
5763368

Permutation Coding for Vertex-Blend Attribute Compression

CHRISTOPH PETERS, Karlsruhe Institute of Technology, Germany

BASTIAN KUTH, no affiliation, Germany

QUIRIN MEYER, Coburg University of Applied Sciences and Arts, Germany

Fig. 1. Left: If we sort blend weights 0 ≤ 𝑤0 ≤ . . . ≤ 𝑤3 with
∑
3

𝑖=0𝑤𝑖 = 1, the vector (𝑤0,𝑤1,𝑤2)T lies in the
shown tetrahedron. Storing it coordinate by coordinate is suboptimal. Middle: We transform the tetrahedron
to fill one sixth of the unit cube. Right: Based on another attribute (e.g. part of a bone index), we pick one of
the 3! possible permutations of the axes (shown in different colors) and store the shuffled coordinates. During
decoding, we sort the sequence to recover the weights and a permutation index from 0 to 5 that encodes the
other attribute. When storing 𝑁 + 1 weights, this strategy saves roughly log

2
(𝑁 !) bits.

Compression of vertex attributes is crucial to keep bandwidth requirements in real-time rendering low. We

present a method that encodes any given number of blend attributes for skinning at a fixed bit rate while

keeping the worst-case error small. Our method exploits that the blend weights are sorted.With this knowledge,

no information is lost when the weights get shuffled. Our permutation coding thus encodes additional data,

e.g. about bone indices, into the order of the weights. We also transform the weights linearly to ensure full

coverage of the representable domain. Through a thorough error analysis, we arrive at a nearly optimal

quantization scheme. Our method is fast enough to decode blend attributes in a vertex shader and also to

encode them at runtime, e.g. in a compute shader. Our open source implementation supports up to 13 weights

in up to 64 bits.

CCS Concepts: • Computing methodologies → Rendering; Animation; • Theory of computation →
Data compression.

Additional Key Words and Phrases: skinning, linear vertex blend animation, vertex buffer compression, vertex

blend attribute compression, permutation coding, bone weights, bone indices, simplex, tetrahedron

Authors’ addresses: Christoph Peters, vbac@momentsingraphics.de, Karlsruhe Institute of Technology, Am Fasanengarten

5, 76131, Karlsruhe, Germany; Bastian Kuth, kuthba86710@th-nuernberg.de, no affiliation, Germany; Quirin Meyer, quirin.

meyer@hs-coburg.de, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Straße 2, 96450, Coburg, Germany.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3522607.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

HTTPS://ORCID.ORG/0000-0001-9473-8847
https://orcid.org/0000-0001-9473-8847
https://doi.org/10.1145/3522607
https://doi.org/10.1145/3522607

5763368:2 Christoph Peters, Bastian Kuth, andQuirin Meyer

ACM Reference Format:
Christoph Peters, Bastian Kuth, and Quirin Meyer. 2022. Permutation Coding for Vertex-Blend Attribute

Compression. Proc. ACM Comput. Graph. Interact. Tech. 5, 1, Article 5763368 (May 2022), 16 pages. https:

//doi.org/10.1145/3522607

1 INTRODUCTION
Graphics hardware keeps improving rapidly but its computational power grows faster than the

available memory bandwidth. Thus, it is increasingly important in real-time rendering to encode

the scene representation as compactly as possible. This compact representation has to be usable

for rendering directly. For textures, block compression accomplishes this goal. For geometry, the

least intrusive approach is to compress each vertex individually at a fixed bit rate. Such methods

are widely used because except for some packing code for vertex buffers and unpacking code in

vertex shaders, they require no changes to the renderer. Simple fixed-point quantization works well

for vertex positions and texture coordinates. For vertex normals, octahedral maps are a popular

approach [Meyer et al., 2010].

Skinned meshes need additional attributes for blending: Each vertex stores multiple indices of

bones and corresponding weights defining the influences of these bones. Storing only 4 influences

at 8 bits per weight or index already takes 64 bits. A reasonably quantized vertex format without

blend attributes takes 128 bits (see Sec. 4.3). Thus, the space requirements of blend attributes

are significant. Nonetheless, their compression has not received attention until recently [Kuth

and Meyer, 2021]. This first work is focused on meshes with up to four weights per vertex. The

restriction to four weights is common in game engines, even though dense-weight blend skinning

with many influences per vertex is known to give clear visual improvements [Le and Deng, 2013].

Kuth and Meyer [2021] also formalize naive techniques that generalize to arbitrarily many weights

but these are far from optimal.

We present a more general and arguably more elegant solution. Our technique works for arbi-

trarily many weights and our GPU implementation supports up to 13 weights encoded in up to

64 bits per vertex. Like prior work [Kuth and Meyer, 2021], we store each tuple of bone indices

only once in a table. Thus, the data stored per vertex consist of the weights themselves and a single

tuple index (Sec. 3.1).

Our core insight is that no information is lost when we shuffle a strictly ordered sequence of

blend weights𝑤0 < . . . < 𝑤𝑁−1 before storage. We recover the original sequence efficiently through

sorting. As we do so, we also recover the permutation that was applied to it. We then turn this

permutation into an index from 0 to 𝑁 ! − 1. Since we are in control of what permutation we apply,

this scheme allows us to hide log
2
(𝑁 !) bits of information in the blend weights without requiring

any additional storage (Sec. 3.3). In particular, we store (part of) the tuple index for the bone indices

this way.

It is suboptimal to quantize the individual weights𝑤0, . . . ,𝑤𝑁−1 directly because they are subject
to inequalities. Therefore, many possible codes do not correspond to meaningful weights (Fig. 1 left).

We address this issue with a linear transform that expands the space but preserves the ordering

(Fig. 1 middle, Sec. 3.4). The impact of this transform on the quantization error requires a careful

analysis, which also reveals a shortcoming of prior work [Kuth and Meyer, 2021] (Sec. 3.5). We

overcome this shortcoming and derive nearly optimal quantization schemes for different weight

counts (Sec. 3.6). In the end, all quantized numbers get coded into up to 64 bits (Sec. 3.7).

For four weights, our method is faster and more accurate than the best prior work [Kuth and

Meyer, 2021]. It naturally supports more weights and scales well. We find that 48 and 64 bits provide

sufficient accuracy for eight and 13 weights, respectively (Sec. 4). Our supplemental includes full

source code for our renderer and our experiments.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

https://doi.org/10.1145/3522607
https://doi.org/10.1145/3522607

Permutation Coding for Vertex-Blend Attribute Compression 5763368:3

2 RELATEDWORK
The main incentives for GPU data compression are memory savings and reduced bandwidth and

power consumption. Since textures typically consume most memory, GPUs provide hardware-

support for random read-access from various lossy compressed texture formats [Garrard, 2020,

Nystad et al., 2012]. Additionally, GPUs utilize on-the-fly compression techniques by default

[McAllister et al., 2014].

Compression of mesh topology and vertex positions is well-studied but even the methods that

emphasize random access usually need to decompress several faces at once [Maglo et al., 2015].

Calver [2002, 2004] introduced quantization for vertex-attribute compression by decoding vertex

data in the vertex shader. Purnomo et al. [2005] carefully determine the number of bits allocated for

each attribute channel. Quantization techniques are now commonly used in games [Geffroy et al.,

2020, Karis et al., 2021, Persson, 2012]. Special compression schemes for unit vectors [Keinert et al.,

2015, Meyer et al., 2010, Rousseau and Boubekeur, 2020] and tangent frames [Frey and Herzeg,

2011, Geffroy et al., 2020] exploit their particular properties and allow efficient decoding in vertex

shaders.

