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Image-based Visualization of Large Volumetric
Data Using Moments

Tobias Rapp, Christoph Peters, and Carsten Dachsbacher

Abstract—We present a novel image-based representation to interactively visualize large and arbitrarily structured volumetric data. This
image-based representation is created from a fixed view and models the scalar densities along each viewing ray. Then, any transfer
function can be applied and changed interactively to visualize the data. In detail, we transform the density in each pixel to the Fourier
basis and store Fourier coefficients of a bounded signal, i.e. bounded trigonometric moments. To keep this image-based representation
compact, we adaptively determine the number of moments in each pixel and present a novel coding and quantization strategy.
Additionally, we perform spatial and temporal interpolation of our image representation and discuss the visualization of introduced
uncertainties. Moreover, we use our representation to add single scattering illumination. Lastly, we achieve accurate results even with
changes in the view configuration. We evaluate our approach on two large volume datasets and a time-dependent SPH dataset.

Index Terms—Image-based visualization, volume rendering, unstructured volumes, moments, MESE, Fourier reconstruction
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1 INTRODUCTION

CONTINUING progress in high performance computing enables
scientists to perform complex simulations in a high spatial

and temporal resolution. Exploring and analyzing the resulting
datasets is a daunting task. The traditional approach to transfer
and analyze the data on an individual workstation is no longer
feasible for large datasets due to storage, bandwidth, and compute
constraints. In situ visualization [1], where the simulation is tightly
coupled with the visualization pipeline, addresses this limitation,
but limits exploration and interaction.

Alternatively, data reduction [2] can be used to compress,
subsample, or to construct an approximate representation of the
data. Loss of information is thereby unavoidable to achieve a
meaningful data reduction, thus requiring the communication of
introduced uncertainties. Image-based approaches [3] combine in
situ visualization with the analysis on low-cost machines. There,
the data is represented by images produced from fixed views and
predefined parameters. Image-based approaches are also employed
to render large or unstructured volumetric data [4] that could not be
interactively visualized otherwise. However, the transfer function
based exploration of volumetric data is difficult to integrate into
image-based approaches as it requires a compact and accurate
representation of the signal along each view ray.

In this work, we present a novel image-based data represen-
tation to visualize large structured and unstructured volumetric
data. This representation allows us to store and reconstruct the
scalar density along a viewing ray, thus enabling the application
to arbitrarily structured data and a change of all aspects of the
transfer function similar to recent work [5], [6], [7], [8]. We avoid
storing discrete samples or modeling distributions along a ray.
Instead we compactly represent the density in the Fourier basis.
We store Fourier coefficients of a signal bounded between zero
and one, also referred to as bounded trigonometric moments. This
leads to a sparse and quantizable representation that can be linearly
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interpolated in space and time. For reconstruction, we explore two
options. Evaluating a truncated Fourier series is simple and efficient
but causes well-known ringing artifacts. The recently introduced
bounded maximum entropy spectral estimate (MESE) [9] offers an
efficient and accurate reconstruction of a bounded signal from its
moments.

We compress this representation in several ways. First, we
determine the number of moments per pixel adaptively. To this
end, we ray march the dataset once and generate a fixed number
of moments. Then we select an appropriate number of moments
per pixel by utilizing an error measure between all and a prefix of
moments. Next, we employ a novel coding strategy to compress the
moments in each pixel. This coding scheme uses information
from the lower-order moments in a pixel to predict the next
moment. Therefore, we only need to store differences to the
actual moments, which are more amenable to quantization and
compression. Accounting for the trade-off between quality and
data size, we present a parameterizable quantization curve that
is Pareto optimal. After compression, we store between 20 and
60 bytes per pixel, when using up to 100 moments. Furthermore,
we quantify the uncertainty of this representation, include single
scattering in the volume rendering, and support changes in the view
configuration.

To summarize, our main contributions are:

• We propose an image-based representation for visualizing
large, arbitrarily structured volumetric data,

• We adaptively determine the number of moments per pixel
and present a novel coding and quantization strategy to
compactly store bounded trigonometric moments,

• We describe methods for uncertainty quantification, single
scattering, and changing the view configuration with our
image-based representation.

We make the full source code of our implementation available at
https://github.com/TobiasRp/mray.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

2 RELATED WORK

Data reduction is increasingly important for the visualization and
analysis of scientific datasets [2]. Due to the stochastic nature of
continuous scientific data, lossless and near lossless compression
is generally unable to significantly reduce the data sizes. Moreover,
we are not just interested in compression, but also in the inter-
active visualization and exploration of large data. For rendering
structured volumes, compression [10] and multi-resolution [11]
approaches exist. A popular family of lossy compression methods
applies transformations, such as the Fourier or discrete cosine
transforms [12], custom transforms [13], or transforms based on
tensor decomposition [14]. These transformations are followed
by quantization and encoding of the coefficients to achieve
compression.

We similarly employ a transformation followed by a compact
encoding of the resulting coefficients, but our signals are one-
dimensional. This is due to our image-based perspective, where
we only compress the subset of the dataset visible from a fixed
view. This approach leads to a compact image representation,
with an acceptable loss in accuracy, and enables its application
to unstructured data. Moreover, by limiting our approach to one-
dimensional signals, it is significantly faster and scalable, which is
required for the in situ application.

Our method follows the image-based paradigm first introduced
by Ahrens et al. [3]. The authors present a framework for in situ
visualization of extreme scale data by collecting and organizing
a large database of images taken with different parameters. The
authors point out that storing a massive amount of images, e.g. in
the order of 106, still leads to a reduced amount of data compared
to state-of-the-art simulations, which are in the order of ≥ 1015.
Lukasczyk et al. [15] determine a minimal set of views that
best approximates the data. Bujack et al. [16] detect features in
situ to create clutter-free images. Deferred rendering [17] can be
used to adjust some of the visualization parameters for surface
rendering. However, with all of these approaches it is not possible
to explore volumetric data by changing the transfer function.
Tikhonova et al. [18], [19], [20] thus propose explorable images
that store image slices to allow modifying the transfer function by
solely relying on image-space operations. In contrast to explorable
images, we propose an image-based representation that enables the
reconstruction of scalar densities during ray marching.

An image-based approach for volume rendering has been
introduced by Mueller et al. [21], which employs pre-rendered
object slices, to address growing data sizes. Shareef et al. [4]
perform volume rendering on unstructured grids by representing
the scene with view-dependent information. This representation is
based on layered depth images [22], where each pixel contains a
list of depth-ordered samples. Volumetric depth images [5] store
scalar samples along rays in image-space, but additionally partition
them by similarity into larger segments. Volumetric depth images
have been extended to space-time [6], by exploiting both inter-ray
and inter-frame coherence. These approaches thus work best when
the data is mostly homogeneous since storing discrete samples does
not scale well to complex signals. Wang et al. [7] partition each
ray into segments, but subdivide adaptively based on the Shannon
entropy of ray densities. This requires repeated ray marching of
the data to determine a suitable subdivision. In each segment,
the density distribution is approximated with a histogram, which
is storage intensive, disregards depth-ordering, and quantizes the
values. Their work has been extended for time-varying data [8]
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Fig. 1: A moment image is generated on the compute cluster
(left) and is used for interactive volume rendering on the analysis
machine (right).

where bandwidth or storage constraints limit the total amount
of time steps. Temporal coherence is improved by storing ray
histograms and depth-ordering information in-between time steps.

In this paper, we employ bounded trigonometric moments to
compactly and efficiently represent bounded densities per pixel.
This representation implicitly retains the depth order and thus
avoids the need for dividing the ray segment or storing additional
data structures. Although we perform aggressive quantization,
our reconstructed signals are smooth. Lastly, generating our
representation does not require repeated ray marching of the dataset,
which makes it well suited for large and irregular data that is costly
to sample.

In graphics research, the theory of moments has been applied to
reconstruct densities from power moments or Fourier coefficients.
This has led to new approaches to shadow mapping [23], [24], tran-
sient imaging [25], spectral rendering [9], and order-independent
transparency [26]. Recently, these results have been applied to
visualization research for rendering lines with transparency [27]
and for opacity optimization [28], [29]. In this work, we employ
the approach by Peters et al. [9] to reconstruct bounded densities
and apply it to direct volume rendering. This requires us to use
orders of magnitude more moments and to devise novel compaction
and compression methods to encode them efficiently. Although we
derive these methods based on the theory of moments, they are
equally applicable when using the Fourier reconstruction.

3 MOMENT-BASED VOLUME RENDERING

In this section, we discuss volume rendering using our image-
based representation. Figure 1 gives an overview. Our proxy
representation, which we refer to as moment image, is generated on
a system with access to the data. The moment image then enables
the interactive exploration with a user-controllable transfer function
on a low-cost analysis machine.

