample a
vertex position and connect to it from the camera. During the learn-
ing update, we build parts of the camera GMM separately for each
octree leaf node using only the triplets originating from the cam-
era. When all leaf camera mixtures are ready, we combine them
into a global camera GMM, adjusting the component weights like
described above for combining mixtures of different modes.

One additional difficulty with this approach is quickly evaluat-
ing the PDF of a large GMM for sampled paths. While for regu-
lar path extensions the number of components is limited, since we
only need to consider the mixture in one octree leaf, the camera
mixture can grow quite large. Therefore, we bound the support of
components by using truncated Gaussians, as discussed in the fol-
lowing section. This allows us to compute axis-aligned bounding
boxes (AABB) of camera mixture components and construct a 3D
bounding volume hierarchy (BVH). We do so once per progres-
sion, after the learning update. Given a path vertex, a point query in
the BVH now gives us all components that have this vertex in their
support and can contribute to the PDF. This reduces the number of
components we need to evaluate to a relatively small number. A
similar approach for efficient PDF evaluation was used by Reibold
et al. [RHJD18].

4.3. Truncated Gaussians

In place of true normal distributions, we always use truncated ap-
proximate Gaussians that are cut off at 4σ j per dimension j, as
described in the supplemental material of Reibold et al. [RHJD18].
The bounded support is particularly important for constructing the
BVH for the camera mixture. For local mixtures, bounded support
can also lead to many components evaluating to a zero conditional
weight π̄ early on. Thereby, we do not have to consider them for
MIS, which overall improves efficiency. Unbounded support could
potentially still be helpful, e.g. for cases where no mixture compo-
nent has a non-zero weight.

5. Path sampling with vertex triplet distributions

In this section we detail the construction of paths. On a high level,
we follow this procedure: We construct paths starting from either

the camera or a light source. Paths starting from the camera can
be guided (section 5.4), while we always start paths at the light
sources with an unguided technique. Then we iteratively extend
the path vertex by vertex, randomly selecting between guided or
unguided sampling with a fixed probability Punguided = 0.5. The
combination with unguided sampling is necessary for exploration
as well as unbiased results. For guided sampling, we conditionalize
the GMM on the last two vertices of the current path prefix, and
select a component from the conditionalized GMM (section 5.1).
Then we sample the position of, or direction to, the next vertex us-
ing the chosen component. Only in (near) specular cases (section
5.3), we fall back to directional sampling of the BSDF or phase
function. In addition, we perform next event estimation at each ver-
tex to efficiently handle cases that do not require guiding. For ro-
bustness, we combine all described sampling strategies with MIS
using the balance heuristic.

5.1. Sampling the conditional GMM

To extend a path prefix (. . . ,xi−1,xi) by another vertex xi+1, we
first look up the local 9D GMM from the octree based on xi, and
conditionalize it on the last two vertices xi−1,xi of the prefix as in
equation (18):

p(xi+1 | xi−1,xi) =
K

∑
k=1

π̄
k N (xi+1 | µ̄k, Σ̄k). (21)

In addition, we also disregard any components that cannot extend
the current path because of contradicting light transport modes.
Next, we randomly sample a component k based on its conditional
weight π̄

k. The light transport mode of this component determines
if we sample the next vertex on a surface or in a volume. For vol-
umes, we directly sample the 3D position of the next vertex xi+1
using the conditional Gaussian N (xi+1 | µ̄, Σ̄). For surfaces, we
project the Gaussian to a plane first for easier PDF evaluation (sec-
tion 5.2). In both cases, as mentioned before, we fall back to di-
rectional sampling of BSDF or phase function for (near) specular
materials at xi (section 5.3). After having sampled the new vertex,
we check whether the light transport mode on the path matches that
described by the mixture component and discard it otherwise. This
happens e.g. when sampling a volume vertex that is occluded by
surface geometry.

5.2. Sampling a surface vertex position

To sample a surface vertex, we could simply project a sampled 3D
position to the scene geometry by tracing a ray. However, evaluat-
ing the PDF of the intersection point would require integration of
the truncated Gaussian along the sampled ray, since any position
on the ray could have produced the same intersection. To avoid
this, we instead do the marginalization up front: we project the 3D
Gaussian to a plane and sample the resulting 2D Gaussian. For any
intersection of a ray with scene geometry there is now only one
corresponding point on the plane, for which we evaluate the PDF
easily. As the projection plane, we use the one orthogonal to the
connection of the current vertex xi to the conditional mean µ̄.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

5.3. Handling (near) specular vertices

If the current vertex xi is (near) specular, the outgoing direction
is constrained and depends strongly on local geometry. Therefore
sampling a position xi+1 purely based on the conditionalized Gaus-
sian N (xi+1 | µ̄, Σ̄) will often be unfavourable or fail. Instead, we
combine with BSDF or phase function sampling at xi based on its
roughness

r :=

{√
α on microfacet surfaces with roughness α,√
1−|g| in media with mean cosine g.

(22)

by choosing BSDF or phase function sampling instead of position
sampling with probability

PBSDF(r) = max
(

0,1− r
rmax

)
. (23)

For roughness greater than rmax = 0.2, we deem position sampling
sufficient. Note that even so, we can still guide BSDF sampling
with respect to discrete decisions, e.g. if we should reflect or trans-
mit at a dielectric. Therefore, we consider this sampling technique
a guided one, i.e. the probability for selecting it is

(1−Punguided) ·PBSDF(r), (24)

and thus the probability for guided position sampling is

(1−Punguided) · (1−PBSDF(r)). (25)

Distance sampling When sampling a volume vertex, the BSDF or
phase function only determines the direction. We can still lever-
age the conditional Gaussian for sampling a distance. For this, we
transform the 3D covariance to a basis where one direction aligns
with the sampled direction. Next, we conditionalize to the other
two known dimensions (see Appendix A) and obtain a conditional
1D Gaussian. Since we would need to reject negative distances, we
sample only the positive part by remapping the random number us-
ing the CDF of the truncated Gaussian.