Vertex blending, also known as skinning, animates a dense mesh using a hierarchy of bones

[Magnenat-Thalmann et al., 1989]. In each frame, each bone holds a transformation T𝑖 ∈ R4×4.
Mesh vertices carry a rest position p ∈ R4 (in homogeneous coordinates), indices of relevant

bones 𝑗0, . . . , 𝑗𝑁 and corresponding weights 𝑤0, . . . ,𝑤𝑁 ≥ 0. Linear vertex blending applies the

transformation of each relevant bone and computes the animated position as convex combination∑𝑁
𝑖=0𝑤𝑖T𝑗𝑖p. It maps well to vertex shaders.

More sophisticated methods for the representation and combination of the transformations

address issues such as elbow collapse, joint bulging or candy wrapper artifacts [Alexa, 2002, Kavan

et al., 2008, Le and Hodgins, 2016]. When using optimized virtual bones, which blend influences

of multiple bones, two weights per vertex suffice [Le and Deng, 2013]. Direct delta mush [Le and

Lewis, 2019] efficiently approximates Laplacian smoothing to reduce the demands on artist-defined

blend weights. It replaces scalar weights by 4× 4 matrices, which can be compressed using a coarse

direct delta mush and a fine vertex-blend model [Le et al., 2021]. To reduce memory demands of

animations, compression of bone transformations is viable [Fréchette, 2017].

2.1 Existing Blend Attribute Compression
Thus far, there is only one work that directly addresses blend attribute compression [Kuth and

Meyer, 2021]. It also formalizes some naive methods. Since we compare against all these methods,

we describe them in some detail. The first step is compression of bone indices. Many vertices share

exactly the same tuple of bone indices 𝑗0, . . . , 𝑗𝑁 . Thus, the authors build a table of unique tuples

and only store an index into this table per vertex (cf. Sec. 3.1).

Unit cube sampling [Kuth and Meyer, 2021] is the most naive approach for compression of blend

weights. The last weight𝑤𝑁 is discarded since weights are known to sum to one. The remaining 𝑁

weights are stored as fixed-point numbers in [0, 1]. Pairs of weights and bone indices can be given

in any order. If the weights are sorted, we know𝑤𝑖 ∈ [0, 1

𝑁+1−𝑖] (cf. Sec. 3.4). The power-of-two
axis-aligned bounding box (POT AABB) approach [Kuth and Meyer, 2021] rounds interval ends up

to powers of two and reduces the number of bits per weight accordingly. The any AABB approach

[Kuth and Meyer, 2021] quantizes different weights into integers with arbitrary range, which saves

space but makes decoding more complicated (cf. Sec. 3.7).

For 𝑁 = 3, the sorted weights are known to lie in a tetrahedron (Fig. 1 left). Thus, any encoding

based on an AABB still permits lots of invalid codes. Optimal simplex sampling (OSS) [Kuth and

Meyer, 2021] removes this waste. It assigns an index to each point of a regular grid that lies within

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

5763368:4 Christoph Peters, Bastian Kuth, andQuirin Meyer

the tetrahedron and stores this index. Unlike the previous methods, OSS does not generalize to

more weights naturally. Decoding requires the solution of a polynomial equation of degree 𝑁 . For

𝑁 > 4, that might be impossible in closed form [Abel, 1826].

3 OUR BLEND ATTRIBUTE COMPRESSION
Our method for blend attribute compression naturally supports an arbitrary number of weights. And

as we analyze it, we identify and overcome an issue that impairs the accuracy of prior work [Kuth

and Meyer, 2021]. We begin with a clear definition of the data to be stored (Sec. 3.1) and provide an

overview of our method (Sec. 3.2). Then, we explain in detail how our permutation coding stores

additional data alongside a sorted tuple (Sec. 3.3). To make it applicable to blend weights, we need

to transform them first (Sec. 3.4). That transform necessitates a careful error analysis (Sec. 3.5).

Based on the resulting insights, we derive our optimal quantization schemes (Sec. 3.6). Finally, we

complete our encoding and decoding scheme (Sec. 3.7). Algorithms 3 and 4 summarize the whole

procedure.

3.1 Problem Statement
Blend attributes consist of 𝑁 + 1 ∈ N pairs of weights and bone indices. The order in which these

pairs are given is irrelevant for the blending. We choose to sort the pairs by their weights. By

convention, all blend weights are non-negative and their sum has to be exactly one. Then the blend

weights𝑤0, . . . ,𝑤𝑁 ∈ R are subject to

0 ≤ 𝑤0 ≤ 𝑤1 ≤ . . . ≤ 𝑤𝑁−1 ≤ 𝑤𝑁 = 1 −
𝑁−1∑︁
𝑖=0

𝑤𝑖 . (1)

Since the greatest weight𝑤𝑁 can be computed from the others, we do not store it explicitly.

Most of the time, nearby vertices use exactly the same bone indices. Therefore, it is inefficient

to store these indices per vertex. Like prior work [Kuth and Meyer, 2021], we create a table of

all tuples of bone indices in a mesh instead. Then storing the tuple of bone indices per vertex is

accomplished by storing a tuple index referencing the matching entry in this table. The table would

be smaller if we were to sort by bone indices instead of sorting by weights but the benefits of

sorting by weights turn out to be greater (Sec. 4.1).

For creation of the table, we employ a few novel optimizations. If𝑤𝑁 = 1 after decoding, only

one bone influences the vertex. In this case, the tuple index is used as bone index directly and we

skip use of the table. Additionally, we exploit that bone indices for zero weights are irrelevant as

we reuse tuples. Fig. 2 illustrates our strategy. We treat irrelevant indices as ∞ (or as 2
16 − 1 in

our implementation with 16-bit indices). Then we sort lexicographically, taking the index for the

largest weight as most significant. If a tuple allows reuse, it is found at the beginning of a run of

matching tuples. We find all of them with a single scan over the sorted array.

Our goal is to store the blend weights𝑤0, . . . ,𝑤𝑁 and the corresponding tuple index in as little

memory as possible. The amount of memory should be fixed to accommodate restrictions for vertex

shader inputs. The absolute worst-case error in the vector of blend weights (𝑤0, . . . ,𝑤𝑁) should be

small in terms of the 2-norm. And any weight count 𝑁 + 1 should be supported.

3.2 Overview of Our Method
As we design our method, we follow a few guiding principles that are common for fixed-rate

compression: Nearly all possible codes (i.e. bit strings) should encode meaningful blend attributes.

Two different codes should never encode the same blend attributes. And the worst-case error should

be minimized. In particular, all weights should have roughly equal accuracy.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

Permutation Coding for Vertex-Blend Attribute Compression 5763368:5

[0] 5 7
Input

[1] 2 1 3

Input

[2] 5 2 7

Input

[3] 5 2 1 3

Input

[4] 5 1

Input

[5] 2 5 7

Input

[6] 2 1 3

Input

[7] 3 2 1 5

Input

[8] 2 3 5 1

Input

[9] 3

Input
[8] 2 3 5 1

Sorted

[4] 5 1

Sorted

[3] 5 2 1 3

Sorted

[1] 2 1 3

Sorted

[6] 2 1 3

Sorted

[9] 3

Sorted

[7] 3 2 1 5

Sorted

[2] 5 2 7

Sorted

[5] 2 5 7

Sorted

[0] 5 7

Sorted
2 3 5 1

Table

5 2 1 3

Table

3 2 1 5

Table

5 2 7

Table

2 5 7

Table

Fig. 2. Construction of the table of tuple indices. We treat irrelevant indices as ∞, sort lexicographically and
scan for runs of matching tuples.