We begin by reviewing the reconstruction of bounded densities
using moments (Section 3.1), before we discuss the computation
of moments during ray marching of arbitrarily structured data
(Section 3.2) to create a moment image. Then, we examine ray
marching using a moment image (Section 3.3). Afterwards, we
analyze relations between valid sequences of moments (Section 3.4).
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CONTINUING progress in high performance computing enables
scientists to perform complex simulations in a high spatial

and temporal resolution. Exploring and analyzing the resulting
datasets is a daunting task. The traditional approach to transfer
and analyze the data on an individual workstation is no longer
feasible for large datasets due to storage, bandwidth, and compute
constraints. In situ visualization [1], where the simulation is tightly
coupled with the visualization pipeline, addresses this limitation,
but limits exploration and interaction.

Alternatively, data reduction [2] can be used to compress,
subsample, or to construct an approximate representation of the
data. Loss of information is thereby unavoidable to achieve a
meaningful data reduction, thus requiring the communication of
introduced uncertainties. Image-based approaches [3] combine in
situ visualization with the analysis on low-cost machines. There,
the data is represented by images produced from fixed views and
predefined parameters. Image-based approaches are also employed
to render large or unstructured volumetric data [4] that could not be
interactively visualized otherwise. However, the transfer function
based exploration of volumetric data is difficult to integrate into
image-based approaches as it requires a compact and accurate
representation of the signal along each view ray.

In this work, we present a novel image-based data represen-
tation to visualize large structured and unstructured volumetric
data. This representation allows us to store and reconstruct the
scalar density along a viewing ray, thus enabling the application
to arbitrarily structured data and a change of all aspects of the
transfer function similar to recent work [5], [6], [7], [8]. We avoid
storing discrete samples or modeling distributions along a ray.
Instead we compactly represent the density in the Fourier basis.
We store Fourier coefficients of a signal bounded between zero
and one, also referred to as bounded trigonometric moments. This
leads to a sparse and quantizable representation that can be linearly
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interpolated in space and time. For reconstruction, we explore two
options. Evaluating a truncated Fourier series is simple and efficient
but causes well-known ringing artifacts. The recently introduced
bounded maximum entropy spectral estimate (MESE) [9] offers an
efficient and accurate reconstruction of a bounded signal from its
moments.

We compress this representation in several ways. First, we
determine the number of moments per pixel adaptively. To this
end, we ray march the dataset once and generate a fixed number
of moments. Then we select an appropriate number of moments
per pixel by utilizing an error measure between all and a prefix of
moments. Next, we employ a novel coding strategy to compress the
moments in each pixel. This coding scheme uses information
from the lower-order moments in a pixel to predict the next
moment. Therefore, we only need to store differences to the
actual moments, which are more amenable to quantization and
compression. Accounting for the trade-off between quality and
data size, we present a parameterizable quantization curve that
is Pareto optimal. After compression, we store between 20 and
60 bytes per pixel, when using up to 100 moments. Furthermore,
we quantify the uncertainty of this representation, include single
scattering in the volume rendering, and support changes in the view
configuration.

To summarize, our main contributions are:

• We propose an image-based representation for visualizing
large, arbitrarily structured volumetric data,

• We adaptively determine the number of moments per pixel
and present a novel coding and quantization strategy to
compactly store bounded trigonometric moments,

• We describe methods for uncertainty quantification, single
scattering, and changing the view configuration with our
image-based representation.

We make the full source code of our implementation available at
https://github.com/TobiasRp/mray.
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2 RELATED WORK

Data reduction is increasingly important for the visualization and
analysis of scientific datasets [2]. Due to the stochastic nature of
continuous scientific data, lossless and near lossless compression
is generally unable to significantly reduce the data sizes. Moreover,
we are not just interested in compression, but also in the inter-
active visualization and exploration of large data. For rendering
structured volumes, compression [10] and multi-resolution [11]
approaches exist. A popular family of lossy compression methods
applies transformations, such as the Fourier or discrete cosine
transforms [12], custom transforms [13], or transforms based on
tensor decomposition [14]. These transformations are followed
by quantization and encoding of the coefficients to achieve
compression.

We similarly employ a transformation followed by a compact
encoding of the resulting coefficients, but our signals are one-
dimensional. This is due to our image-based perspective, where
we only compress the subset of the dataset visible from a fixed
view. This approach leads to a compact image representation,
with an acceptable loss in accuracy, and enables its application
to unstructured data. Moreover, by limiting our approach to one-
dimensional signals, it is significantly faster and scalable, which is
required for the in situ application.

Our method follows the image-based paradigm first introduced
by Ahrens et al. [3]. The authors present a framework for in situ
visualization of extreme scale data by collecting and organizing
a large database of images taken with different parameters. The
authors point out that storing a massive amount of images, e.g. in
the order of 106, still leads to a reduced amount of data compared
to state-of-the-art simulations, which are in the order of ≥ 1015.
Lukasczyk et al. [15] determine a minimal set of views that
best approximates the data. Bujack et al. [16] detect features in
situ to create clutter-free images. Deferred rendering [17] can be
used to adjust some of the visualization parameters for surface
rendering. However, with all of these approaches it is not possible
to explore volumetric data by changing the transfer function.
Tikhonova et al. [18], [19], [20] thus propose explorable images
that store image slices to allow modifying the transfer function by
solely relying on image-space operations. In contrast to explorable
images, we propose an image-based representation that enables the
reconstruction of scalar densities during ray marching.

An image-based approach for volume rendering has been
introduced by Mueller et al. [21], which employs pre-rendered
object slices, to address growing data sizes. Shareef et al. [4]
perform volume rendering on unstructured grids by representing
the scene with view-dependent information. This representation is
based on layered depth images [22], where each pixel contains a
list of depth-ordered samples. Volumetric depth images [5] store
scalar samples along rays in image-space, but additionally partition
them by similarity into larger segments. Volumetric depth images
have been extended to space-time [6], by exploiting both inter-ray
and inter-frame coherence. These approaches thus work best when
the data is mostly homogeneous since storing discrete samples does
not scale well to complex signals. Wang et al. [7] partition each
ray into segments, but subdivide adaptively based on the Shannon
entropy of ray densities. This requires repeated ray marching of
the data to determine a suitable subdivision. In each segment,
the density distribution is approximated with a histogram, which
is storage intensive, disregards depth-ordering, and quantizes the
values. Their work has been extended for time-varying data [8]
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Fig. 1: A moment image is generated on the compute cluster
(left) and is used for interactive volume rendering on the analysis
machine (right).

where bandwidth or storage constraints limit the total amount
of time steps. Temporal coherence is improved by storing ray
histograms and depth-ordering information in-between time steps.

In this paper, we employ bounded trigonometric moments to
compactly and efficiently represent bounded densities per pixel.
This representation implicitly retains the depth order and thus
avoids the need for dividing the ray segment or storing additional
data structures. Although we perform aggressive quantization,
our reconstructed signals are smooth. Lastly, generating our
representation does not require repeated ray marching of the dataset,
which makes it well suited for large and irregular data that is costly
to sample.

In graphics research, the theory of moments has been applied to
reconstruct densities from power moments or Fourier coefficients.
This has led to new approaches to shadow mapping [23], [24], tran-
sient imaging [25], spectral rendering [9], and order-independent
transparency [26]. Recently, these results have been applied to
visualization research for rendering lines with transparency [27]
and for opacity optimization [28], [29]. In this work, we employ
the approach by Peters et al. [9] to reconstruct bounded densities
and apply it to direct volume rendering. This requires us to use
orders of magnitude more moments and to devise novel compaction
and compression methods to encode them efficiently. Although we
derive these methods based on the theory of moments, they are
equally applicable when using the Fourier reconstruction.

3 MOMENT-BASED VOLUME RENDERING

In this section, we discuss volume rendering using our image-
based representation. Figure 1 gives an overview. Our proxy
representation, which we refer to as moment image, is generated on
a system with access to the data. The moment image then enables
the interactive exploration with a user-controllable transfer function
on a low-cost analysis machine.

We begin by reviewing the reconstruction of bounded densities
using moments (Section 3.1), before we discuss the computation
of moments during ray marching of arbitrarily structured data
(Section 3.2) to create a moment image. Then, we examine ray
marching using a moment image (Section 3.3). Afterwards, we
analyze relations between valid sequences of moments (Section 3.4).
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We employ these insights to select an appropriate number of
moments for each pixel (Section 3.5) and for our coding and
quantization scheme (Section 3.6).