5.4. Image plane sampling

For each path starting from the camera, we choose between un-
guided or guided sampling of the image plane in the same way
as when extending paths with probability Punguided. To sample the
vertex position x1, we proceed in the same way as when extend-
ing a path, using the fixed camera GMM (section 4.2) in place of a
conditional GMM. For MIS, we look up all components of the 3D
GMM whose support includes the sampled vertex using the cam-
era mixture BVH with a point query. To guarantee that this will in
fact yield all components that could produce the sampled vertex,
we terminate all paths where the sampled vertex projects outside of
the AABB of the component support.

6. Learning a vertex triplet distribution with

Learning a guiding distribution involves multiple steps on which
we provide detail in this section. Ultimately, we want to fit GMMs
to vertex triplets using expectation maximization (EM) after each
progression of the learning phase. As input, we require vertex
triplets weighted according to our target function. We collect and
resample triplets during path sampling in reservoirs. Keeping only

a fixed number of triplets reduces the overhead of storing and pro-
cessing many triplets later on. We review the reservoir data struc-
ture and its properties, and explain the weighting of triplets in sec-
tion 6.1. We review the EM algorithm for the case of GMMs in
section 6.2, where we also present our approach to regularizing the
estimated covariances. To run EM, we further need an initial mix-
ture that EM can improve upon subsequently. We detail our top-
down clustering that we use as initialization in section 6.3.

Triplet collection and fitting of mixtures is handled separately
for each leaf node of the octree. We adapt the octree to the num-
ber of sampled triplets in each leaf, in order to achieve better ap-
proximation in important regions. As described in section 4, in each
leaf node we further partition vertex triplets into groups of different
light transport modes for fitting, combining them only afterwards.
Similarly, we construct the global camera mixture by fitting a part
of it in each octree leaf separately. In the following, we will leave
these details aside and focus on fitting single GMMs.

6.1. Collecting triplet samples

For each newly sampled path during learning, we split it into its
vertex triplets. We assign each triplet to an octree cell, according to
its middle vertex. Then, we insert the triplets into the reservoirs of
the respective cells.

Reservoir sampling Reservoir resampling naturally allows us to
accumulate rare samples over multiple progressions, while keep-
ing the total number of triplets in each octree cell fixed. We use
the VAROPT [CDK*09] streaming resampling algorithm to achieve
this. It maintains a reservoir of fixed size that consists of a subset
S ⊂ I of all previously inserted triplets. Triplets are inserted into the
reservoir with a weight wi, which is based on the target function.
The probability for a triplet to be included in S is proportional to
the insertion weight wi. When we take triplets out of the reservoir
for EM, resampling already partially accounted for these weights.
As such, the output weights ŵi of each triplet i ∈ S will be differ-
ent from their insertion weight wi. Note that for discarded triplets
i ∈ I \ S, the output weight ŵi = 0. In general, the output weights
are unbiased estimates of the insertion weights:

E[ŵi] = wi, (26)

and the sum of output weights equals the total sum of insertion
weights

∑
i∈S

ŵi = ∑
i∈I

wi. (27)

The reservoir data structure consists of an array of triplets with
equal output weight and a priority queue with triplets with ŵi = wi.
If the insertion weight is too high to be included in the array by
resampling, it is first inserted into the priority queue. When more
triplets arrive later, this can lead to triplets being migrated from the
priority queue to the equal-weight array. Hence, given a sufficient
number of input samples, all output weights will become constant.

Insertion weight of triplet samples Sampled paths x̄ follow a dis-
tribution that is different from the target we want to approximate

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

with our guiding distribution. As shown in section 3, our target den-
sity is proportional to the measurement contribution f (x̄). It follows
that the normalized target density is

ptarget(x̄) =
1
Z

f (x̄), Z :=
∫
P

f (x̄)dx̄. (28)

Learning a model for the target distribution will amount to estimat-
ing the expectation of a function s(x̄) on paths

Etarget[s(x̄)] =
∫
P

s(x̄) ptarget(x̄)dx̄. (29)

We can use importance sampling to express this expectation as one
over the current path sampling density pcurrent:

Etarget[s(x̄)] = Ecurrent

[
s(x̄) · ptarget(x̄)

pcurrent(x̄)

]
. (30)

Since the normalizing constant Z is the unknown light transport
integral, we cannot compute the importance weights for the unbi-
ased estimator. However, we can still build on the self-normalized
importance sampling estimator [Owe13, Chapter 9]:

F̃n =
∑

n
i=1 w(x̄i)s(x̄i)

∑
n
i=1 w(x̄i)

, (31)

which is a consistent estimator for Etarget[s(x̄)] with the unnormal-
ized importance weights

w(x̄) :=
f (x̄)

pcurrent(x̄)
= Z · ptarget(x̄)

pcurrent(x̄)
. (32)

Therefore, to insert triplets into reservoirs, we set their insertion
weight to w(x̄).

Spreading learned information As octree cells learn indepen-
dently, each feature would have to be found by chance multiple
times, when it covers an area larger than the cell size. To spread in-
formation about discovered features, we stochastically put samples
in neighboring cells. Similar to previous work [Mül19; RHL20],
we randomly perturb the position used to look up the octree cell in
a box with side length proportional (we use a factor of 0.2) to the
current cell size. Note that we still keep the original triplet position
for learning. For our method this results in slightly larger mixture
complexity, while for previous directional-only models this blurs
the learned distribution over a larger area and is a trade-off with
accuracy.

Octree adaptation Like previous work, we adapt our spatial data
structure to sample count. To keep the learning cost approximately
fixed, we subdivide and collapse octree nodes to approximately
reach a targeted number of leaf nodes L. We used L = 300 as a
default value for our results. In each progression, we count how
many triplets are inserted into the reservoirs of each octree leaf.
Given the total triplet count C, we choose a threshold T :

T =
C
L
. (33)

Before constructing mixtures in each leaf node, we collapse all
nodes that received less triplets than T . Then we construct all mix-
tures and only afterwards subdivide octree cells that received more
triplets than the threshold. We divide the triplets stored in reservoirs
between the new leaf nodes based on their middle vertex positions.

