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A QUANTIZATION AND COMPRESSION

The algorithm that computes a quantization curve is shown in algo-
rithm 1. The algorithm determines an error threshold from quantiz-
ing the moment at index 1 with b1 number of bits. The number of
bits is then decreased as much as possible for each subsequent index
l as long as the error stays below the threshold.

To evaluate the impact of our coding and quantization scheme, we
compare it to the baseline of directly quantizing the bounded trigono-
metric moments c0 ∈ [0,1] and c j ∈ [− 1

π
, 1

π
] with a fixed number of

bits. Afterwards we perform lossless compression. Fig. A.1 com-
pares this baseline approach to our coding scheme. We vary the
amount of quantization and compare the resulting image size and
accuracy of reconstructed scalar values. Our novel coding scheme
achieves a reduction in size as well as an increase in accuracy for all
datasets.

Algorithm 1: Computing a quantization curve
Data: Moment image M

Input :Initial bits b1
Output :Quantization table t

t[0]← 16
t[1]← b1

// Determine error threshold
M′← quantize(M,1,b1)
eT ← rRMSE(moments(M), moments(M′))

for l← 2 to m do
t[l]← t[l−1]
// Reduce number of bits until we reach the threshold
for b ∈ {t[l−1], . . . ,1} do

M′← quantize(M, l,b) // Quantize index l with b
e← rRMSE(moments(M), moments(M′))
if e≥ eT then

break

t[l]← b

B NUMBER OF MOMENTS

Fig. B.1 illustrates the number of moments in each pixel of the three
moment images. The amount of moments adapts to the complexity
of the data. For example, in the turbine dataset, the turbine blades
and swirling regions require more moments, whilst the surrounding
volume requires fewer. Note that this adaptation is independent
of the employed transfer function. For the Richtmyer-Meshkov
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and the Rayleigh-Taylor dataset, most pixels contain the maximum
number of moments. This is a clear indication that we should use
a higher maximal number of moments for these datasets. For the
Richtmyer-Meshkov dataset, we have increased the maximal number
of moments from 100 in Fig. B.2 (a), to 120 in (b) and to 150 in (c).
The quality visibly improves in (b) and again in (c).

C UNCERTAINTY QUANTIFICATION

We visualize the 90th error percentile in Fig. C.1 for each pixel in
moment images from all three datasets. This illustrates areas of
little and high uncertainty. For example, the Richtmyer-Meshkov
dataset in Fig. C.1 (a) shows a comparatively high error, due to its
complexity. In contrast, the smoother turbine dataset in Fig. C.1
(c) shows little uncertainty. Regions near the turbine blades have a
higher error than the rest of the image.

In the supplemental video, we further employ these error bounds
to visualize uncertainty using temporal animation. Specifically, we
choose and fix a value in [−1,1] before rendering. At each step
during ray marching, this value is scaled by the error bound for each
pixel and added to the reconstructed scalar values. This leads to
possible scalar densities with respect to the error bounds. Changing
the scaling factor over time leads to flickering in uncertain areas
which attracts attention.

D SCALABILITY

To investigate the scalability of our approach, we measure CPU
run-times on the turbine dataset, which requires expensive SPH
interpolation during ray marching. The results are shown in Fig. D.1
and are performed on an AMD Epyc Milan cloud instance with
differing amounts of vCPU cores.

Reference volume rendering with ray marching is shown in (a)
and scales nearly linearly with the number of vCPU cores. This is
also visible from the speedups shown in (d). Generating a moment
image (b) is approximately twice as slow compared to this reference
ray marching. The run-time is dominated by the ray marching, which
includes the computation of 100 moments for each pixel. But once
generated, rendering a moment image (c) is an order of magnitude
faster compared to the reference. When the moment image is already
decoded and prepared for rendering, which has to be performed only
once, rendering becomes nearly two orders of magnitude faster.

Generating and rendering moment images is well suited to be ex-
ecuted on massively parallel hardware, such as GPUs, since all steps
are trivially parallelizable over the pixels in an image. An exception
is the lossless encoding and decoding, which still benefits from CPU
parallelization. The speedups in (d) thus show linear scaling for the
moment image generation. For rendering, the ray marching step
scales nearly linearly. The moment preparation, i.e. the inversion of
the coding and the computation of Lagrange multipliers, does not
scale well beyond 32 vCPU cores. This might be due to a memory
bottleneck as this step is very memory intensive. Our GPU imple-
mentation relies on shared memory for these computations, which
significantly reduces the run-time and improves scaling to a large
amount of GPU cores.
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Figure A.1: Comparison of our coding and compression scheme with a naive approach that directly quantizes and compresses the moments.
Our approach leads to an increased accuracy of reconstructed scalar values at smaller image sizes.
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Figure B.1: Number of moments per pixel for moment images created from our datasets. Images from the Richtmyer-Meshkov (a) and
Rayleigh-Taylor (b) datasets mostly select the maximum of 100 moments. This indicates that a higher number of moments would improve the
reconstruction. For the turbine (c), this applies to a few regions near swirling regions and the turbine blades.

(a) Maximum of 100 moments (b) Maximum of 120 moments (c) Maximum of 150 moments

Figure B.2: Moment images of the Richtmyer-Meshkov dataset with a different maximal amount of moments. The accuracy visibly improves
when more moments can be used.
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Figure C.1: For each pixel in moment images from our datasets, we compute the 90th percentile of the absolute differences from the reference
to the reconstructured scalar values. The maximal number of moments is the same as in Fig. B.1.
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(a) Reference ray marching
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(b) Moment image generation
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(c) Moment image rendering
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(d) Speedup due to parallelization

Figure D.1: Run-time measurements of the turbine dataset with varying numbers of vCPU cores for reference ray marching (a), moment image
generation (b), and moment image rendering (c). The speedup compared to using 4 vCPUs is shown in (d). For rendering, the lossless decoding
and moment preparation steps have to be performed only once. Therefore, we also report the speedup of the ray marching step.
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