3.1 Using Moments to Reconstruct Bounded Densities
To represent the densities along a viewing ray, we map the length
of the ray in the volume to [−π,0] linearly and we assume that
the densities are bounded in [0,1]. Since this signal is generally
not periodic, we mirror the signal in [−π,0] to a periodic signal
in[−π,π]. With these conventions, our goal is compact storage
of a signal s : [−π,π] → [0,1]. We represent this signal in the
Fourier basis using m+ 1 ∈ N Fourier coefficients. The Fourier
basis, written as a vector, is

c(ϕ) :=
1

2π
(exp(−i jϕ))m

j=0 ∈ Cm+1

and the Fourier coefficients are

c :=
∫ π

−π
s(ϕ)c(ϕ)dϕ ∈ Rm+1.

Note that the coefficients are real since the mirroring makes the
signal even. These Fourier coefficients compactly approximate
a signal. However, reconstruction with a truncated Fourier series
does not guarantee bounded values and exhibits well-known ringing
artifacts as shown in Figure 2.

The Fourier coefficients of a bounded signal are also known as
bounded trigonometric moments, or simply moments in the scope
of this paper. Peters et al. [9] introduce the bounded MESE, which
reconstructs a signal from bounded trigonometric moments. It never
violates the bounds [0,1] and is less prone to ringing, see Figure 2.
We briefly recapitulate the underlying algorithm [9] here because
its intermediate results are important to our novel quantization
schemes. Figure 3 gives an overview.

The bounded MESE is derived from a reconstruction for signals
with values in [0,∞) known as MESE. The two signals are in a
dual one-to-one relationship, defined by an integral transform [9].
Thus, we first transform the bounded trigonometric moments c into
exponential moments γ ∈ Cm+1 of its dual unbounded signal. For
this we define

γ̌0 :=
1

4π
exp

(
πi

(
c0 −

1
2

))
∈ C.

t0 t1

-π 00

1

s0

φ0 φ1 φ2 

s1 s2

Fig. 4: During ray marching, we sample a scalar density along the
ray parameterized by [−π,0]. We compute m+1 moments from
this signal.

The exponential moments are defined by the recurrence

γ0 := 2ℜγ̌0 ∈ R,

γl :=
2πi

l

(
lγ̌0cl +

l−1

∑
j=1

(l − j)γ jcl− j

)
∈ C,

(1)

where ℜγ̌0 denotes the real part and l ∈ {1, . . . ,m}. This transfor-
mation is invertible.

The next steps utilize the Hermitian Toeplitz matrix

C(γ) :=
1

2π
(
γ j−k

)m
j,k=0 ∈ C(m+1)×(m+1),

where γ− j = γ j for all j ∈ {1, . . . ,m}. It is possible to reconstruct
a density with values in [0,∞) from the exponential moments
γ if and only if C(γ) is positive definite. In this case, the
evaluation polynomial q := C−1(γ)e0, with e0 := (1,0, . . . ,0)T

holds coefficients for the MESE [25].
An integral transform converts the MESE of the exponential

moments γ into the bounded MESE of the bounded trigonometric
moments c; it can be efficiently evaluated [9]. We transform the
evaluation polynomial into Lagrange multipliers λ ∈ Rm+1. We
denote γ̌ j = γ j for all j ∈ {1, . . . ,m}. Then for all l ∈ {0, . . . ,m}

λl :=
1

πiq0

m−l

∑
k=0

γ̌k

m−k−l

∑
j=0

q j+k+lq j ∈ R. (2)

Now, the bounded MESE is given by

ŝ(ϕ) =
1
π

arctan

(
ℜλ0 +2ℜ

m

∑
l=1

λl exp(−ilϕ)

)
+

1
2
. (3)

Since arctan maps to (− π
2 ,

π
2 ), the reconstructed density ŝ is always

in (0,1), as intended. Moreover, the Lagrange multipliers are
constructed to ensure that

∫ π

−π
ŝ(ϕ)c(ϕ)dϕ = c, (4)

i.e. the bounded trigonometric moments are accounted for exactly.
The ground truth s and its reconstruction ŝ may still differ but at
least the stored Fourier coefficients agree perfectly. A truncated
Fourier series also satisfies Equation 4 but does not exploit
knowledge about the bounds. As shown in Figure 2 the bounded
MESE captures complicated signals well while being less prone to
ringing than a truncated Fourier series.

3.2 Moments of Ray Densities
We now discuss the creation of our proxy representation, the
moment image. For every pixel, this image contains the moments
of a scalar density sampled during ray marching, see Figure 4. To
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this end, we first compute the intersections t0 and t1 of a viewing
ray r(t) with the volume. We map the parameterized ray r(t) with
t ∈ [t0, t1] to phase space [−π,0] linearly and sample the volume at
ϕ0, . . . ,ϕn−1, giving us the densities s0, . . . ,sn−1 ∈ [0,1]. Since the
actual method that produces these densities is not relevant, we can
sample arbitrarily structured volumetric data.

To compute m+ 1 bounded trigonometric moments during
ray marching, we assume linear interpolation and perform a
quadrature [9, Appendix C]. At each ray marching step, we compute
the gradient al and y-intercept bl :

al :=
sl+1 − sl

ϕl+1 −ϕl
, bl := sl −alϕl .

Then the interpolated signal at ϕ ∈ [ϕl ,ϕl+1] is s(ϕ) := alϕ +bl .
The bounded trigonometric moments are iteratively computed as:

c0 :=
1
π

n−2

∑
l=0

[al

2
ϕ2 +blϕ

]ϕl+1

ϕl
∈ R,

c j :=
1
π

ℜ
n−2

∑
l=0

[(
al

1+ i jϕ
j2 +bl

i
j

)
exp(−i jϕ)

]ϕl+1

ϕl

∈ R.

Since we mirror the signal, the moments are real and we do not
have to compute or store the imaginary parts.

Lastly, we compute a lower bound smin ≤ s(ϕ)−ε and an upper
bound s(ϕ)+ ε ≤ smax during ray marching. Here, ε is a small
number to relax the bounds. For example, we set ε = 0.005 for
our datasets. This relaxation improves the reconstruction since it
stays away from 0 and 1, see Equation 3. After ray marching, we
transform the moments to these bounds via

ct
0 :=

c0 − smin

smax − smin
, ct

j :=
c j

smax − smin
. (5)

Although we have to store the bounds for each pixel to invert this
transformation after reconstruction, we found that it improves the
reconstruction and enables a more aggressive quantization of the
moments (Section 3.6).

3.3 Interactive Rendering

To render using a moment image, we first note that it is possible
to linearly interpolate the moments of neighboring pixels or even
between different time steps. For example, we can increase the
resolution of the moment image using bilinear interpolation to
render in a higher resolution. Although other types of interpolation
are possible, negative weights in filter kernels may invalidate
moments and should be avoided.

To ray march a moment image, we compute the Lagrange
multipliers for each pixel upon loading. Subsequently, we perform
ray marching using a ray r(t) in the interval [t0, t1], which we
map to [−π,0]. During ray marching, we use the Lagrange
multipliers to efficiently reconstruct a density at each ϕ ∈ [−π,0]
by evaluating Equation 3. Afterwards, we invert the transformation
from Equation 5 using the bounds [smin,smax], apply a transfer
function, and perform compositing. Note that we can apply any
transfer function that expects a scalar density as input. We employ
a preintegrated transfer function [30]. Ray marching a moment
image is fast, taking only a few milliseconds (cf. Table 3), which
enables the interactive exploration with different transfer functions.

3.4 Relations Between Moments

It is viable to store moment images using one 32-bit float per
moment but storage requirements are considerable. Thus, we strive
to reduce the number of moments adaptively and to quantize the
remaining moments to only a few bits. Our methods benefit from
the underlying theory of the bounded MESE [9] but they are novel
and independent of the used reconstruction. The bounded MESE
and the truncated Fourier series both benefit. In this section, we
cover the relevant mathematical results.

Recall from Section 3.1 that we construct the evaluation
polynomial q :=C−1(γ)e0 from the exponential moments γ ∈Cm+1.
The Toeplitz matrix C has a special structure. Levinson’s algorithm
exploits this structure to solve for q in time O(m2) instead of
O(m3) [31]. At the same time, it produces intermediate results that
aid our quantization scheme. For all l ∈ {1, . . . ,m} Levinsons’s
algorithm computes:

q(0)0 :=
1
γ0
, (6)

u(l) :=
l−1

∑
k=0

q(l−1)
k γl−k, (7)

q(l) :=

(
q(l−1)

0 , . . . ,q(l−1)
l−1 ,0

)
−u(l)

(
0,q(l−1)

l−1 , . . . ,q(l−1)
0

)

1−|u(l)|2
. (8)

Then
q =C−1(γ)e0 = 2π

(
q(m)

0 , . . . ,q(m)
m

)
.

Since the Toeplitz matrix is positive definite, we know |u(l)|< 1
[31]. Combined with Equation 7, this inequality forces γl to reside
in a disk of radius rl with center γ̊l , where

rl :=
1

q(l−1)
0

> 0, γ̊l :=− 1

q(l−1)
0

l−1

∑
k=1

q(l−1)
k γl−k ∈ C.