This results in the new leaf nodes using the same mixture for sam-
pling, but being able to collect more triplets for the next progres-
sion. Importantly, it does not lead to mixtures being fitted to fewer
triplets in newly subdivided leaf nodes, as would be the case if we
subdivided before fitting.

6.2. Expectation maximization

After each progression, we rebuild the local GMMs in each oc-
tree leaf using expectation maximization (EM) [DLR77]. Given N
triplets with weights wi and positions xi ∈R9, we seek to maximize
the log-likelihood function

L(θ) =
N

∑
i=1

wi log p(xi|θ), (34)

where we abbreviated the GMM parameters as

θ = (π1,µ1,Σ1, . . . ,πK ,µK ,ΣK). (35)

This is the same weighted formulation of the log-likelihood as used
by Vorba et al. [VKŠ*14].

EM is an iterative approach to this problem by modelling as-
signment of triplets to components as unobserved variables. In the
E-step of iteration t, we set the assignment of triplet i to component
k to its expectation under current parameters θt :

rik =
π

k
t N (xi | µk

t ,Σ
k
t)

∑
K
j=1 π

j
t N (xi | µ j

t ,Σ
j
t)
. (36)

Afterwards, in the M-step we maximize L(θt+1) given the
weighted assignments vik = wi rik:

π
k
t+1 =

∑
N
i=1 vik

∑
N
i=1 wi

, µk
t+1 =

∑
N
i=1 vik xi

∑
N
i=1 vik

, Σ
k
t+1 =

∑
N
i=1 vik xi xT

i

∑
N
i=1 vik

. (37)

Starting with an initial choice of parameters, we alternate both
steps until a local maximum of L is reached. In practice, we stop
once we reach a threshold (ε = 10−3) on the relative increase in
log-likelihood:

|L(θt+1)−L(θt)|
|L(θt)|

< ε. (38)

Covariance regularization It is often the case that only few
triplets are available for a mixture component, e.g. when a new light
transport feature was randomly discovered. This makes it challeng-
ing to estimate high-dimensional covariance matrices. A common
approach to regularize this problem is to estimate a structured co-
variance with less free parameters Σreg and use a convex combina-
tion of this with the sample covariance Σ [Mur12, Chapter 4.6]:

Σ̃ = λΣreg +(1−λ)Σ. (39)

When only very few samples are available, we fall back to a
diagonal covariance with standard deviation r:

Σiso = r2 I9. (40)

In our tests, we set r = 0.1 · c proportional to the octree cell size
c. With more samples available, we found it helpful to switch to a
data-dependent structure as soon as possible. For this structure, we

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

could assume isotropic and independent distribution of vertex po-
sitions to end up with a diagonal covariance matrix and three vari-
ances to estimate. Since modeling vertex correlation is important
to get accurate conditional distributions, we additionally assume
isotropic correlation to arrive at

Σblock =
(

Tr(Σi j)
3 · I3

)
i, j=1,2,3

∈ R9×9, (41)

and combine both into

Σreg = λblock Σblock +(1−λblock)Σiso. (42)

We base the choices of λ and λblock on the sample size used in the
covariance estimate. Since our samples are weighted, just counting
them can severely underestimate correlation-like effects, e.g. when
a single triplet with high weight dominates the estimate. Therefore
we use Kish’s effective sample size estimator [Kis65] that accounts
for this:

n̂ =

(
∑

N
i=1 vi

)2

∑
N
i=1 v2

i
. (43)

Then we set

λ =
n̂−1

(n̂−1)+9
, λblock = 1−min

{
n̂−1

3
,1
}
. (44)

As an additional measure, we perform a singular value decomposi-
tion and clip the singular values to a small positive value.

6.3. Initial mixture

The results of EM in general depend strongly on the initial pa-
rameters of the mixture θ0. Particularly the high dimensionality
and strong correlations of triplet dimensions make this challeng-
ing. EM can often struggle to separate modes in the data given a
bad initialization. Therefore we invest effort into a top-down hard
clustering of triplets before EM, which then typically leads to con-
vergence in few iterations. This is one important reason for us to
store triplets instead of accumulating statistics, as done in previous
work [VKŠ*14; DPÖM21]. In contrast to Ruppert et al. [RHL20]
we avoid to evaluate merge criteria, but cannot make use of param-
eters from previous iterations in the MAP framework.

The idea of our clustering scheme is based on PCA-Part [SD07],
which was originally intended for k-means. We briefly review
PCA-Part and describe our modifications to make it more suitable
for GMMs. These include improving cluster splits by EM iteration
and a stopping condition for splitting clusters.

PCA-Part The algorithm starts by putting all data points in a sin-
gle cluster. It then splits this cluster in half along the direction
of largest variation, creating two new clusters. The split direction
is computed as the eigenvector of the covariance with the largest
eigenvalue. This is repeated until the desired number of clusters
is reached. The cluster with worst fit to the data is picked as the
next one to split. For k-means the sum-squared-error is used to de-
termine this score, but the authors already describe how to use the
likelihood instead for the case of GMMs. Additionally, they discuss
the possibility to try all eigenvectors as possible split directions and
use the split that results in the best score. We employ both of these
modifications to the basic algorithm for our method.

Improved cluster splits Splitting the triplets at planes oriented by
eigenvectors and always at the mean can be too restrictive. Since the
split effectively creates a two-component GMM, we can improve
the assignment further by EM-iteration. These additional iterations
can be amortized to a degree, because they typically lead to faster
convergence for global EM later on. Also, they operate only on the
subset of the triplets that were assigned to the cluster that is being
split.