Our encoder first applies a linear transform to the vector of weights (𝑤0, . . . ,𝑤𝑁−1) to make it fill

a greater portion of the hypercube [0, 1]𝑁 (Fig. 1 left and middle). This way, we avoid many invalid

codes. The resulting vector gets quantized entry by entry. Due to the transform, quantizing each

entry with the same precision gives lower accuracy for greater weights. Therefore, we determine

suitable precision factors 𝐵0, . . . , 𝐵𝑁−1 ∈ N. Entry 𝑖 ∈ {0, . . . , 𝑁 − 1} gets quantized into an integer

𝑎𝑖𝐵𝑖 + 𝑏𝑖 where the more significant 𝑎𝑖 ∈ {0, . . . , 𝐴 − 1} provides the same precision for each entry

and 𝑏𝑖 ∈ {0, . . . , 𝐵𝑖 − 1} provides additional precision as indicated by 𝐵𝑖 .

We encode the tuple index and 𝑏0, . . . , 𝑏𝑁−1 into a single integer 𝑝 ∈ {0, . . . , 𝑃 − 1}, which we

call the payload. All that is left to do is to store 𝑝 and 𝑎0, . . . , 𝑎𝑁−1 as compactly as possible. Due to

the sorted weights and the specifics of our quantization, we know 𝑎0 < 𝑎1 < . . . < 𝑎𝑁−1. Therefore,
we lose no information if we shuffle this sequence before storage using one of the 𝑁 ! possible

permutations. We use log
2
(𝑁 !) bits of the payload 𝑝 to pick this permutation. The remaining

log
2
𝑃 − log

2
(𝑁 !) bits are stored separately (we pick the precision factors such that 𝑃 ≥ 𝑁 !).

During decoding, we sort the sequence and thus recover the original 𝑎0, . . . , 𝑎𝑁−1 as well as the
log

2
(𝑁 !) bits of the payload. Thus, we have saved log

2
(𝑁 !) bits of memory by finding a good use

for all the codes, which correspond to sequences that are not sorted (Fig. 1 right).

3.3 Permutation Coding
We now describe our novel permutation coding in more detail. Its goal is to store the quantized

weights 𝑎0 < . . . < 𝑎𝑁−1 and part of the payload 𝑝 . First, we use division with remainder to split

the payload into 𝑞𝑁 ! + 𝑟 = 𝑝 with a remainder 𝑟 ∈ {0, . . . , 𝑁 ! − 1}. While 𝑞 is stored separately, we

want to encode 𝑟 as permutation 𝜎 . To this end, we establish a one-to-one mapping 𝜑 between the

set of all permutations S𝑁 and indices 𝑟 :

𝜑 : S𝑁 → {0, . . . , 𝑁 ! − 1}.

During encoding, our permutation coding determines the permutation 𝜎 := 𝜑−1 (𝑟) and shuffles

the tuple 𝑎0, . . . , 𝑎𝑁−1 using the inverse of this permutation, i.e. it stores

𝑎𝜎−1 (0) , . . . , 𝑎𝜎−1 (𝑁−1) .

During decoding, this shuffled sequence gets sorted. Sorting effectively applies the permutation 𝜎

and in the process, we recover this permutation. Then the remainder of the payload 𝑟 is computed

using the index mapping 𝜑 , i.e. 𝑟 = 𝜑 (𝜎). In this manner, we have stored 𝑟 without using any

additional memory. We gain roughly log
2
(𝑁 !) bits (see Table 1).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

5763368:6 Christoph Peters, Bastian Kuth, andQuirin Meyer

Algorithm 1 Generating a permutation.

Input: A Lehmer code 𝑟 .

Output: The permutation 𝜎 = 𝜑−1 (𝑟).
𝜎 (𝑁 − 1) := 0

For 𝑖 := 2, . . . , 𝑁 :

Perform division with remainder to get 𝑟𝑖 + 𝑑 := 𝑟 .

𝜎 (𝑁 − 𝑖) := 𝑑 // First entry set last to get a lexicographic order

For 𝑗 := 𝑁 + 1 − 𝑖, . . . , 𝑁 − 1:

If 𝜎 (𝑗) ≥ 𝑑 : 𝜎 (𝑗) := 𝜎 (𝑗) + 1 // Avoid collisions

Return 𝜎 .

Algorithm 2 Computing a Lehmer code.

Input: A permutation 𝜎 ∈ S𝑁 .
Output: The Lehmer code 𝑟 := 𝜑 (𝜎).
𝑟 := 0

𝑠 := 2
𝑁 − 1 // Bitmask of unseen indices

For 𝑖 := 0, . . . , 𝑁 − 2:

𝑑 := Number of set bits in 𝑠 from bit 0 to 𝜎 (𝑖) − 1.

𝑟 := 𝑟 + (𝑁 − 1 − 𝑖)!𝑑
Unset bit 𝜎 (𝑖) of 𝑠 .

Return 𝑟 .

Table 1. Key quantities concerning the efficiency of our permutation coding. 13! does not fit into 32 bits.

Weight count 𝑁 + 1 2 3 4 5 6 7 8 9 10 11 12 13

log
2
(𝑁 !) 0 1 2.6 4.6 6.9 9.5 12.3 15.3 18.5 21.8 25.3 28.8

Sorting network size 0 1 3 5 9 12 16 19 25 29 35 39

Sorting network depth 0 1 3 3 5 5 6 6 7 9 8 9

To realize this scheme, we have to choose a mapping 𝜑 . That means we have to pick an ordering

of the set of permutations S𝑁 . All (𝑁 !)! possible choices would work but we seek one that lets us

evaluate 𝜑 and 𝜑−1
efficiently. We choose to order the permutations 𝜎 ∈ S𝑁 through a lexicographic

ordering of the index tuples (𝜎 (0), . . . , 𝜎 (𝑁 − 1)). Algorithm 1 implements 𝜑−1 (𝑟). It constructs
the index tuple from right to left. Step 𝑖 extracts a base-𝑖 digit 𝑑 from the input 𝑟 to choose the

next entry. Since more significant digits determine entries further to the left, the ordering is

indeed lexicographic. Algorithm 2 reverts this process by extracting digits from left to right. Its

implementation with a bitmask is GPU friendly. These algorithms were described in more detail by

Lehmer [1960] and first proposed by his father in 1906. Thus, we call 𝜑 (𝜎) a Lehmer code.

The shuffling itself is a bit tricky to do on GPUs because when an array entry is accessed using a

dynamically computed index, that causes costly register spilling. To generate the shuffled sequence

𝑎𝜎−1 (0) , . . . , 𝑎𝜎−1 (𝑁−1) , we write the indices 𝜎 (0), . . . , 𝜎 (𝑁 − 1) into the most significant bits of

𝑎0, . . . , 𝑎𝑁−1 and then sort this sequence. To recover the permutation during sorting, we first write

the indices 0, . . . , 𝑁 − 1 into the least significant bits of 𝑎𝜎−1 (0) , . . . , 𝑎𝜎−1 (𝑁−1) (after shifting other
bits to the left). After sorting, the least significant bits are 𝜎 (0), . . . , 𝜎 (𝑁 − 1), i.e. the input to

Algorithm 2. Sorting is done by optimal sorting networks [Knuth, 1998] (see Table 1).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

Permutation Coding for Vertex-Blend Attribute Compression 5763368:7

3.4 Transforming the Blend Weights
Permutation coding shuffles the integers 𝑎0, . . . , 𝑎𝑁−1 arbitrarily. Therefore, they all have to be

stored in the same manner and should cover roughly the same range. Vectors of weights w :=

(𝑤0, . . . ,𝑤𝑁−1)T ∈ R𝑁 do not meet this requirement. Equation (1) defines 𝑁 + 1 inequalities. Each

of these inequalities defines a half space and together they characterize an 𝑁 -dimensional simplex

where each facet corresponds to one inequality. We seek a linear transformation that makes this

simplex cover a large portion of the unit hypercube [0, 1]𝑁 but keeps the weights sorted.