Inverting Equation 1 shows that the bounded trigonometric moment

cl =
γl

2πiγ̌0
− 1

lγ̌0

l−1

∑
j=1

(l − j)γ jcl− j (9)

lies in a disk as well. We base our coding strategy in Section 3.6
on this observation.

Incidentally, the center of this disk also has a compelling
relation to the bounded MESE ŝ. In the case l = m+1, we find

c̊l :=
γ̊l

2πiγ̌0
− 1

lγ̌0

l−1

∑
j=1

(l − j)γ jcl− j =
1

2π

∫ π

−π
ŝ(ϕ)exp(−ilϕ)dϕ.

In other words, the bounded MESE places every unknown moment
in the center of the disk where it must reside [9, Lemma B.2]. This
behavior is in stark contrast to a truncated Fourier series, which
just sets unknown Fourier coefficients to zero.

Applying this insight repeatedly lets us compute the full Fourier
expansion of the bounded MESE [9, Proposition B.3]. In terms of
the exponential moments, we obtain the linear recurrence

γm+1+k =− 1
q0

m

∑
j=0

γ j+kqm+1− j, (10)

for all k ∈ N. Mapping these exponential moments to bounded
moments through Equation 9, we obtain all unknown moments of
the bounded MESE ŝ.
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Fig. 2: Truncated Fourier and bounded MESE reconstruction from
the same coefficients.
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Fig. 3: Given bounded trigonometric moments, we compute the
corresponding exponential moments, solve a linear system, and
finally compute Lagrange multipliers, from which we can efficiently
reconstruct a bounded signal.

We employ these insights to select an appropriate number of
moments for each pixel (Section 3.5) and for our coding and
quantization scheme (Section 3.6).

3.1 Using Moments to Reconstruct Bounded Densities
To represent the densities along a viewing ray, we map the length
of the ray in the volume to [−π,0] linearly and we assume that
the densities are bounded in [0,1]. Since this signal is generally
not periodic, we mirror the signal in [−π,0] to a periodic signal
in[−π,π]. With these conventions, our goal is compact storage
of a signal s : [−π,π] → [0,1]. We represent this signal in the
Fourier basis using m+ 1 ∈ N Fourier coefficients. The Fourier
basis, written as a vector, is

c(ϕ) :=
1

2π
(exp(−i jϕ))m

j=0 ∈ Cm+1

and the Fourier coefficients are

c :=
∫ π

−π
s(ϕ)c(ϕ)dϕ ∈ Rm+1.

Note that the coefficients are real since the mirroring makes the
signal even. These Fourier coefficients compactly approximate
a signal. However, reconstruction with a truncated Fourier series
does not guarantee bounded values and exhibits well-known ringing
artifacts as shown in Figure 2.

The Fourier coefficients of a bounded signal are also known as
bounded trigonometric moments, or simply moments in the scope
of this paper. Peters et al. [9] introduce the bounded MESE, which
reconstructs a signal from bounded trigonometric moments. It never
violates the bounds [0,1] and is less prone to ringing, see Figure 2.
We briefly recapitulate the underlying algorithm [9] here because
its intermediate results are important to our novel quantization
schemes. Figure 3 gives an overview.

The bounded MESE is derived from a reconstruction for signals
with values in [0,∞) known as MESE. The two signals are in a
dual one-to-one relationship, defined by an integral transform [9].
Thus, we first transform the bounded trigonometric moments c into
exponential moments γ ∈ Cm+1 of its dual unbounded signal. For
this we define

γ̌0 :=
1

4π
exp

(
πi

(
c0 −

1
2

))
∈ C.

t0 t1

-π 00

1

s0

φ0 φ1 φ2 

s1 s2

Fig. 4: During ray marching, we sample a scalar density along the
ray parameterized by [−π,0]. We compute m+1 moments from
this signal.

The exponential moments are defined by the recurrence

γ0 := 2ℜγ̌0 ∈ R,

γl :=
2πi

l

(
lγ̌0cl +

l−1

∑
j=1

(l − j)γ jcl− j

)
∈ C,

(1)

where ℜγ̌0 denotes the real part and l ∈ {1, . . . ,m}. This transfor-
mation is invertible.

The next steps utilize the Hermitian Toeplitz matrix

C(γ) :=
1

2π
(
γ j−k

)m
j,k=0 ∈ C(m+1)×(m+1),

where γ− j = γ j for all j ∈ {1, . . . ,m}. It is possible to reconstruct
a density with values in [0,∞) from the exponential moments
γ if and only if C(γ) is positive definite. In this case, the
evaluation polynomial q := C−1(γ)e0, with e0 := (1,0, . . . ,0)T

holds coefficients for the MESE [25].
An integral transform converts the MESE of the exponential

moments γ into the bounded MESE of the bounded trigonometric
moments c; it can be efficiently evaluated [9]. We transform the
evaluation polynomial into Lagrange multipliers λ ∈ Rm+1. We
denote γ̌ j = γ j for all j ∈ {1, . . . ,m}. Then for all l ∈ {0, . . . ,m}

λl :=
1

πiq0

m−l

∑
k=0

γ̌k

m−k−l

∑
j=0

q j+k+lq j ∈ R. (2)

Now, the bounded MESE is given by

ŝ(ϕ) =
1
π

arctan

(
ℜλ0 +2ℜ

m

∑
l=1

λl exp(−ilϕ)

)
+

1
2
. (3)

Since arctan maps to (− π
2 ,

π
2 ), the reconstructed density ŝ is always

in (0,1), as intended. Moreover, the Lagrange multipliers are
constructed to ensure that

∫ π

−π
ŝ(ϕ)c(ϕ)dϕ = c, (4)

i.e. the bounded trigonometric moments are accounted for exactly.
The ground truth s and its reconstruction ŝ may still differ but at
least the stored Fourier coefficients agree perfectly. A truncated
Fourier series also satisfies Equation 4 but does not exploit
knowledge about the bounds. As shown in Figure 2 the bounded
MESE captures complicated signals well while being less prone to
ringing than a truncated Fourier series.

3.2 Moments of Ray Densities
We now discuss the creation of our proxy representation, the
moment image. For every pixel, this image contains the moments
of a scalar density sampled during ray marching, see Figure 4. To
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this end, we first compute the intersections t0 and t1 of a viewing
ray r(t) with the volume. We map the parameterized ray r(t) with
t ∈ [t0, t1] to phase space [−π,0] linearly and sample the volume at
ϕ0, . . . ,ϕn−1, giving us the densities s0, . . . ,sn−1 ∈ [0,1]. Since the
actual method that produces these densities is not relevant, we can
sample arbitrarily structured volumetric data.

To compute m+ 1 bounded trigonometric moments during
ray marching, we assume linear interpolation and perform a
quadrature [9, Appendix C]. At each ray marching step, we compute
the gradient al and y-intercept bl :

al :=
sl+1 − sl

ϕl+1 −ϕl
, bl := sl −alϕl .

Then the interpolated signal at ϕ ∈ [ϕl ,ϕl+1] is s(ϕ) := alϕ +bl .
The bounded trigonometric moments are iteratively computed as:

c0 :=
1
π

n−2

∑
l=0

[al

2
ϕ2 +blϕ

]ϕl+1

ϕl
∈ R,

c j :=
1
π

ℜ
n−2

∑
l=0

[(
al

1+ i jϕ
j2 +bl

i
j

)
exp(−i jϕ)

]ϕl+1

ϕl

∈ R.

Since we mirror the signal, the moments are real and we do not
have to compute or store the imaginary parts.

Lastly, we compute a lower bound smin ≤ s(ϕ)−ε and an upper
bound s(ϕ)+ ε ≤ smax during ray marching. Here, ε is a small
number to relax the bounds. For example, we set ε = 0.005 for
our datasets. This relaxation improves the reconstruction since it
stays away from 0 and 1, see Equation 3. After ray marching, we
transform the moments to these bounds via

ct
0 :=

c0 − smin

smax − smin
, ct

j :=
c j

smax − smin
. (5)

Although we have to store the bounds for each pixel to invert this
transformation after reconstruction, we found that it improves the
reconstruction and enables a more aggressive quantization of the
moments (Section 3.6).

3.3 Interactive Rendering

To render using a moment image, we first note that it is possible
to linearly interpolate the moments of neighboring pixels or even
between different time steps. For example, we can increase the
resolution of the moment image using bilinear interpolation to
render in a higher resolution. Although other types of interpolation
are possible, negative weights in filter kernels may invalidate
moments and should be avoided.