Stopping condition To choose the number of components in our
GMM, we set the maximum number to a high value (e.g. Kmax =
128) and evaluate a stopping condition before applying a clus-
ter split. For this purpose, we compare the likelihood of the two-
component GMM given by the split and the single Gaussian before
splitting. To account for the different number of parameters k in
both models, we choose the model that is better according to its
Akaike information criterion (AIC) [Aka73]

AIC(k) = 2k−2nL(θ(k)). (45)

A similar approach was used in the x-means algorithm [PM00] in
the context of k-means. They use the Bayesian information crite-
rion (BIC) [Sch78] as a criterion, which we found to be too conser-
vative for our application in practice. In this way, we will continue
splitting clusters until each cluster is best represented by a single
Gaussian.

7. Results

We implemented our method in a rendering system and provide
source code online [SHJD22].

7.1. Tested methods

We tested different variants of our method. We also implemented a
restricted version that we refer to as vertex pairs. In this case, we
just consider the pair of scattering and outgoing vertex. Compared
to triplets, the incident vertex is not included in the model. This
leads to a 6D GMM in place of the full 9D GMM, and this restricted
version serves as a baseline to assess the benefit of using triplets. As
this does not have the same symmetry, light tracing is not available
for vertex pairs.

For vertex triplets, we make the use of light tracing optional. This
is for comparison with unidirectional methods, and because it in-
troduces overhead that does not necessarily amortize in all scenes.
When light tracing is enabled, we always trace two paths for each
pixel per progression: one camera path and one light path. In our
results, we count this as two samples per pixel.

In total, we thus compare four different methods:

• PAIRS: guided path tracing with vertex pairs,
• TRIPLETS: guided path tracing with vertex triplets,
• TRIPL+LLT: guided path tracing with vertex triplets, and guided

light tracing during the learning phase only,
• TRIPL+FLT: guided path tracing and light tracing with vertex

triplets.

We compare our presented methods against the following state of
the art methods:

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

• PPG: practical path guiding [MGN17], including improvements
suggested later on [Mül19],

• VARPG: variance-aware path guiding [RGH*20],
• VMM: parallax-aware path guiding [RHL20],
• VMM+PROD: VMM with product importance sampling and

guiding probability set to 0.25,
• SDMM: path guiding using spatial-directional mixture mod-

els [DPÖM21],
• ZVVPG: zero-variance based volume path guiding [HZE*19],
• SPG: selective path guiding [RHJD18].

We use the default settings for parameters of all methods, unless
otherwise noted.

Normalized equal time comparison The different methods we
compare are implemented in different rendering systems. To make
equal-time comparisons fair, we normalize to the runtime of a path
tracer with fixed sample count in each system. This approximately
compensates for the overall overhead in these systems, but results
should still be interpreted cautiously. We report the number of sam-
ples per pixel (spp) each method produced, and for methods with a
distinct learning phase as learn+render spp.

Learning time allocation For algorithms that have a dedicated
learning phase, we allocate 50% of the total time to learning. This
includes the presented methods, VMM and SPG. PPG and VARPG

have a similar learning schedule, due to their power-of-two itera-
tions. For ZVVPG, we include the fixed light tracing and learning
preprocess in the total time budget.

Light tracing considerations As ZVVPG learns on light tracing
paths, of our methods TRIPL+LLT is the most similar one in com-
parison. All other compared methods only make use of path trac-
ing. This should be taken into consideration when comparing to
our TRIPL+LLT and especially TRIPL+FLT results, but neverthe-
less the simple extension to guided light tracing is a benefit of our
method. Note that when light tracing is enabled, we trace two paths
per pixel per progression. This can result in a seemingly high num-
ber of spp, when many light paths terminate early.

Colour noise Our methods and SPG are implemented in a spectral
rendering system, which produces coloured noise that is not present
in all other shown methods. Especially firefly samples are more
noticeable in spectral renderings, as they tend to appear in bright
colors.

7.2. Comparisons

Figure 4 shows difficult glossy surface transport, where sampling
the product of BSDF and incident radiance is important. This
should be a case where TRIPLETS can show their full potential.
Surprisingly, they show little benefit over PAIRS, which already
improves on methods without product sampling. This can be ex-
plained by our target function accounting for the full product, even
for PAIRS. PAIRS is only missing the dependence on the incident
vertex, but still encodes the product marginalized over all incident
vertices. Often, this seems to be enough to be able to sample diffi-
cult paths at all, while the increased modeling power of TRIPLETS

cannot make up for harder learning. Note that for this comparison,
we hit an error in the public implementation of SDDM. Therefore,
we could only produce a result in half resolution.

Figure 5 shows a case where learning a model based on vertex
pairs is not enough to resolve the reflectance field faithfully. We
show equal sample and equal time comparisons between PAIRS

and TRIPLETS. Even though the simpler PAIRS approach can do
roughly 35% more learning iterations in the same time, these do
not pay off due to the simplistic model. Note that this performance
gain is likely to shrink for more complex scenes with more signifi-
cant cost of ray tracing and material evaluation.

In fig. 6 we show a complex indirect volume caustic. Here, light
tracing can help tremendously during both learning and rendering.
However, the caustic seen in the mirror (orange inset) cannot be
resolved by the light tracer, but works best for a guided path tracer.
Thus, using the light tracing during learning only and then ren-
dering using guided path tracing (TRIPL+LLT) profits from good
learning as well as fast iteration times during the rendering phase.
SPG is very slow in this scene, likely due to higher order scattering.
Since a dedicated learning phase left only very few samples for
rendering, we did leave the learning phase running for the whole
render. This gave better results but still includes bright firefly sam-
ples.

Figure 7 shows a volume with anisotropic phase function in con-
junction with glossy surface materials. Learning and rendering with
PAIRS is very fast, but fails to resolve the complex directional de-
pendencies and cannot profit from paths constructed via light trac-
ing. ZVVPG works well on the background fog but fails to capture
the directed features caused by glossy reflections and peaky phase
functions due to the lack of surface product sampling in this code
path. Note, however, that the glow of the diffuse desert in the back-
ground is also not captured, even though it can be reproduced by
careful distance and phase function sampling.