First, we characterize this simplex by determining its 𝑁 + 1 vertices. To this end, we seek the

point where weight𝑤𝑘 for 𝑘 ∈ {0, . . . , 𝑁 } is maximal. That is accomplished by setting all smaller

weights to zero while distributing the remaining weight equally. Then the vertex is

v𝑘 :=

(
0, . . . , 0︸ ︷︷ ︸
𝑘 times

,
1

𝑁 + 1 − 𝑘 , . . . ,
1

𝑁 + 1 − 𝑘

)T
∈ R𝑁 .

In the special case 𝑁 = 3, the simplex is a tetrahedron [Kuth and Meyer, 2021] (Fig. 1 left).

Now consider the linear transform defined by

𝑢𝑖 := (𝑁 + 1 − 𝑖)𝑤𝑖 +
𝑖−1∑︁
𝑗=0

𝑤 𝑗 , (2)

where 𝑖 ∈ {0, . . . , 𝑁 − 1}. If w = v𝑘 and 𝑖 < 𝑘 , we find

𝑢𝑖 = (𝑁 + 1 − 𝑖)0 +
𝑖−1∑︁
𝑗=0

0 = 0.

On the other hand, if w = v𝑘 and 𝑖 ≥ 𝑘 , we get

𝑢𝑖 =
𝑁 + 1 − 𝑖
𝑁 + 1 − 𝑘 +

𝑖−1∑︁
𝑗=𝑘

1

𝑁 + 1 − 𝑘 =
𝑁 + 1 − 𝑖
𝑁 + 1 − 𝑘 + 𝑖 − 𝑘

𝑁 + 1 − 𝑘 = 1.

Thus, this linear transform maps the vertex v𝑘 to

(0, . . . , 0︸ ︷︷ ︸
𝑘 times

, 1, . . . , 1)T ∈ [0, 1]𝑁 .

These vectors are exactly the corners of the unit hypercube [0, 1]𝑁 at which the coordinates happen

to be sorted. Thus, the simplex of valid weight vectors gets mapped to the larger simplex of sorted

tuples in the unit hypercube (Fig. 1 middle). After this transform, each coordinate 𝑢𝑖 covers the

full range [0, 1] as intended. Furthermore, by shuffling entries of the vector u := (𝑢0, . . . , 𝑢𝑁−1)T,
we can attain any point in the unit hypercube, which is an indication that this scheme could be

optimal (Fig. 1 right).

Appendix B proves that the following formula provides the inverse of the above transform:

𝑤𝑖 =
1

𝑁 + 1 − 𝑖 𝑢𝑖 −
𝑖−1∑︁
𝑗=0

1

(𝑁 + 1 − 𝑗) (𝑁 − 𝑗)𝑢 𝑗 . (3)

Both transforms take only linear time to compute since the sums for different outputs share common

prefixes.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

5763368:8 Christoph Peters, Bastian Kuth, andQuirin Meyer

3.5 Error Analysis
In the next section, we turn the continuous value 𝑢𝑖 into an integer 𝑎𝑖𝐵𝑖 + 𝑏𝑖 through quantization.

This integer is fed to permutation coding. However, we should first understand how rounding

errors in u affect the blend weights𝑤0, . . . ,𝑤𝑁 . As error metric, we choose the 2-norm. Crucially,

we account for all weights in the error. Although𝑤𝑁 is not stored explicitly, errors in𝑤𝑁 harm

the quality just as much as errors in any other weight. Prior work only accounts for errors in

𝑤0, . . . ,𝑤𝑁−1 [Kuth and Meyer, 2021].

Let w̃ := (�̃�0, . . . , �̃�𝑁−1)T ∈ R𝑁 denote the rounding errors inw. If we enforce𝑤𝑁 = 1−∑𝑁−1
𝑖=0 𝑤𝑖 ,

we get �̃�𝑁 := −∑𝑁−1
𝑖=0 �̃�𝑖 as error for the greatest weight. Then the squared 2-norm of the error is

𝑁∑︁
𝑖=0

�̃�2

𝑖 = ∥w̃∥2
2
+ �̃�2

𝑁 = ∥w̃∥2
2
+

(
𝑁−1∑︁
𝑖=0

�̃�𝑖

)
2

. (4)

It accounts for the error in𝑤𝑁 explicitly. In Appendix C, we prove that this norm can be expressed in

a surprisingly convenient manner in terms of the rounding errors in u, ũ := (�̃�0, . . . , �̃�𝑁−1)T ∈ R𝑁 :

∥w̃∥2
2
+

(
𝑁−1∑︁
𝑖=0

�̃�𝑖

)
2

=

𝑁−1∑︁
𝑖=0

(
�̃�𝑖√︁

(𝑁 + 1 − 𝑖) (𝑁 − 𝑖)

)
2

. (5)

We only have to scale each individual entry of ũ and then the norm that accounts for𝑤𝑁 happens

to be the 2-norm. That means that it is optimal to quantize each entry of u individually but the

precision should depend on the index 𝑖 ∈ {0, . . . , 𝑁 − 1}.
This result is intriguing because two problems cancel each other. Introducing a rounding error to

each entry of w separately is suboptimal because it neglects the impact on𝑤𝑁 . Besides, the vectors

w cannot fill the unit hypercube [0, 1]𝑁 , even after shuffling. However, transforming w into u to

address the latter problem simultaneously allows us to quantize each entry of u separately.

3.6 Quantization
With this error analysis, we are prepared to quantize 𝑢0, . . . , 𝑢𝑁−1 in a nearly optimal fashion. Two

aspects require special care. Firstly, entries of u can be equal but the quantized values 𝑎𝑖 entering

permutation coding must be strictly ordered, i.e. 𝑎0 < . . . < 𝑎𝑁−1. Besides, the integers 𝑎0, . . . , 𝑎𝑁−1
should all cover the same range but we need different precision for different entries of u.
To allow for different precision, we define precision factors 𝐵0, . . . , 𝐵𝑁−1 ∈ N per entry. Then

𝑢𝑖 is stored by 𝑎𝑖 ∈ {0, . . . , 𝐴 − 1}, where 𝐴 ∈ N with 𝐴 > 𝑁 , and a less significant extra value

𝑏𝑖 ∈ {0, . . . , 𝐵𝑖 − 1}. We determine 𝑎𝑖 and 𝑏𝑖 through division with remainder such that

𝑎𝑖𝐵𝑖 + 𝑏𝑖 =
⌊
(𝐴 − 𝑁)𝐵𝑖𝑢𝑖 + (𝑖 + 1)𝐵𝑖 −

1

2

⌋
. (6)

This formula is carefully designed to stay within the allowable range:

(𝐴 − 𝑁)𝐵𝑖𝑢𝑖 + (𝑖 + 1)𝐵𝑖 −
1

2

≥ (𝑖 + 1)𝐵𝑖 −
1

2

≥ 0,

(𝐴 − 𝑁)𝐵𝑖𝑢𝑖 + (𝑖 + 1)𝐵𝑖 −
1

2

≤ (𝐴 + 𝑖 + 1 − 𝑁)𝐵𝑖 −
1

2

< 𝐴𝐵𝑖 .

As long as 𝐵0 ≤ . . . ≤ 𝐵𝑁−1, we also get 𝑎𝑖+1 > 𝑎𝑖 for all 𝑖 ∈ {0, . . . , 𝑁 − 2} because

(𝐴 − 𝑁)𝐵𝑖+1𝑢𝑖+1 + (𝑖 + 1 + 1)𝐵𝑖+1 −
1

2

≥(𝐴 − 𝑁)𝐵𝑖𝑢𝑖 + (𝑖 + 1)𝐵𝑖 −
1

2

+ 𝐵𝑖 .

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

Permutation Coding for Vertex-Blend Attribute Compression 5763368:9

Algorithm 3 Encoder for blend attributes.