To ray march a moment image, we compute the Lagrange
multipliers for each pixel upon loading. Subsequently, we perform
ray marching using a ray r(t) in the interval [t0, t1], which we
map to [−π,0]. During ray marching, we use the Lagrange
multipliers to efficiently reconstruct a density at each ϕ ∈ [−π,0]
by evaluating Equation 3. Afterwards, we invert the transformation
from Equation 5 using the bounds [smin,smax], apply a transfer
function, and perform compositing. Note that we can apply any
transfer function that expects a scalar density as input. We employ
a preintegrated transfer function [30]. Ray marching a moment
image is fast, taking only a few milliseconds (cf. Table 3), which
enables the interactive exploration with different transfer functions.

3.4 Relations Between Moments

It is viable to store moment images using one 32-bit float per
moment but storage requirements are considerable. Thus, we strive
to reduce the number of moments adaptively and to quantize the
remaining moments to only a few bits. Our methods benefit from
the underlying theory of the bounded MESE [9] but they are novel
and independent of the used reconstruction. The bounded MESE
and the truncated Fourier series both benefit. In this section, we
cover the relevant mathematical results.

Recall from Section 3.1 that we construct the evaluation
polynomial q :=C−1(γ)e0 from the exponential moments γ ∈Cm+1.
The Toeplitz matrix C has a special structure. Levinson’s algorithm
exploits this structure to solve for q in time O(m2) instead of
O(m3) [31]. At the same time, it produces intermediate results that
aid our quantization scheme. For all l ∈ {1, . . . ,m} Levinsons’s
algorithm computes:

q(0)0 :=
1
γ0
, (6)

u(l) :=
l−1

∑
k=0

q(l−1)
k γl−k, (7)

q(l) :=

(
q(l−1)

0 , . . . ,q(l−1)
l−1 ,0

)
−u(l)

(
0,q(l−1)

l−1 , . . . ,q(l−1)
0

)

1−|u(l)|2
. (8)

Then
q =C−1(γ)e0 = 2π

(
q(m)

0 , . . . ,q(m)
m

)
.

Since the Toeplitz matrix is positive definite, we know |u(l)|< 1
[31]. Combined with Equation 7, this inequality forces γl to reside
in a disk of radius rl with center γ̊l , where

rl :=
1

q(l−1)
0

> 0, γ̊l :=− 1

q(l−1)
0

l−1

∑
k=1

q(l−1)
k γl−k ∈ C.

Inverting Equation 1 shows that the bounded trigonometric moment

cl =
γl

2πiγ̌0
− 1

lγ̌0

l−1

∑
j=1

(l − j)γ jcl− j (9)

lies in a disk as well. We base our coding strategy in Section 3.6
on this observation.

Incidentally, the center of this disk also has a compelling
relation to the bounded MESE ŝ. In the case l = m+1, we find

c̊l :=
γ̊l

2πiγ̌0
− 1

lγ̌0

l−1

∑
j=1

(l − j)γ jcl− j =
1

2π

∫ π

−π
ŝ(ϕ)exp(−ilϕ)dϕ.

In other words, the bounded MESE places every unknown moment
in the center of the disk where it must reside [9, Lemma B.2]. This
behavior is in stark contrast to a truncated Fourier series, which
just sets unknown Fourier coefficients to zero.

Applying this insight repeatedly lets us compute the full Fourier
expansion of the bounded MESE [9, Proposition B.3]. In terms of
the exponential moments, we obtain the linear recurrence

γm+1+k =− 1
q0

m

∑
j=0

γ j+kqm+1− j, (10)

for all k ∈ N. Mapping these exponential moments to bounded
moments through Equation 9, we obtain all unknown moments of
the bounded MESE ŝ.
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3.5 Determining the Number of Moments
To adaptively reduce the number of moments per pixel, we measure
the error between a prefix of c0, . . . ,cn moments and the full vector
of moments c0, . . . ,cm, where n < m. Based on the assumption
that the full set of m+1 moments accurately captures the signal,
we compute the error without accessing the original data or ray
marching the dataset again.

To this end, we use the recurrence from Equation 10 and
Equation 9 to compute the missing m−n moments from the prefix
of n+1 moments. In this manner, we obtain the exact moments
ĉn+1, . . . , ĉm of the bounded MESE ŝ, assuming that the moments
cn+1, . . . ,cm have been discarded. We measure the error introduced
by discarding these moments using the relative RMSE

rRMSE((cn+1, . . . ,cm),(ĉn+1, . . . , ĉm)) =
1
c0

√
m

∑
i=n+1

(ci − ĉi)2.

The rRMSE normalizes the root mean squared error (RMSE) with
respect to the average value of the signal, i.e. the zeroth moment
c0.

To determine the number of moments for each pixel, we find a
value of n so that the error is just below a user-defined threshold.
We keep only the first n+1 moments per pixel to create a compact
moment image. Computing the moments of the bounded MESE
ĉn+1, . . . , ĉm takes time O(m(m−n)) and we have to redo this work
for each value of n that we try. To keep the overall cost low, we use
bisection. It finds a suitable n in O(logm) trials. Since the error
is not guaranteed to decrease monotonically with n, the found n
is not known to be minimal but it certainly satisfies the requested
error threshold.

3.6 Compression and Quantization
Moment images might be produced and archived in large quantities
and are transferred over network to the analysis machine. Therefore,
small file sizes are paramount. A baseline approach directly quan-
tizes bounded trigonometric moments c0 ∈ [0,1] and c j ∈ [− 1

π ,
1
π ].

Since the representation of moments is essential to reduce storage
requirements, we propose a novel coding scheme, a Pareto optimal
quantization curve, and discuss lossless compression to pack more
information into significantly fewer bits.

3.6.1 Coding
In Section 3.4 we observed that each exponential moment γl lies
in a disk characterized by the previous moments γ0, . . . ,γl−1. We
exploit this constraint in our coding strategy by only storing the
difference to the center of the disk. These differences exhibit
lower entropy compared to the moments and are better suited for
quantization and compression.

First, we explicitly store c0, then we transform the bounded
trigonometric moments c to exponential moments γ . We execute
Levinson’s algorithm and at each step store the difference between
γl and the center of the disk γ̊l given by the previous exponential
moments, scaled relative to the radius rl :

u(l) =
γl − γ̊l

rl
∈ C.

To revert this encoding, we simply execute Levinson’s algorithm
with γ0 and the stored values of u(l) to solve the system for q.
Furthermore, we reconstruct the exponential moments as

γl = γ̊l + rlu(l).
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Fig. 5: Distribution of values u(l)T that we store for each moment at
index l.
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Fig. 6: We quantize only a single moment index l at a time
and measure the resulting error. This shows that the error from
quantization depends on the index l.

3.6.2 Transformation
We perform two important transformations that enable a more
aggressive quantization. First, for real moments, the corresponding
u(l) ∈ C with l > 0 vary only along the axis aligned with iγ̌0. We
transform u(l) to the real axis:

u(l)T := u(l)
|iγ̌0|
iγ̌0

∈ (−1,1).

The values for u(l)T are distributed mostly around zero, see Figure 5.
Therefore, we compute min(u(l)T ) and max(u(l)T ) for each l ∈ [1,m]

once per moment image and transform the u(l)T from this range to
(0,1) before quantization. Especially for large l, this transformation
leads to a significantly more accurate representation.

3.6.3 Quantization
First, we quantize the zeroth moment c0 to 16-bit in [0,1]. Although
we might be able to use fewer bits in some cases, the quality can
deteriorate quickly. In general, quantization errors are amplified
from coefficients with a lower to a higher index. This is shown in
Figure 6, where we apply quantization to only a single moment
at a time. Then, we measure the rRMSE between the bounded
trigonometric moments of the quantized and the original image.
Consequently, this shows how much each moment influences the
error of the reconstruction. We use this observation to determine
the number of bits for quantizing a moment at index l ∈ {1, . . . ,m}.
Specifically, we want to quantize such that at each index we apply
approximately the same error. The quantization curve, i.e. the
number of bits used to quantize each index is thus determined from
the errors shown in Figure 6.

Depending on the trade-off between acceptable error and image
size, we want to use a different quantization curve. By selecting
the number of bits b1 to quantize the moment at index 1, the
resulting error determines the whole curve. We thus employ b1
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Fig. 7: Quantization curves for different parameter values.
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Fig. 8: Comparison of our Pareto optimal quantization curves (see
Figure 7) and randomly perturbed curves.

as a parameter to create different quantization curves. For each
subsequent index l, the algorithm tries to decrease the number
of bits as much as possible, but stays below the error threshold
determined from b1. The algorithm is described in detail in the
supplemental document.

We illustrate several quantization curves in Figure 7. To
determine whether these curves are optimal, we sample randomly
perturbed quantization curves and plot the total number of bits
against the error in Figure 8. This shows that our proposed
quantization curves are Pareto optimal, i.e. no change of the curve
leads to a reduction in both error and size.