In fig. 8 we show results on the pool scene, originally presented
by Vorba et al. [VKŠ*14]. The caustics on the pool floor in this
scene are captured well by simpler models based on directional
representation of incident radiance. Since the illumination comes
from an infinitely far environment light, important directions are
mostly the same for different positions on the pool floor. Our more
complex model can still represent this, but requires longer time for
learning. Additionally, light tracing cannot connect to the camera
through the dielectric water surface, and thus does mostly not help
with learning.

We compare memory usage of our method in table 1. Most of the
memory is spent on storing triplet samples that are used for learn-
ing. Enabling light tracing increases memory requirements for the
guiding distribution, because we precompute additional matrices.
Overall, memory overhead is still low and in the same order as pre-
vious work.

8. Limitations and future work

We have shown how our model can represent and learn sampling
densities for complex light transport scenarios. Further improve-
ments can most likely be made by making learning more efficient,
both in easy and hard cases.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

PPGPPG 1887 spp1887 spp

RMSE 1.195RMSE 1.195

VARPGVARPG 546 spp546 spp

RMSE 1.142RMSE 1.142

VMMVMM 875+1256 spp875+1256 spp

RMSE 0.495RMSE 0.495

VMM+PRODVMM+PROD 528+1000 spp528+1000 spp

RMSE 0.499RMSE 0.499

SDMMSDMM 3050* spp3050* spp

RMSE 0.450RMSE 0.450

SPGSPG 289+606 spp289+606 spp

RMSE 1.008RMSE 1.008

PAIRSPAIRS 334+874 spp334+874 spp

RMSE 0.173RMSE 0.173

TRIPLETSTRIPLETS 243+948 spp243+948 spp

RMSE 0.309RMSE 0.309

TRIPL+LLTTRIPL+LLT 382+887 spp382+887 spp

RMSE 0.251RMSE 0.251

TRIPL+FLTTRIPL+FLT 380+1018 spp380+1018 spp

RMSE 0.210RMSE 0.210

Figure 4: Glossy surfaces lit by directional emitters produces hard to resolve reflections. Here, sampling the product of BSDF and incident
radiance well is important, as can be seen in the difference between VMM and VMM+PROD, which achieves overall good results here.
PAIRS show overall better performance than methods without product sampling. TRIPLETS provide surprisingly little benefit over pairs.
They struggle with learning the illumination on the background, although learning with the light tracer solves this problem. Note that the
result of SDMM is in half resolution, therefore the spp number is much higher than with the other methods.

diffuse blocker
directional emitter

circular side wall, highly specular

glossy floor, modulated by grid texture PAIRSPAIRS equal time 34+60sppequal time 34+60spp

RMSE 0.642RMSE 0.642

TRIPLETSTRIPLETS equal time 25+75sppequal time 25+75spp

RMSE 0.624RMSE 0.624

PAIRSPAIRS 32+32spp32+32spp

RMSE 0.650RMSE 0.650

TRIPLETSTRIPLETS 32+32spp32+32spp

RMSE 0.642RMSE 0.642

Figure 5: A circular mirror chamber with a ring-shaped directional emitter on the ceiling. The ground floor has a glossy metal BRDF and
is modulated by a grid texture for orientation. This simple scene shows the shortcomings of the GMM using pairs of vertices: it cannot
distinguish the incident radiance field by outgoing direction. In this room, the rounded mirror shows spots on the ground texture from all
sides: seen directly and seen in the mirror on all sides. This results in a sub-optimal marginal distribution. The GMM using triplets can
resolve this. TRIPLETS also show some less converged areas, which we attribute to harder learning of the more general model.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

ZVVPGZVVPG 2160spp2160spp

RMSE 0.338RMSE 0.338

TRIPL+FLTTRIPL+FLT 484+2462spp484+2462spp

RMSE 0.114RMSE 0.114

TRIPL+LLTTRIPL+LLT 488+1827spp488+1827spp

RMSE 0.118RMSE 0.118

PAIRSPAIRS 194+1461spp194+1461spp

RMSE 0.154RMSE 0.154

SPGSPG 146spp146spp

RMSE 0.605RMSE 0.605

TRIPLETSTRIPLETS 237+1844spp237+1844spp

RMSE 0.173RMSE 0.173

Figure 6: Spheres and volume caustics by Herholz et al. [HZE*19]. Methods without light tracing (PAIRS, TRIPLETS, SPG), take a long
time to learn dimmer caustics in the left part. PAIRS is surprisingly slow in this scene. We hypothesize that this is due to our implementation
not terminating long paths with little contribution using Russian Roulette.

ZVVPGZVVPG 2160spp2160spp

RMSE 16.46RMSE 16.46

TRIPL+FLTTRIPL+FLT 394+1102spp394+1102spp

RMSE 3.13RMSE 3.13

TRIPL+LLTTRIPL+LLT 388+1881spp388+1881spp

RMSE 8.34RMSE 8.34

PAIRSPAIRS 215+1916spp215+1916spp

RMSE 33.39RMSE 33.39

Figure 7: A hazy scene lit by a directional emitter with mean cosine g = 0.98 in the homogeneous medium. Here, light tracing contributes
important information to the learning as well as the rendering. Learning with PAIRS is faster, so in this equal time comparison it achieves
better results than learning with TRIPLETS as long as light tracing is not used.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

PPGPPG 3242spp3242spp

RMSE 0.070RMSE 0.070

VARPGVARPG 1001spp1001spp

RMSE 0.049RMSE 0.049

VMMVMM 988+1556spp988+1556spp

RMSE 0.064RMSE 0.064

VMM+PRODVMM+PROD 1020+1712spp1020+1712spp

RMSE 0.047RMSE 0.047

SDMMSDMM 3050spp3050spp

RMSE 0.077RMSE 0.077

SPGSPG 622spp622spp

RMSE 0.265RMSE 0.265

PAIRSPAIRS 167+1687spp167+1687spp

RMSE 0.154RMSE 0.154

TRIPLETSTRIPLETS 86+1454spp86+1454spp

RMSE 0.202RMSE 0.202

TRIPL+LLTTRIPL+LLT 162+1414spp162+1414spp

RMSE 0.190RMSE 0.190

TRIPL+FLTTRIPL+FLT 168+1976spp168+1976spp

RMSE 0.224RMSE 0.224

Figure 8: The pool scene presents a simple case where for each 3D point only a 2D incoming radiance field has to be found. The bottom of
the pool is diffuse, so there is nothing to be gained from a more complex approach and training a higher dimensional model just generates
overhead both in terms of raw performance as well as convergence of the model itself.