Input: A weight vector w ∈ R𝑁 satisfying Equation (1) and a tuple index 𝑡 ∈ {0, . . . ,𝑇 − 1}.
Output: A code 𝑐 ∈ N0.

Transform w into u according to Equation (2).

Quantize each 𝑢𝑖 into 𝑎𝑖 , 𝑏𝑖 according to Equation (6).

Encode 𝑡, 𝑏0, . . . , 𝑏𝑁−1 into the payload 𝑝 ∈ N.
Perform division with remainder to get 𝑞𝑁 ! + 𝑟 := 𝑝 .
Construct 𝜎 := 𝜑−1 (𝑟) using Algorithm 1.

Shuffle 𝑎0, . . . , 𝑎𝑁−1 to get 𝑎𝜎−1 (0) , . . . , 𝑎𝜎−1 (𝑁−1) .
Encode 𝑞, 𝑎𝜎−1 (0) , . . . , 𝑎𝜎−1 (𝑁−1) into 𝑐 and return 𝑐 .

Thus, the sequence entering permutation coding is strictly ordered.

Dequantization for 𝑖 ∈ {0, . . . , 𝑁 − 1} is done through

𝑢𝑖 =
𝑎𝑖𝐵𝑖 + 𝑏𝑖 + 1 − (𝑖 + 1)𝐵𝑖

(𝐴 − 𝑁)𝐵𝑖
(7)

This solution implements rounding to the nearest value. The boundary values zero and one are

represented without error.

The precision factors should be roughly antiproportional to the error scaling factors from

Equation (5). We pick them through a brute-force search, which minimizes the worst-case error

defined by Equation (9). In each search, we prescribe the total number of bits and the minimal

number of supported tuple indices. With this optimizer, we have prepared 291 reasonable parameter

sets for our codec covering 𝑁 ∈ {1, . . . , 12} (see the supplemental C code). E.g. for eight weights

with 5040 tuple indices stored in 48 bits, we use 𝐴 = 64 and

(𝐵0, . . . , 𝐵7) = (1, 1, 1, 2, 2, 3, 5).

3.7 Encoder and Decoder
With these considerations, our method is nearly complete. Algorithms 3 and 4 assemble the pieces

into a complete codec. The encoder has two steps where it encodes integers 𝑐0, . . . , 𝑐𝐾−1 with
𝑐𝑖 ∈ {0, . . . ,𝐶𝑖 − 1} for all 𝑖 ∈ {0, . . . , 𝐾 − 1} into a single integer. That is done in linear time through

repeated multiplication and addition:

𝑐 :=

𝐾−1∑︁
𝑖=0

𝑐𝑖

𝐾−1∏
𝑗=𝑖+1

𝐶 𝑗 = (((𝑐0𝐶1 + 𝑐1)𝐶2 + 𝑐2) · · ·)𝐶𝐾−1 + 𝑐𝐾−1

The decoder has to undo these steps. To this end, we perform repeated division with remainder in

reverse order. Note that the𝐶𝑖 are compile time constants. If some of them are chosen as powers of

two, the compiler will implement the division through a right shift. We reward that in our brute

force search by allowing 0.7% greater error for each such division. This choice leads to considerably

more power-of-two divisors at the expense of tiny increases in error. For other divisors, compilers

perform similar optimizations but they are more costly nonetheless.

Our GLSL implementation supports encoding into up to 64 bits, i.e. into two 32-bit unsigned inte-

gers. Multiplication and addition with carry are natively supported by GLSL through

umulExtended() and uaddCarry(). For division with remainder by a number 𝐶𝑖 < 2
16
, we imple-

ment a multiword division that operates on 16 bits at a time and implements carry using the less

significant 16 bits of a 32-bit integer [Warren, 2012]. Our codec only uses 64-bit operations for the

steps where the most significant 32 bits are potentially non-zero.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

5763368:10 Christoph Peters, Bastian Kuth, andQuirin Meyer

Algorithm 4 Decoder for blend attributes.

Input: A code 𝑐 ∈ N0.

Output: A weight vector w ∈ R𝑁 and a tuple index 𝑡 ∈ {0, . . . ,𝑇 − 1}.
Decode 𝑞, 𝑎𝜎−1 (0) , . . . , 𝑎𝜎−1 (𝑁−1) from 𝑐 .

Sort 𝑎𝜎−1 (0) , . . . , 𝑎𝜎−1 (𝑁−1) to recover 𝑎0, . . . , 𝑎𝑁−1 and 𝜎 .
Compute 𝑟 := 𝜑 (𝜎) using Algorithm 2.

Decode 𝑡, 𝑏0, . . . , 𝑏𝑁−1 from the payload 𝑝 := 𝑞𝑁 ! + 𝑟 .
Dequantize each 𝑢𝑖 from 𝑎𝑖 , 𝑏𝑖 according to Equation (7).

Transform u into w through Equation (3).

Return w, 𝑡 .

Table 2. Potential savings in bits per vertex when sorting bone indices instead of blend weights for the scene
in Fig. 4 (201 k vertices) reduced to different numbers of weights per vertex. The benefit of a smaller table is
not enough to outweigh the increased cost for storing weights. The last row evaluates our optimizations from
Sec. 3.1.

Weight count 𝑁 + 1 4 6 8

Table size 𝑇 (sorted indices) 2327 2433 2467

Table size 𝑇 (sorted weights) 5977 6465 6482

Saving for the table 0.12 0.19 0.26

Saving for the tuple index 1.36 1.41 1.39

Saving for the weights -4.58 -9.49 -15.30

𝑇 as in Kuth and Meyer [2021] 9539 11187 11329

4 RESULTS
We now evaluate our technique. We start with data justifying our choice to sort blend weights

instead of bone indices (Sec. 4.1). Then we analyze the worst-case error of our technique in

comparison to prior work [Kuth and Meyer, 2021] with regard to the norm in Equation (4). Errors

in vertex positions of actual models reflect these theoretical numbers (Sec. 4.2). Finally, we report

frame times (Sec. 4.3) and timings for encoding and decoding on its own (Sec. 4.4).

4.1 Sorting Bone Indices
Recall that we can sort pairs of weights and bone indices either by weight or by index. We chose

sorting by weight but evaluate the alternative here. Sorting by bone indices makes the table of

bone indices smaller (Table 2 fourth row). Additionally, the smaller range of tuple indices requires

less storage per vertex (Table 2 fifth row).

On the other hand, unsorted weights are only constrained by the inequalities 0 ≤ 𝑤0, . . . ,𝑤𝑁−1
and

∑𝑁−1
𝑖=0 𝑤𝑖 ≤ 1. This simplex has volume

1

𝑁 !
compared to a volume of

1

𝑁 !

𝑁−1∏
𝑖=0

1

𝑁 + 1 − 𝑖 =
1

𝑁 !(𝑁 + 1)!

for the simplex in Equation (1). Thus, we expect a theoretically optimal encoding for non-sorted

weights, which does not exist yet, to take log
2
((𝑁 + 1)!) more bits than a theoretically optimal

coding for sorted weights, which we get close to (Table 2 sixth row). This increased cost for the

weights is considerably greater than the potential savings due to a smaller table. We also find that

the optimizations in Sec. 3.1 nearly halve the table size (Table 2 last row).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

Permutation Coding for Vertex-Blend Attribute Compression 5763368:11

Table 3. 2-norm errors across all weights (see Equations (8) and (9)) for different blend attribute compression
techniques. All values were scaled by 1000 to improve readability. Our technique always has the lowest error
and the advantage grows considerably for more weights.