Although the quantization curves are always qualitatively
similar, they still differ between different datasets and view
configurations. We thus determine an optimal quantization curve
for each moment image. For images with a large resolution, this
computation can be quite expensive. Therefore, we recommend
to use a downsampled image of size 64×64, which gives nearly
identical results and is fast to compute.

3.6.4 Compression

To further reduce the size of a moment image, we apply lossless
compression to the quantized coefficients. Figure 5 shows that
the frequency of values for each moment is non-uniform. Thus,
entropy encoding can reduce the data size by storing variable-
length codewords for each coefficient at index l containing 2bl

symbols. The length of the codewords is selected proportional to
the frequency of occurrence. We employ arithmetic coding [32],
which can estimate the frequencies during encoding. Although
the compression rate depends on the dataset and quantization, we
achieve a 20− 40% reduction in size. Lastly, we perform fast
dictionary coding on the resulting byte stream using LZ4, further
reducing the image size.

4 APPLICATIONS

Now that we have a compact representation, we discuss additional
applications. We propose a principled way to visualize uncertainty
introduced by the compression (Section 4.1), implement single
scattering for a more compelling visualization (Section 4.2), and
exploit the volumetric nature of our representation to enable
changes to the view configuration (Section 4.3).

4.1 Uncertainty Quantification
Since our approach introduces information loss, we want to convey
the resulting uncertainty. For example, we visualize the uncertainty
using a heat map, temporal animation [33], [34], or by integrating
the uncertainty in the transfer function classification [35].

Due to space constraints, we are limited to few statistics
about the distribution of errors along a viewing ray in each pixel.
Computing these statistics is the only step, and an optional one, of
our method that requires ray marching the dataset a second time. In
detail, at each step during ray marching, the signal is reconstructed
from our representation and is compared to the original dataset.

As statistics, we propose to compute a single or select
percentiles of the error. These order statistics can be used to
create robust and expressive error bounds. However, order statistics
are expensive to compute and would require O(n) space during
ray marching, which is problematic for parallel computation
on a cluster or GPU. Therefore, we employ the heuristic P2-
algorithm [36] to perform online estimation of a percentile with
fixed storage requirements.

4.2 Single Scattering
Volumetric shadows can improve the perception of spatial depth in
direct volume visualizations [37]. Although different illumination
models exist, the physically-based single scattering model [38] is
often employed. At each step during ray marching, this requires
evaluating the transmittance to the light source.

To incorporate single scattering, we create a moment image
from the perspective of the light source similar to shadow map-
ping [39]. Moreover, we recommend to use a smaller number of
moments and a lower resolution since single scattering illumination
is generally of lower frequency. During rendering, we could ray
march along secondary rays from the single scattering moment
image to each sample point, but this is computationally expensive.
Instead, we ray march the single scattering image, compute the
transmittance, and cache it on a regular grid. Then, we sample the
cached transmittance during ray marching.

4.3 View Projection
The method presented thus far is limited to a static camera and this
is the use case we are primarily interested in. However, a moment
image encodes the entire volume within the view frustum. We
exploit this insight to allow for changes in the view configuration.
For example, interactively adjusting the viewing angle can improve
depth perception. However, visible data in the moment image
as well as aliasing due to the discrete moment image resolution
indicates the limits of this approach.

To render a changed view, we ray march starting from
the changed camera and project each point that is inside the
view frustum to the moment image. Then, we perform bilinear
interpolation of the Lagrange multipliers and reconstruct a density.
The interpolation makes the rendering quite expensive, but is
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3.5 Determining the Number of Moments
To adaptively reduce the number of moments per pixel, we measure
the error between a prefix of c0, . . . ,cn moments and the full vector
of moments c0, . . . ,cm, where n < m. Based on the assumption
that the full set of m+1 moments accurately captures the signal,
we compute the error without accessing the original data or ray
marching the dataset again.

To this end, we use the recurrence from Equation 10 and
Equation 9 to compute the missing m−n moments from the prefix
of n+1 moments. In this manner, we obtain the exact moments
ĉn+1, . . . , ĉm of the bounded MESE ŝ, assuming that the moments
cn+1, . . . ,cm have been discarded. We measure the error introduced
by discarding these moments using the relative RMSE

rRMSE((cn+1, . . . ,cm),(ĉn+1, . . . , ĉm)) =
1
c0

√
m

∑
i=n+1

(ci − ĉi)2.

The rRMSE normalizes the root mean squared error (RMSE) with
respect to the average value of the signal, i.e. the zeroth moment
c0.

To determine the number of moments for each pixel, we find a
value of n so that the error is just below a user-defined threshold.
We keep only the first n+1 moments per pixel to create a compact
moment image. Computing the moments of the bounded MESE
ĉn+1, . . . , ĉm takes time O(m(m−n)) and we have to redo this work
for each value of n that we try. To keep the overall cost low, we use
bisection. It finds a suitable n in O(logm) trials. Since the error
is not guaranteed to decrease monotonically with n, the found n
is not known to be minimal but it certainly satisfies the requested
error threshold.

3.6 Compression and Quantization
Moment images might be produced and archived in large quantities
and are transferred over network to the analysis machine. Therefore,
small file sizes are paramount. A baseline approach directly quan-
tizes bounded trigonometric moments c0 ∈ [0,1] and c j ∈ [− 1

π ,
1
π ].

Since the representation of moments is essential to reduce storage
requirements, we propose a novel coding scheme, a Pareto optimal
quantization curve, and discuss lossless compression to pack more
information into significantly fewer bits.

3.6.1 Coding
In Section 3.4 we observed that each exponential moment γl lies
in a disk characterized by the previous moments γ0, . . . ,γl−1. We
exploit this constraint in our coding strategy by only storing the
difference to the center of the disk. These differences exhibit
lower entropy compared to the moments and are better suited for
quantization and compression.

First, we explicitly store c0, then we transform the bounded
trigonometric moments c to exponential moments γ . We execute
Levinson’s algorithm and at each step store the difference between
γl and the center of the disk γ̊l given by the previous exponential
moments, scaled relative to the radius rl :

u(l) =
γl − γ̊l

rl
∈ C.

To revert this encoding, we simply execute Levinson’s algorithm
with γ0 and the stored values of u(l) to solve the system for q.
Furthermore, we reconstruct the exponential moments as

γl = γ̊l + rlu(l).
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Fig. 5: Distribution of values u(l)T that we store for each moment at
index l.
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Fig. 6: We quantize only a single moment index l at a time
and measure the resulting error. This shows that the error from
quantization depends on the index l.

3.6.2 Transformation
We perform two important transformations that enable a more
aggressive quantization. First, for real moments, the corresponding
u(l) ∈ C with l > 0 vary only along the axis aligned with iγ̌0. We
transform u(l) to the real axis:

u(l)T := u(l)
|iγ̌0|
iγ̌0

∈ (−1,1).

The values for u(l)T are distributed mostly around zero, see Figure 5.
Therefore, we compute min(u(l)T ) and max(u(l)T ) for each l ∈ [1,m]

once per moment image and transform the u(l)T from this range to
(0,1) before quantization. Especially for large l, this transformation
leads to a significantly more accurate representation.

3.6.3 Quantization
First, we quantize the zeroth moment c0 to 16-bit in [0,1]. Although
we might be able to use fewer bits in some cases, the quality can
deteriorate quickly. In general, quantization errors are amplified
from coefficients with a lower to a higher index. This is shown in
Figure 6, where we apply quantization to only a single moment
at a time. Then, we measure the rRMSE between the bounded
trigonometric moments of the quantized and the original image.
Consequently, this shows how much each moment influences the
error of the reconstruction. We use this observation to determine
the number of bits for quantizing a moment at index l ∈ {1, . . . ,m}.
Specifically, we want to quantize such that at each index we apply
approximately the same error. The quantization curve, i.e. the
number of bits used to quantize each index is thus determined from
the errors shown in Figure 6.

Depending on the trade-off between acceptable error and image
size, we want to use a different quantization curve. By selecting
the number of bits b1 to quantize the moment at index 1, the
resulting error determines the whole curve. We thus employ b1
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Fig. 7: Quantization curves for different parameter values.
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Fig. 8: Comparison of our Pareto optimal quantization curves (see
Figure 7) and randomly perturbed curves.

as a parameter to create different quantization curves. For each
subsequent index l, the algorithm tries to decrease the number
of bits as much as possible, but stays below the error threshold
determined from b1. The algorithm is described in detail in the
supplemental document.

We illustrate several quantization curves in Figure 7. To
determine whether these curves are optimal, we sample randomly
perturbed quantization curves and plot the total number of bits
against the error in Figure 8. This shows that our proposed
quantization curves are Pareto optimal, i.e. no change of the curve
leads to a reduction in both error and size.