Table 1: Our method uses a comparable amount of memory as pre-
vious work, shown here for the POOL (fig. 8) and ESPRESSO (fig. 4)
scenes. We separately list the memory requirements for storing the
guiding distribution and for the samples that are used for learning.

VMM PAIRS TRIPLETS TRIPL+FLT

ESPRESSO

guiding (MiB) 41 9.5 18 33
samples (MiB) 184 106 140 144

POOL

guiding (MiB) 12 9.5 15 29
samples (MiB) 38 130 168 169

Selective guiding Many regions of path space are usually handled
well by simple sampling strategies. Currently, our method does not
exploit this fact and needs to handle the full path space. It would
be an interesting extension to selectively focus on difficult regions,
like in the method of Reibold et al. [RHJD18]. One difficulty with
applying their approach is obtaining a stable target function: DBOR
is always relative to the current path sampling density, which is
changing during learning.

Another interesting aspect for future work would be to determine
the “difficulty” of individual triplets, as not all parts of the path are
usually equally hard to sample. Our model can use this informa-
tion when available, and e.g. select the guiding probability for each
component differently, thus taking position and incident direction
into account for this decision.

Variance-awareness Our target function is unaware of variance
in the estimators. Rath et al. [RGH*20] show how the square root
of the second moment should be the target for minimizing vari-
ance. However, their approach does not easily transfer to mixture
models trained using EM. Further research on how their results can
be incorporated into more complex models could help with better
distribution of samples to high variance regions. This would be es-
pecially interesting for quick exploration of these regions during
learning.

Path space regularization As our method learns from full trans-
port paths, we cannot make use of partially constructed paths, e.g.
when a light tracer cannot connect to the camera through a specu-
lar interface. A possible solution is to connect connections (during
learning) using path space regularization [KD13]. Previous work
showed how this can benefit path guiding [WDH*21] by discover-
ing features more easily.

9. Conclusion

We introduced a general data model to represent the light trans-
port operator in image synthesis. This model was crafted to be as
general as possibly needed to express all dependencies arising be-
tween path vertex geometry and the transported differential flux,
but no redundancy. The result is a 9D mixture model which de-
pends on three path vertices: incoming, scattering, and outgoing.
Furthermore it is split into components for scatter modes such as
reflect or transmit. We can transparently train a single model and
sample from it using bidirectionally constructed paths, which was
previously only done using neural networks. We demonstrated that
we can learn and sample intricate directional dependencies between

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

glossy surface scattering as well as volumetric transport including
distance sampling.

As a general technique, the biggest future challenge is to re-
duce the overhead over simpler approaches which are sufficient for
scenes with simpler configurations. For instance the pool scene has
a diffuse material under the caustic and can be well represented
by a lower dimensional model which is able to learn and render
faster. We expect future improvements to our model are possible
especially in the learning phase as discussed in this work.

Acknowledgements

We thank the following persons for providing models and scenes:
Blend Swap user galingong for the espresso machine (fig. 4), Se-
bastian Herholz for the volume caustic (fig. 6), Pablo Vazquez for
“Nishita Sky Demo” (fig. 7) and Michal Timo and Ondřej Karlík
for the pool scene (fig. 8). This work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) –
project number 431478017.

References
[Aka73] AKAIKE, H. “Information Theory and an Extension of the Max-

imum Likelihood Principle”. Second International Symposium on Infor-
mation Theory. Akademia Kiado. 1973, 267–281 9.

[BMDS19] BAKO, STEVE, MEYER, MARK, DEROSE, TONY, and SEN,
PRADEEP. “Offline Deep Importance Sampling for Monte Carlo Path
Tracing”. Computer Graphics Forum (Proceedings of Pacific Graphics
2019) 38.7 (2019), 527–542 2.

[CDK*09] COHEN, EDITH, DUFFIELD, NICK, KAPLAN, HAIM, et al.
“Stream Sampling for Variance-Optimal Estimation of Subset Sums”.
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SODA ’09. New York, 2009, 1255–1264 7.

[DGJ*20] DIOLATZIS, STAVROS, GRUSON, ADRIEN, JAKOB, WENZEL,
et al. “Practical Product Path Guiding Using Linearly Transformed
Cosines”. Computer Graphics Forum (Proceedings of the Eurographics
Symposium on Rendering) (2020). DOI: 10.1111/cgf.14051 3.

[DLR77] DEMPSTER, A. P., LAIRD, N. M., and RUBIN, D. B. “Maxi-
mum Likelihood from Incomplete Data via the EM Algorithm”. Journal
of the Royal Statistical Society. Series B (Methodological) 39.1 (Sept. 1,
1977), 1–22. DOI: 10/gfxzrv 8.

[DPÖM21] DODIK, ANA, PAPAS, MARIOS, ÖZTIRELI, CENGIZ, and
MÜLLER, THOMAS. “Path Guiding Using Spatio-Directional Mixture
Models”. Computer Graphics Forum 41.1 (2021), 172–189. DOI: 10.
1111/cgf.14428 2, 3, 9, 10.

[DWWH20] DENG, HONG, WANG, BEIBEI, WANG, RUI, and
HOLZSCHUCH, NICOLAS. “A Practical Path Guiding Method for
Participating Media”. Computational Visual Media 6 (Mar. 2020), 37–
51. DOI: 10.1007/s41095-020-0160-1 3.