Bit count 24 32 32 48 48 48 48

Weight count 𝑁 + 1 4 4 5 6 7 8 9

Supported table size 𝑇 1024 1024 2048 4096 2048 8192 4096

Unit cube sampling [2021] 115.47 13.64 72.13 21.56 51.43 120.70 282.84

POT AABB [2021] 27.94 6.82 36.07 10.78 25.72 60.35 68.43

Any AABB [2021] 23.73 3.72 17.75 5.00 10.87 25.63 37.55

OSS [2021] 13.53 2.06 - - - - -

Permutation coding, ours 9.28 1.34 4.97 1.00 1.78 3.70 4.85

Bit count 64 64 64 64 106

Weight count 𝑁 + 1 10 11 12 13 13

Supported table size 𝑇 8192 8192 8192 8192 8192

Unit cube sampling [2021] 153.01 169.16 382.97 416.33 49.17

POT AABB [2021] 37.65 41.62 92.65 100.73 6.11

Any AABB [2021] 17.38 26.49 37.30 48.79 4.42

Permutation coding, ours 1.82 2.45 3.20 4.40 -

4.2 Worst-Case Error
The methods proposed in prior work [Kuth and Meyer, 2021] all strive to get the same maximal

error
1

2
Δ > 0 for each entry of w independently. Thus, the error with respect to the norm given in

Equation (4) is √√√
𝑁−1∑︁
𝑖=0

(
1

2

Δ

)
2

+
(
𝑁−1∑︁
𝑖=0

1

2

Δ

)
2

=
Δ

2

√
𝑁 + 𝑁 2

. (8)

If we were to disregard the error in𝑤𝑁 , the 2-norm error would be only
Δ
2

√
𝑁 . That emphasizes

the importance of an error analysis minimizing the error across all weights (Sec. 3.5).

According to Equation (7), the maximal error in 𝑢𝑖 is
1

2(𝐴−𝑁)𝐵𝑖 . Now Equation (5) yields the

worst-case error for our approach:

1

2(𝐴 − 𝑁)

√√√
𝑁−1∑︁
𝑖=0

1

(𝑁 + 1 − 𝑖) (𝑁 − 𝑖)𝐵2
𝑖

. (9)

Table 3 compares these worst-case errors for different techniques operating at different bit counts

and with different table sizes 𝑇 . Even the best prior work for 𝑁 = 3 [Kuth and Meyer, 2021] has a

46% to 53% greater error than our permutation coding. For greater 𝑁 , this OSS is not applicable and

the advantage of our work is still greater. It grows with log
2
(𝑁 !). For 13 weights, our error is an

order of magnitude smaller than that of the best prior work and two orders of magnitude smaller

than that of unit cube sampling (i.e. simple fixed-point quantization of 𝑤0, . . . ,𝑤𝑁−1 ∈ [0, 1]).
Halving the error takes roughly 𝑁 bits, so it would take another 42 bits to reach the same error

with any AABB [Kuth and Meyer, 2021].

Of course, the improved worst-case error compared to OSS [Kuth and Meyer, 2021] is due to

our chosen error metric. With regard to the error in𝑤0, . . . ,𝑤𝑁−1 alone, OSS is optimal by design.

Fig. 3 demonstrates that our metric, which additionally accounts for the largest weight 𝑤𝑁 , is

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

5763368:12 Christoph Peters, Bastian Kuth, andQuirin Meyer

(a) Shaded (b) POT AABB (c) OSS (d) Ours

10

25

50
75
100

250

2-
no

rm
 e

rro
r i

n
po

sit
io

ns
/

m
 (l

og
 sc

al
e)

Fig. 3. Vertex positions for this skinned character (1.9 m tall) have been computed using compressed weights
and weights provided as 32-bit floats. All compression techniques use four bytes for four weights and the
tuple index. We color code the error in the world space positions. Model from mixamo.

indeed more relevant. The rounding errors in vertex positions are quite noisy but errors of our

permutation coding tend to be lower than with OSS at equal bit count.

4.3 Frame Times
We measure frame times using Vulkan on a desktop with an Intel Core i5-9600K and an NVIDIA

RTX 2070 Super with 8 GB VRAM. We have merged 28 character models into one scene with 1412

bones. Therefore, bone indices use 16 bits. This scene gets instanced 50 times for a total of 100

million vertices (Fig. 4). Each vertex stores fixed-point positions and texture coordinates and an

octahedral normal [Meyer et al., 2010] in 64 + 32 + 32 = 128 bits. All vertex data is bound through a

single vertex buffer. The bone transforms are stored as fixed-point unit quaternions, translations

and isotropic scalings in 8 · 16 = 128 bits each. An earlier version used 12 floats for a 3 × 4 matrix

but then L1 cache bandwidth became limiting and the differences between different blend attribute

compression techniques were smaller.

Table 4 shows the results. First of all, we note that 48 bits per vertex are more costly than 64 bits,

presumably due to alignment issues. That would change if the other vertex attributes were 16 bits

larger, e.g. due to tangent frames. Our ground truth stores all weights as 32-bit floats and indices

as 16-bit integers per vertex. Thus, it is already the slowest method for four weights and the cost

grows quickly.

At 32 bits with four weights, our permutation coding is slightly slower than unit cube sampling

and POT AABB, but at a much lower error. It outperforms OSS in terms of error and speed. Unit

cube sampling with 64 bits is slightly faster and much more accurate but the increased memory

footprint is a drawback in itself. At higher bit rates, we make similar observations although the

computational cost of our method becomes a bit more significant with increasing weight count.

For 10 bones, our method is the only one that offers a reasonable error at 64 bits.

4.4 Compute Timings
Our frame times depend heavily on specifics of our renderer. Therefore, we also set up a benchmark

focusing on the computational cost of OSS and our method (encoding and decoding). We run a

compute shader and derive a 64-bit integer from its thread index. We test the decoder by feeding it

this integer. There are no reads from buffers. To test the encoder, we turn the thread index into

arbitrary weights and encode them. A few additional instructions tie the results to outputs so that

the computation does not fall victim to dead-code elimination.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

https://www.mixamo.com/

Permutation Coding for Vertex-Blend Attribute Compression 5763368:13

Fig. 4. Our benchmark scene with 1400 character models from mixamo, rendered at 1280×1024.

Table 4. Total frame times in milliseconds for rendering Fig. 4 with various techniques. Bit counts refer to
weights and (tuple) indices, errors are as in Table 3.

Bit count 𝑁 + 1 Error Time

Unit cube sampling [2021]

32

4 27.49 8.7

POT AABB [2021] 4 13.75 8.8

OSS [2021] 4 4.16 10.0

Permutation coding, ours 4 2.57 9.3

OSS [2021]

48

4 0.10 11.8

POT AABB [2021] 6 10.78 11.6

POT AABB [2021] 8 60.35 11.6

Permutation coding, ours 8 3.66 13.0

Unit cube sampling [2021]

64

4 0.01 9.0

POT AABB [2021] 8 7.34 10.7

POT AABB [2021] 10 37.65 10.9

Permutation coding, ours 8 0.67 12.6

Permutation coding, ours 10 1.76 14.6

Ground truth 192 4 0 10.6

Ground truth 288 6 0 14.3

Ground truth 384 8 0 15.9

Ground truth 480 10 0 20.4

Table 5 shows the results. We note that our technique for four weights, is considerably less

expensive than OSS. The cost of our technique scales roughly linearly with the number of weights.

Encoding is slightly faster than decoding. Although encoding is more commonly done on CPU,

such a fast GPU implementation could come in handy for interactive editors or procedural content.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

https://www.mixamo.com/

5763368:14 Christoph Peters, Bastian Kuth, andQuirin Meyer

Table 5. Timings for the computations of encoding or decoding blend attributes in picoseconds per vertex.
The combined overhead for the encoding and decoding tests (generating weights from the thread index and
tying them to outputs) is reported separately.