Although the quantization curves are always qualitatively
similar, they still differ between different datasets and view
configurations. We thus determine an optimal quantization curve
for each moment image. For images with a large resolution, this
computation can be quite expensive. Therefore, we recommend
to use a downsampled image of size 64×64, which gives nearly
identical results and is fast to compute.

3.6.4 Compression

To further reduce the size of a moment image, we apply lossless
compression to the quantized coefficients. Figure 5 shows that
the frequency of values for each moment is non-uniform. Thus,
entropy encoding can reduce the data size by storing variable-
length codewords for each coefficient at index l containing 2bl

symbols. The length of the codewords is selected proportional to
the frequency of occurrence. We employ arithmetic coding [32],
which can estimate the frequencies during encoding. Although
the compression rate depends on the dataset and quantization, we
achieve a 20− 40% reduction in size. Lastly, we perform fast
dictionary coding on the resulting byte stream using LZ4, further
reducing the image size.

4 APPLICATIONS

Now that we have a compact representation, we discuss additional
applications. We propose a principled way to visualize uncertainty
introduced by the compression (Section 4.1), implement single
scattering for a more compelling visualization (Section 4.2), and
exploit the volumetric nature of our representation to enable
changes to the view configuration (Section 4.3).

4.1 Uncertainty Quantification
Since our approach introduces information loss, we want to convey
the resulting uncertainty. For example, we visualize the uncertainty
using a heat map, temporal animation [33], [34], or by integrating
the uncertainty in the transfer function classification [35].

Due to space constraints, we are limited to few statistics
about the distribution of errors along a viewing ray in each pixel.
Computing these statistics is the only step, and an optional one, of
our method that requires ray marching the dataset a second time. In
detail, at each step during ray marching, the signal is reconstructed
from our representation and is compared to the original dataset.

As statistics, we propose to compute a single or select
percentiles of the error. These order statistics can be used to
create robust and expressive error bounds. However, order statistics
are expensive to compute and would require O(n) space during
ray marching, which is problematic for parallel computation
on a cluster or GPU. Therefore, we employ the heuristic P2-
algorithm [36] to perform online estimation of a percentile with
fixed storage requirements.

4.2 Single Scattering
Volumetric shadows can improve the perception of spatial depth in
direct volume visualizations [37]. Although different illumination
models exist, the physically-based single scattering model [38] is
often employed. At each step during ray marching, this requires
evaluating the transmittance to the light source.

To incorporate single scattering, we create a moment image
from the perspective of the light source similar to shadow map-
ping [39]. Moreover, we recommend to use a smaller number of
moments and a lower resolution since single scattering illumination
is generally of lower frequency. During rendering, we could ray
march along secondary rays from the single scattering moment
image to each sample point, but this is computationally expensive.
Instead, we ray march the single scattering image, compute the
transmittance, and cache it on a regular grid. Then, we sample the
cached transmittance during ray marching.

4.3 View Projection
The method presented thus far is limited to a static camera and this
is the use case we are primarily interested in. However, a moment
image encodes the entire volume within the view frustum. We
exploit this insight to allow for changes in the view configuration.
For example, interactively adjusting the viewing angle can improve
depth perception. However, visible data in the moment image
as well as aliasing due to the discrete moment image resolution
indicates the limits of this approach.

To render a changed view, we ray march starting from
the changed camera and project each point that is inside the
view frustum to the moment image. Then, we perform bilinear
interpolation of the Lagrange multipliers and reconstruct a density.
The interpolation makes the rendering quite expensive, but is
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Fig. 9: Entropy field of a Richtmyer-Meshkov instability rendered with direct volume rendering (a), with our approach using the bounded
MESE reconstruction (b), and using the Fourier reconstruction (c).
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Fig. 10: The Rayleigh-Taylor instability shows the density of two mixing fluids. We render a ray marching reference (a), our approach
with the bounded MESE reconstruction (b), and with Fourier reconstruction (c).

necessary to avoid aliasing artifacts. For faster rendering at the
expense of memory requirements, we resample a moment image
to a regular grid. To avoid aliasing, we either require a sufficiently
high image resolution or we upsample the moment image. We use
this approach in our supplemental video.

5 EVALUATION

We evaluate our approach on three real-world datasets. The entropy
field of a Richtmyer-Meshkov instability (Figure 9) is given in a
resolution of 2048×2048×1920 with 8 bits per cell. The Rayleigh-
Taylor instability dataset (Figure 10) consists of a density field
showing two mixing fluids. It is stored in single-precision in
a resolution of 10243. Lastly, the turbine dataset stems from a
smoothed-particle hydrodynamics (SPH) simulation of 100 million
particles per time step, where each particle consists of a position
and a scalar value in single-precision. We sample the scattered data
by performing SPH interpolation with a cubic spline kernel. We
employ a uniform grid for accelerating the neighborhood search
during ray marching.

We evaluate our approach on these datasets qualitatively
(Section 5.1), quantitatively (Section 5.2), and discuss the per-
formance (Section 5.3). We compare the bounded MESE with the
truncated Fourier reconstruction, which are both applicable to our
moment images. Furthermore, we compare our approach to the
ray-histogram approach by Wang et al. [7] and to ZFP [13], in
fixed-accuracy mode, and TTHRESH [14]. To apply the latter two
techniques, we compress the three-dimensional perspective grid
that is defined by the image plane and the samples along each ray.

This enables a direct comparison to our approach since this grid
is similarly limited to visible data and the resolution is increased
near the camera. Note that both ours as well as the ray-histogram
approach sparsely sample the three-dimensional grid, but do not
explicitly store it.

If not noted otherwise, we use an image resolution of
1024×768 with a maximum of 100 moments per pixel. We employ
our novel coding technique and quantize the moments as discussed
in Section 3.6 with the quantization curve given by b1 = 10.
We further evaluate the impact of our coding and quantization
scheme, the number of moments, the introduced uncertainty, and
the scalability of our method in the supplemental document.

5.1 Qualitative Evaluation

The Richtmyer-Meshkov instability is shown in Figure 9 using
direct volume rendering (a), our approach using the bounded MESE
(b), and with the Fourier reconstruction (c). This complicated
dataset is difficult to represent, see e.g. the reconstruction of a single
pixel in Figure 2. Although the Fourier reconstruction generally
leads to good results, it introduces strong ringing artifacts for this
dataset. The bounded MESE performs better. Figure 10 shows
the Rayleigh-Taylor instability. Here, the Fourier method and the
bounded MESE produce visually similar results.

The turbine dataset is shown in Figure 11 using various
techniques. The transfer function, illustrated on the right, maps low
and high velocities to non-zero opacities. This reveals the rotating
turbine blades and indicates the presence of several vortices. Whilst
our approach shows no obvious artifacts, the ray-histogram in (d)
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Fig. 11: The turbine dataset with direct volume rendering (a), using our approach with the bounded MESE (b) and Fourier reconstruction
(c), ray-histograms (d), and by compressing the perspective grid using ZFP (e) and TTHRESH (f).
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Fig. 12: We render the turbine dataset with direct volume rendering (a), using our approach with the bounded MESE (b), and with
Fourier reconstruction (c).

(a) Ours (original view) (b) Reference (changed view) (c) Ours (changed view)
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Fig. 13: We create a single moment image of the turbine (a), change the view configuration (b) and use the moment image to render from
this view (c). Regions of the volume that are outside the view frustum in (a) cannot be reconstructed and are shown in green in (c).
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Fig. 9: Entropy field of a Richtmyer-Meshkov instability rendered with direct volume rendering (a), with our approach using the bounded
MESE reconstruction (b), and using the Fourier reconstruction (c).
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Fig. 10: The Rayleigh-Taylor instability shows the density of two mixing fluids. We render a ray marching reference (a), our approach
with the bounded MESE reconstruction (b), and with Fourier reconstruction (c).

necessary to avoid aliasing artifacts. For faster rendering at the
expense of memory requirements, we resample a moment image
to a regular grid. To avoid aliasing, we either require a sufficiently
high image resolution or we upsample the moment image. We use
this approach in our supplemental video.

5 EVALUATION

We evaluate our approach on three real-world datasets. The entropy
field of a Richtmyer-Meshkov instability (Figure 9) is given in a
resolution of 2048×2048×1920 with 8 bits per cell. The Rayleigh-
Taylor instability dataset (Figure 10) consists of a density field
showing two mixing fluids. It is stored in single-precision in
a resolution of 10243. Lastly, the turbine dataset stems from a
smoothed-particle hydrodynamics (SPH) simulation of 100 million
particles per time step, where each particle consists of a position
and a scalar value in single-precision. We sample the scattered data
by performing SPH interpolation with a cubic spline kernel. We
employ a uniform grid for accelerating the neighborhood search
during ray marching.