[GBBE18] GUO, JERRY, BAUSZAT, PABLO, BIKKER, JACCO, and EISE-
MANN, ELMAR. “Primary Sample Space Path Guiding”. Eurographics
Symposium on Rendering - EI & I. July 2018, 73–82. DOI: 10.2312/
sre.20181174 2.

[GKDS12] GEORGIEV, ILIYAN, KŘIVÁNEK, JAROSLAV, DAVIDOVIČ,
TOMÁŠ, and SLUSALLEK, PHILIPP. “Light Transport Simulation with
Vertex Connection and Merging”. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH Asia) 31.6 (Nov. 2012), 192:1–192:10. DOI:
10/gbb6q7 1.

[Has70] HASTINGS, WILFRED K. “Monte Carlo Sampling Methods Us-
ing Markov Chains and Their Applications”. Biometrika 57.1 (Apr. 1,
1970), 97–109. DOI: 10/dkbmcf 1.

[HEV*16] HERHOLZ, SEBASTIAN, ELEK, OSKAR, VORBA, JIŘÍ, et al.
“Product Importance Sampling for Light Transport Path Guiding”. Com-
puter Graphics Forum (Proceedings of the Eurographics Symposium on
Rendering) (2016). DOI: 10/f842dt 3.

[HP02] HEY, HEINRICH and PURGATHOFER, WERNER. “Importance
Sampling with Hemispherical Particle Footprints”. Proceedings of the
Spring Conference on Computer Graphics (SCCG). Apr. 2002, 107–114.
DOI: 10/fmx2jp 2.

[HZE*19] HERHOLZ, SEBASTIAN, ZHAO, YANGYANG, ELEK, OSKAR,
et al. “Volume Path Guiding Based on Zero-Variance Random Walk The-
ory”. ACM Transactions on Graphics 38.3 (June 2019). DOI: 10.1145/
3230635 3, 10, 12.

[Jen95] JENSEN, HENRIK WANN. “Importance Driven Path Tracing Us-
ing the Photon Map”. Rendering Techniques (Proceedings of the Eu-
rographics Workshop on Rendering). Springer-Verlag, 1995, 326–335.
DOI: 10/gf2hcr 2.

[JM12] JAKOB, WENZEL and MARSCHNER, STEVE. “Manifold Explo-
ration: A Markov Chain Monte Carlo Technique for Rendering Scenes
with Difficult Specular Transport”. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 31.4 (July 2012), 58:1–58:13. DOI: 10/
gfzq4p 3.

[KD13] KAPLANYAN, ANTON S. and DACHSBACHER, CARSTEN. “Path
Space Regularization for Holistic and Robust Light Transport”. Com-
puter Graphics Forum (Proceedings of Eurographics) 32.2 (2013), 63–
72. DOI: 10/gbc3p8 13.

[KHD14] KAPLANYAN, ANTON S., HANIKA, JOHANNES, and DACHS-
BACHER, CARSTEN. “The Natural-Constraint Representation of the Path
Space for Efficient Light Transport Simulation”. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 33.4 (July 2014), 102:1–102:13.
DOI: 10/f6cz85 3.

[Kis65] KISH, LESLIE. Survey Sampling. John Wiley & Sons, 1965 9.

[LW95] LAFORTUNE, ERIC P. and WILLEMS, YVES D. “A 5D Tree to
Reduce the Variance of Monte Carlo Ray Tracing”. Rendering Tech-
niques (Proceedings of the Eurographics Workshop on Rendering). NY:
Springer-Verlag, June 1995, 11–20. DOI: 10/gfz5ns 2.

[MGN17] MÜLLER, THOMAS, GROSS, MARKUS, and NOVÁK, JAN.
“Practical Path Guiding for Efficient Light-Transport Simulation”. Com-
puter Graphics Forum (Proceedings of the Eurographics Symposium on
Rendering) 36.4 (June 2017), 91–100. DOI: 10/gbnvrs 1, 2, 10.

[MMR*19] MÜLLER, THOMAS, MCWILLIAMS, BRIAN, ROUSSELLE,
FABRICE, et al. “Neural Importance Sampling”. ACM Trans. Graph.
38.5 (Oct. 2019), 145:1–145:19. DOI: 10.1145/3341156 2.

[Mül19] MÜLLER, THOMAS. ““Practical Path Guiding” in Production”.
ACM SIGGRAPH Courses: Path Guiding in Production. New York,
NY, USA: ACM, 2019, 18:35–18:48. DOI: 10 . 1145 / 3305366 .
3328091 2, 5, 8, 10.

[Mur12] MURPHY, KEVIN P. Machine Learning: A Probabilistic Perspec-
tive. MIT press, 2012 8.

[Owe13] OWEN, ART B. Monte Carlo Theory, Methods and Examples. To
be published, 2013. URL: https://statweb.stanford.edu/
~owen/mc/ (visited on 06/07/2019) 8.

[PM00] PELLEG, DAU and MOORE, ANDREW. “X-means: Extending K-
means with Efficient Estimation of the Number of Clusters”. In Pro-
ceedings of the 17th International Conf. on Machine Learning. Morgan
Kaufmann, 2000, 727–734 9.

[RGH*20] RATH, ALEXANDER, GRITTMANN, PASCAL, HERHOLZ, SE-
BASTIAN, et al. “Variance-Aware Path Guiding”. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 39.4 (July 8, 2020). DOI: 10/
gg8xdb 10, 13.