𝑁 + 1 4 (OSS) 4 4 5 6 7 8 9 10 11 12 13

Bit count 32 24 32 32 48 48 48 48 64 64 64 64

Encoder - 10.2 10.3 13.7 22.3 26.2 32.7 37.3 49.2 56.5 65.2 73.6

Decoder 17.6 10.2 10.3 15.5 27.2 32.0 38.0 42.2 56.3 62.0 80.6 82.6

Overhead 5.4 5.4 5.4 6.4 7.2 8.5 9.6 10.5 11.7 12.6 13.8 14.9

Our table construction could also be implemented on GPU using standard parallel sorting and

scanning procedures.

5 CONCLUSIONS
The quest for greater fidelity and more detail in real-time rendering is never ending. Nonetheless, it

is still common to restrict artists to use only four bones per vertex. Our permutation coding makes

it viable to lift this restriction. For example, supporting eight weights per vertex with table sizes up

to 𝑇 = 8192 and an accuracy equivalent to 10 bits per weight costs only 48 bits per vertex. This

bandwidth is easily affordable and so is the computational cost.

Similar methods could be applied for compression of barycentric coordinates 𝜆0, . . . , 𝜆𝑁 ≥ 0

with

∑𝑁
𝑖=0 𝜆𝑖 = 1 (without sorting). The corresponding simplex has vertices at the canonical basis

vectors e0, . . . , e𝑁−1 ∈ R𝑁 . Thus, the pendant for the transform in Equation (2) is 𝑢𝑖 :=
∑𝑖
𝑗=0 𝜆 𝑗 . The

trick in Equation (5) does not carry over, so optimal quantization becomes more challenging but

permutation coding would be as effective as for sorted blend weights.

REFERENCES
Niels Henrik Abel. 1826. Beweis der Unmöglichkeit, algebraische Gleichungen von höheren Graden als dem vierten allgemein

aufzulösen. Journal für die reine und angewandteMathematik 1, 1 (1826), 65–84. https://doi.org/10.1515/9783112347386-009
Marc Alexa. 2002. Linear Combination of Transformations. ACM Trans. Graph. 21, 3 (2002). https://doi.org/10.1145/566654.

566592

Dean Calver. 2002. Vertex Decompression in a Shader. In Direct3D ShaderX – Vertex and Pixel Shader Tips and Tricks,
Wolfgang F. Engel (Ed.). Wordware Publishing, Inc., 172–187.

Dean Calver. 2004. Using Vertex Shaders for Geometry Compression. In ShaderX2: Shader Programming Tips and Tricks
with DirectX 9.0, Wolfgang F. Engel (Ed.). Wordware Publishing, Inc., 3–12.

Nicolas Fréchette. 2017. Simple and Powerful Animation Compression. https://www.gdcvault.com/play/1024009/Simple-and-

Powerful-Animation Game Developers Conference.

Ivo Zoltan Frey and Ivo Herzeg. 2011. Spherical Skinning with Dual Quaternions and QTangents. In ACM SIGGRAPH 2011
Talks. https://doi.org/10.1145/2037826.2037841

Andrew Garrard. 2020. Khronos Data Format Specification v1.3.1. https://www.khronos.org/registry/DataFormat/specs/1.3/

dataformat.1.3.html#_compressed_texture_image_formats

Jean Geffroy, Axel Gneiting, and Yixin Wang. 2020. Rendering the Hellscape of Doom Eternal. In ACM SIGGRAPH ’20: ACM
SIGGRAPH 2020 Courses. https://advances.realtimerendering.com/s2020

Brian Karis, Rune Stubbe, and Graham Wihlidal. 2021. Nanite — A Deep Dive. In ACM SIGGRAPH ’21: ACM SIGGRAPH 2021
Courses. http://advances.realtimerendering.com/s2021

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2008. Geometric Skinning with Approximate Dual Quaternion

Blending. ACM Trans. Graph. 27, 4 (2008). https://doi.org/10.1145/1409625.1409627

Benjamin Keinert, Matthias Innmann, Michael Sänger, and Marc Stamminger. 2015. Spherical Fibonacci Mapping. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 34, 6 (2015). https://doi.org/10.1145/2816795.2818131

Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3 - Sorting and Searching, 2nd Edition. Addison-Wesley

Professional.

Bastian Kuth and Quirin Meyer. 2021. Vertex-Blend Attribute Compression. In High-Performance Graphics - Symposium
Papers. The Eurographics Association. https://doi.org/10.2312/hpg.20211282 Best paper.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

https://doi.org/10.1515/9783112347386-009
https://doi.org/10.1145/566654.566592
https://doi.org/10.1145/566654.566592
https://www.realtimerendering.com/resources/shaderx/Direct3D.ShaderX.Vertex.and.Pixel.Shader.Tips.and.Tricks_Wolfgang.F.Engel_Wordware.Pub_2002.pdf
https://www.realtimerendering.com/resources/shaderx/Tips_and_Tricks_with_DirectX_9.pdf
https://www.realtimerendering.com/resources/shaderx/Tips_and_Tricks_with_DirectX_9.pdf
https://www.gdcvault.com/play/1024009/Simple-and-Powerful-Animation
https://www.gdcvault.com/play/1024009/Simple-and-Powerful-Animation
https://doi.org/10.1145/2037826.2037841
https://www.khronos.org/registry/DataFormat/specs/1.3/dataformat.1.3.html#_compressed_texture_image_formats
https://www.khronos.org/registry/DataFormat/specs/1.3/dataformat.1.3.html#_compressed_texture_image_formats
https://advances.realtimerendering.com/s2020
http://advances.realtimerendering.com/s2021
https://doi.org/10.1145/1409625.1409627
https://doi.org/10.1145/2816795.2818131
https://doi.org/10.2312/hpg.20211282

Permutation Coding for Vertex-Blend Attribute Compression 5763368:15

Binh Huy Le and Zhigang Deng. 2013. Two-Layer Sparse Compression of Dense-Weight Blend Skinning. ACM Trans. Graph.
(Proc. SIGGRAPH) 32, 4 (2013). https://doi.org/10.1145/2461912.2461949

Binh Huy Le and Jessica K. Hodgins. 2016. Real-Time Skeletal Skinning with Optimized Centers of Rotation. ACM Trans.
Graph. (Proc. SIGGRAPH) 35, 4 (2016). https://doi.org/10.1145/2897824.2925959

Binh Huy Le and J P Lewis. 2019. Direct Delta Mush Skinning and Variants. ACM Trans. Graph. (Proc. SIGGRAPH) 38, 4
(2019). https://doi.org/10.1145/3306346.3322982

Binh Huy Le, Keven Villeneuve, and Carlos Gonzalez-Ochoa. 2021. Direct Delta Mush Skinning Compression with

Continuous Examples. ACM Trans. Graph. (Proc. SIGGRAPH) 40, 4 (2021). https://doi.org/10.1145/3450626.3459779

Derrick H. Lehmer. 1960. Teaching combinatorial tricks to a computer. Proceedings of Symposia in Applied Mathematics 10
(1960), 179–193. https://doi.org/10.1090/psapm/010

Adrien Maglo, Guillaume Lavoué, Florent Dupont, and Céline Hudelot. 2015. 3D Mesh Compression: Survey, Comparisons,

and Emerging Trends. ACM Comput. Surv. 47, 3 (2015). https://doi.org/10.1145/2693443

Nadia Magnenat-Thalmann, Richard Laperrière, and Daniel Thalmann. 1989. Joint-Dependent Local Deformations for Hand

Animation and Object Grasping. In Proceedings on Graphics Interface ’88. Canadian Information Processing Society.

David K. McAllister, Alexandre Joly, and Peter Tong. 2014. Lossless Frame Buffer Color Compression. United States Patent

8670613.

Quirin Meyer, Jochen Süßmuth, Gerd Sußner, Marc Stamminger, and Günther Greiner. 2010. On Floating-Point Normal

Vectors. Computer Graphics Forum (Proc. EGSR) 29, 4 (2010). https://doi.org/10.1111/j.1467-8659.2010.01737.x

Jorn Nystad, Anders Lassen, Andy Pomianowski, Sean Ellis, and Tom Olson. 2012. Adaptive Scalable Texture Compression.

In Eurographics/ACM SIGGRAPH Symposium on High Performance Graphics. The Eurographics Association. https:

//doi.org/10.2312/EGGH/HPG12/105-114

Emil Persson. 2012. Creating Vast Game Worlds: Experiences from Avalanche Studios. In ACM SIGGRAPH 2012 Talks. Article
32. https://doi.org/10.1145/2343045.2343089

Budirijanto Purnomo, Jonathan Bilodeau, Jonathan D. Cohen, and Subodh Kumar. 2005. Hardware-Compatible Vertex

Compression Using Quantization and Simplification. In Graphics Hardware. The Eurographics Association. https:

//doi.org/10.2312/EGGH/EGGH05/053-062

Sylvain Rousseau and Tamy Boubekeur. 2020. Unorganized Unit Vectors Sets Quantization. Journal of Computer Graphics
Techniques (JCGT) 9, 4 (2020). https://jcgt.org/published/0009/04/02/

Henry S. Jr. Warren. 2012. Hacker’s Delight, 2nd Edition. Addison-Wesley Professional.

A LEMMA FOR THE FOLLOWING PROOFS
The proofs in the appendix rely on the following equation:

𝑖−1∑︁
𝑘=𝑗+1

1

(𝑁 + 1 − 𝑘) (𝑁 − 𝑘) =
1

𝑁 + 1 − 𝑖 −
1

𝑁 − 𝑗
(10)

Proof. We proceed by induction over 𝑖 − 𝑗 . For 𝑖 − 𝑗 = 1,

𝑖−1∑︁
𝑘=𝑗+1

1

(𝑁 + 1 − 𝑘) (𝑁 − 𝑘) = 0 =
1

𝑁 + 1 − 𝑖 −
1

𝑁 − 𝑗
.

Then if Equation (10) holds for sums with one term less, we find:

𝑖−1∑︁
𝑘=𝑗+1

1

(𝑁 + 1 − 𝑘) (𝑁 − 𝑘)

=
1

(𝑁 + 2 − 𝑖) (𝑁 + 1 − 𝑖) +
𝑖−2∑︁
𝑘=𝑗+1

1

(𝑁 + 1 − 𝑘) (𝑁 − 𝑘)

(10)

=
1

(𝑁 + 2 − 𝑖) (𝑁 + 1 − 𝑖) +
1

𝑁 + 2 − 𝑖 −
1

𝑁 − 𝑗

=
1

𝑁 + 1 − 𝑖 −
1

𝑁 − 𝑗

□

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

https://doi.org/10.1145/2461912.2461949
https://doi.org/10.1145/2897824.2925959
https://doi.org/10.1145/3306346.3322982
https://doi.org/10.1145/3450626.3459779
https://doi.org/10.1090/psapm/010
https://doi.org/10.1145/2693443
https://doi.org/10.1111/j.1467-8659.2010.01737.x
https://doi.org/10.2312/EGGH/HPG12/105-114
https://doi.org/10.2312/EGGH/HPG12/105-114
https://doi.org/10.1145/2343045.2343089
https://doi.org/10.2312/EGGH/EGGH05/053-062
https://doi.org/10.2312/EGGH/EGGH05/053-062
https://jcgt.org/published/0009/04/02/

5763368:16 Christoph Peters, Bastian Kuth, andQuirin Meyer

B INVERSE TRANSFORM
Proof. To prove Equation (3), we substitute Equation (2) into its right-hand side and apply

Equation (10):

1

𝑁 + 1 − 𝑖 𝑢𝑖 −
𝑖−1∑︁
𝑗=0

1

(𝑁 + 1 − 𝑗) (𝑁 − 𝑗)𝑢 𝑗

=𝑤𝑖 +
1

𝑁 + 1 − 𝑖

𝑖−1∑︁
𝑗=0

𝑤 𝑗 −
𝑖−1∑︁
𝑗=0

1

𝑁 − 𝑗
𝑤 𝑗 −

𝑖−1∑︁
𝑗,𝑘=0
𝑗<𝑘

1

𝑁 + 1 − 𝑘
1

𝑁 − 𝑘𝑤 𝑗

=𝑤𝑖 +
𝑖−1∑︁
𝑗=0

©« 1

𝑁 + 1 − 𝑖 −
1

𝑁 − 𝑗
−

𝑖−1∑︁
𝑘=𝑗+1

1

(𝑁 + 1 − 𝑘) (𝑁 − 𝑘)
ª®¬𝑤 𝑗

(10)

= 𝑤𝑖

□

C ERROR METRIC
Proof. To prove Equation (5), we start at the right-hand side, substitute in Equation (2), expand

and apply Equation (10):

𝑁−1∑︁
𝑖=0

1

(𝑁 + 1 − 𝑖) (𝑁 − 𝑖) �̃�
2

𝑖

=

𝑁−1∑︁
𝑖=0

1

(𝑁 + 1 − 𝑖) (𝑁 − 𝑖)

(
(𝑁 + 1 − 𝑖)�̃�𝑖 +

𝑖−1∑︁
𝑗=0

�̃� 𝑗

)
2

=

𝑁−1∑︁
𝑖=0

𝑁 + 1 − 𝑖
𝑁 − 𝑖 �̃�2

𝑖 + 2

𝑁−1∑︁
𝑖=0

𝑖−1∑︁
𝑗=0

1

𝑁 − 𝑖 �̃�𝑖�̃� 𝑗 +
𝑁−1∑︁
𝑖=0

𝑖−1∑︁
𝑗,𝑘=0

1

(𝑁 + 1 − 𝑖) (𝑁 − 𝑖) �̃� 𝑗�̃�𝑘

=

𝑁−1∑︁
𝑖=0

(
𝑁 + 1 − 𝑖
𝑁 − 𝑖 − 1

𝑁 − 𝑖

)
�̃�2

𝑖 +
𝑁−1∑︁
𝑖, 𝑗=0

�̃�𝑖�̃� 𝑗

𝑁 −max{𝑖, 𝑗} +
𝑁−1∑︁
𝑗,𝑘=0

𝑁−1∑︁
𝑖=max{ 𝑗,𝑘 }+1

1

(𝑁 + 1 − 𝑖) (𝑁 − 𝑖) �̃� 𝑗�̃�𝑘

(10)

=

𝑁−1∑︁
𝑖=0

�̃�2

𝑖 +
𝑁−1∑︁
𝑖, 𝑗=0

�̃�𝑖�̃� 𝑗

𝑁 −max{𝑖, 𝑗} +
𝑁−1∑︁
𝑗,𝑘=0

(
1

𝑁 + 1 − 𝑁 − 1

𝑁 −max{ 𝑗, 𝑘}

)
�̃� 𝑗�̃�𝑘

=

𝑁−1∑︁
𝑖=0

�̃�2

𝑖 +
𝑁−1∑︁
𝑗,𝑘=0

�̃� 𝑗�̃�𝑘

□

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 5763368. Publication date: May 2022.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Existing Blend Attribute Compression

	3 Our Blend Attribute Compression
	3.1 Problem Statement
	3.2 Overview of Our Method
	3.3 Permutation Coding
	3.4 Transforming the Blend Weights
	3.5 Error Analysis
	3.6 Quantization
	3.7 Encoder and Decoder

	4 Results
	4.1 Sorting Bone Indices
	4.2 Worst-Case Error
	4.3 Frame Times
	4.4 Compute Timings

	5 Conclusions
	References
	A Lemma for the Following Proofs
	B Inverse Transform
	C Error Metric