[RHJD18] REIBOLD, FLORIAN, HANIKA, JOHANNES, JUNG, ALISA, and
DACHSBACHER, CARSTEN. “Selective Guided Sampling with Com-
plete Light Transport Paths”. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH Asia) 37.6 (Dec. 2018), 223:1–223:14. DOI: 10/
gf2g93 1–3, 5, 6, 10, 13.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1111/cgf.14051
https://doi.org/10/gfxzrv
https://doi.org/10.1111/cgf.14428
https://doi.org/10.1111/cgf.14428
https://doi.org/10.1007/s41095-020-0160-1
https://doi.org/10.2312/sre.20181174
https://doi.org/10.2312/sre.20181174
https://doi.org/10/gbb6q7
https://doi.org/10/dkbmcf
https://doi.org/10/f842dt
https://doi.org/10/fmx2jp
https://doi.org/10.1145/3230635
https://doi.org/10.1145/3230635
https://doi.org/10/gf2hcr
https://doi.org/10/gfzq4p
https://doi.org/10/gfzq4p
https://doi.org/10/gbc3p8
https://doi.org/10/f6cz85
https://doi.org/10/gfz5ns
https://doi.org/10/gbnvrs
https://doi.org/10.1145/3341156
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.1145/3305366.3328091
https://statweb.stanford.edu/~owen/mc/
https://statweb.stanford.edu/~owen/mc/
https://doi.org/10/gg8xdb
https://doi.org/10/gg8xdb
https://doi.org/10/gf2g93
https://doi.org/10/gf2g93

V. Schüßler, J. Hanika, A. Jung & C. Dachsbacher / Path Guiding with Vertex Triplet Distributions

[RHL20] RUPPERT, LUKAS, HERHOLZ, SEBASTIAN, and LENSCH,
HENDRIK P. A. “Robust Fitting of Parallax-Aware Mixtures for Path
Guiding”. ACM Transactions on Graphics (Proceedings of SIGGRAPH)
39.4 (July 8, 2020). DOI: 10/gg8xc6 1–3, 8–10.

[Sch78] SCHWARZ, GIDEON. “Estimating the Dimension of a Model”.
The Annals of Statistics 6.2 (1978), 461–464. DOI: 10.1214/aos/
1176344136 9.

[SD07] SU, TING and DY, JENNIFER G. “In Search of Deterministic
Methods for Initializing K-Means and Gaussian Mixture Clustering”. In-
tell. Data Anal. 11.4 (Dec. 2007), 319–338 9.

[SHJD22] SCHÜSSLER, VINCENT, HANIKA, JOHANNES, JUNG, ALISA,
and DACHSBACHER, CARSTEN. Implementation of Path Guiding with
Vertex Triplet Distributions. July 2022. DOI: 10 . 5281 / zenodo .
6669885 9.

[Vea97] VEACH, ERIC. “Robust Monte Carlo Methods for Light Transport
Simulation”. PhD thesis. Stanford University, Dec. 1997 2.

[VG95] VEACH, ERIC and GUIBAS, LEONIDAS J. “Optimally Combin-
ing Sampling Techniques for Monte Carlo Rendering”. Annual Confer-
ence Series (Proceedings of SIGGRAPH). Vol. 29. ACM Press, Aug.
1995, 419–428. DOI: 10/d7b6n4 2.

[VHH*19] VORBA, JIŘÍ, HANIKA, JOHANNES, HERHOLZ, SEBASTIAN,
et al. “Path Guiding in Production”. ACM SIGGRAPH Courses. July
2019, 18:1–18:77. DOI: 10.1145/3305366.3328091 1.

[VKŠ*14] VORBA, JIŘÍ, KARLÍK, ONDŘEJ, ŠIK, MARTIN, et al. “On-
Line Learning of Parametric Mixture Models for Light Transport Sim-
ulation”. ACM Transactions on Graphics (Proceedings of SIGGRAPH)
33.4 (Aug. 2014), 101:1–101:11. DOI: 10/f6c2cp 1, 2, 4, 8–10.

[WDH*21] WEIER, PHILIPPE, DROSKE, MARC, HANIKA, JOHANNES, et
al. “Optimised Path Space Regularisation”. Computer Graphics Forum
(Proceedings of Eurographics Symposium on Rendering) 40.4 (2021).
DOI: 10.1111/cgf.14347 13.

[ZHD18] ZIRR, TOBIAS, HANIKA, JOHANNES, and DACHSBACHER,
CARSTEN. “Re-Weighting Firefly Samples for Improved Finite-Sample
Monte Carlo Estimates”. Computer Graphics Forum 37.6 (Sept. 1,
2018), 410–421. DOI: 10/gdv89k 5.

[ZXS*21] ZHU, SHILIN, XU, ZEXIANG, SUN, TIANCHENG, et al. “Hi-
erarchical Neural Reconstruction for Path Guiding Using Hybrid Path
and Photon Samples”. ACM Trans. Graph. 40.4 (July 2021). DOI: 10.
1145/3450626.3459810 2, 4.

[ZZ19] ZHENG, QUAN and ZWICKER, MATTHIAS. “Learning to Impor-
tance Sample in Primary Sample Space”. Computer Graphics Forum
38.2 (2019), 169–179. DOI: 10/ggkjx5 2.

Appendix A: Conditional and marginal normal distributions

Given normal distributed (x1,x2) ∼ N (µ, Σ) with (block) covari-
ance and mean

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, µ =

(
µ1
µ2

)
, (46)

the marginal distribution of x2 is simply

x2 ∼N (µ2, Σ22). (47)

When x1 is known, we can compute the conditional distribution of
x2

x2|1 ∼N (µ2|1, Σ2|1) (48)

using

µ̄2|1 = µ2 +Σ21Σ
−1
11 (x1 −µ1),

Σ̄2|1 = Σ22 −Σ21Σ
−1
11 Σ12.

(49)

Here, Σ
−1
11 denotes the generalized inverse in case Σ11 is singular.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10/gg8xc6
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.5281/zenodo.6669885
https://doi.org/10.5281/zenodo.6669885
https://doi.org/10/d7b6n4
https://doi.org/10.1145/3305366.3328091
https://doi.org/10/f6c2cp
https://doi.org/10.1111/cgf.14347
https://doi.org/10/gdv89k
https://doi.org/10.1145/3450626.3459810
https://doi.org/10.1145/3450626.3459810
https://doi.org/10/ggkjx5