We evaluate our approach on these datasets qualitatively
(Section 5.1), quantitatively (Section 5.2), and discuss the per-
formance (Section 5.3). We compare the bounded MESE with the
truncated Fourier reconstruction, which are both applicable to our
moment images. Furthermore, we compare our approach to the
ray-histogram approach by Wang et al. [7] and to ZFP [13], in
fixed-accuracy mode, and TTHRESH [14]. To apply the latter two
techniques, we compress the three-dimensional perspective grid
that is defined by the image plane and the samples along each ray.

This enables a direct comparison to our approach since this grid
is similarly limited to visible data and the resolution is increased
near the camera. Note that both ours as well as the ray-histogram
approach sparsely sample the three-dimensional grid, but do not
explicitly store it.

If not noted otherwise, we use an image resolution of
1024×768 with a maximum of 100 moments per pixel. We employ
our novel coding technique and quantize the moments as discussed
in Section 3.6 with the quantization curve given by b1 = 10.
We further evaluate the impact of our coding and quantization
scheme, the number of moments, the introduced uncertainty, and
the scalability of our method in the supplemental document.

5.1 Qualitative Evaluation

The Richtmyer-Meshkov instability is shown in Figure 9 using
direct volume rendering (a), our approach using the bounded MESE
(b), and with the Fourier reconstruction (c). This complicated
dataset is difficult to represent, see e.g. the reconstruction of a single
pixel in Figure 2. Although the Fourier reconstruction generally
leads to good results, it introduces strong ringing artifacts for this
dataset. The bounded MESE performs better. Figure 10 shows
the Rayleigh-Taylor instability. Here, the Fourier method and the
bounded MESE produce visually similar results.

The turbine dataset is shown in Figure 11 using various
techniques. The transfer function, illustrated on the right, maps low
and high velocities to non-zero opacities. This reveals the rotating
turbine blades and indicates the presence of several vortices. Whilst
our approach shows no obvious artifacts, the ray-histogram in (d)
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Fig. 11: The turbine dataset with direct volume rendering (a), using our approach with the bounded MESE (b) and Fourier reconstruction
(c), ray-histograms (d), and by compressing the perspective grid using ZFP (e) and TTHRESH (f).

(a) Reference (b) Ours (Bounded MESE) (c) Ours (Fourier)
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Fig. 12: We render the turbine dataset with direct volume rendering (a), using our approach with the bounded MESE (b), and with
Fourier reconstruction (c).

(a) Ours (original view) (b) Reference (changed view) (c) Ours (changed view)
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Fig. 13: We create a single moment image of the turbine (a), change the view configuration (b) and use the moment image to render from
this view (c). Regions of the volume that are outside the view frustum in (a) cannot be reconstructed and are shown in green in (c).
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Fig. 14: The turbine dataset with direct volume rendering and single scattering using brute-force ray marching (a), using a moment
image to compute single scattering from the directional light source (b), and using moment images for both (c).

contains noise, for example on the upper right side. These artifacts
might be due to the depth ordering of samples that is not considered
in their approach. They might also stem from quantization of
the floating point values due to the use of histograms. Note that
our approach does not quantize the sampled densities. Instead,
we quantize the moments from which we reconstruct a smooth
signal. Lastly, ZFP in (e) shows block artifacts whilst the results of
TTHRESH (f) are similar to ours.

In Figure 12, we use the same moment image as for Figure 11,
but change the transfer function to show two small intervals. Our
bounded MESE (b) and Fourier (c) reconstructions accurately
incorporate this transfer function and lead to results that are
nearly indistinguishable from the reference. Note that the transfer
function can be changed interactively, whilst the reference performs
expensive SPH interpolation during rendering. The image-based
approaches enable the interactive exploration of this large dataset.
In the supplemental video, we employ spatial and temporal
interpolation of moment images to visualize the full time-dependent
dataset.

We use a single moment image to render Figure 13 (a). Then,
we rotate the view to the other side of the volume (b). We reproject
our moment image (c), which still leads to accurate results. Some
regions of the volume are outside the view frustum of the moment
image. These regions are shown in green since we do not have
any information in these areas. The employed direct reprojection
renders in 1.2 seconds. In the supplemental video, we render each
frame in 4 milliseconds after spending one second on resampling
to a uniform grid of size 512×256×256 (Section 4.3).

In Figure 14 we show the turbine dataset with direct volume
rendering and single scattering using brute-force ray marching
(a), using a moment image for single scattering (b), and using
moment images for both single scattering and volume rendering (c).
The single scattering moment image is computed in a resolution
of 5122 with a maximum of 50 moments. Using our coding and
quantization scheme it is only 5.3 MB in file size, but the single
scattering is nearly indistinguishable from the reference.

5.2 Quantitative Evaluation
Table 1 shows the size of moment images after adaptively deter-
mining the number of moments and after performing quantization
and compression. Reducing the number of moments and especially
quantizing the moments lead to the most significant reduction in
size. Our compact compression thus makes it possible to store and
transfer larger quantities of moment images.

Table 2 compares our approach using the bounded MESE
and Fourier reconstruction to ray-histograms, as well as ZFP
and TTHRESH. Note that the middle row of the turbine dataset
corresponds to the results shown in Figure 11. We compare all
of these methods by measuring the compression rate in bits per
sample (bps) and distortion of scalar samples along each ray as
the peak signal-to-noise ratio (PSNR) in the logarithmic scale
(db). Additionally, we use the structural similarity index measure
(SSIM) [40] to assess the accuracy of composited color images.

Our approach performs similarly with the bounded MESE and
the Fourier reconstruction. The bounded MESE performs best for
the Richtmyer-Meshkov dataset, whilst the Fourier reconstruction
leads to the best results for the turbine dataset. Note that the image-
based representation is identical, regardless of the reconstruction.
The ray-histogram approach shows a low and noisy PSNR due to
its stochastic reconstruction, but the final image accuracy is better.
Still, the distortion as well as the compression rate are noticeably
worse compared to our approach.

ZFP and especially TTHRESH lead to a similar rate-distortion
at often better compression rates compared to our approach. With
the exception of the Richtmyer-Meshkov dataset, the quality of
composited images is worse, especially for lower bitrates. Since
ZFP and TTHRESH lead to better results when compressing the
original volumetric datasets, the perspective transformation seems
to be responsible. For example, we noticed block artifacts for
images generated after ZFP compression of the perspective grid.

5.3 Performance Analysis

For comparability, we measure the generation and reconstruction
steps of our approach on the same system: An AMD Ryzen 5 3600
with 16GB RAM and an NVIDIA GeForce 1080Ti. We accelerate
all steps using CUDA, except for the lossless compression. The

TABLE 1: Storage sizes after reducing the number of moments
(32-bit floats), quantization (b1 = 10), and lossless compression.
Initially, each image contains 1024 × 768 × 100 moments, i.e.
300 MB.

Dataset Reduced Quantized Compressed
(Sec. 3.5) (Sec. 3.6.3) (Sec. 3.6.4)

Rayleigh-Taylor 129.02MB 37.23MB 25.84MB
Richtmyer-Meshkov 279.02MB 56.09MB 39.34MB
Turbine 254.24MB 62.31MB 51.89MB
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TABLE 2: We compare our method using the bounded MESE and Fourier reconstruction, ray-histograms, and the compression methods
ZFP and TTHRESH. For all datasets, we implicitly or explicitly compress a 768×1024×768 perspective grid. We measure the required
bits per sample (bps), distortion (PSNR), and quality of composited color images (SSIM).

Ours (Bounded MESE) Ours (Fourier) Ray-histograms ZFP TTHRESH

bps PSNR SSIM bps PSNR SSIM bps PSNR SSIM bps PSNR SSIM bps PSNR SSIM

Richtmyer-
Meshkov

0.43 24.33 0.645 0.43 23.03 0.550 2.85 10.08 0.448 0.29 23.42 0.579 0.01 21.17 0.875
0.53 25.19 0.683 0.53 23.83 0.585 4.00 10.36 0.503 0.37 25.92 0.720 0.03 24.33 0.908
0.87 27.41 0.754 0.87 25.82 0.675 5.55 10.54 0.550 0.44 30.91 0.931 0.26 32.10 0.928

Rayleigh-
Taylor

0.25 30.31 0.939 0.25 30.83 0.951 1.78 13.91 0.831 0.37 26.99 0.850 0.06 28.06 0.846
0.38 35.50 0.977 0.38 36.41 0.985 2.05 14.14 0.869 0.44 30.91 0.910 0.32 33.55 0.936
0.53 38.24 0.986 0.53 39.42 0.992 3.20 13.68 0.937 0.53 34.95 0.956 0.71 36.73 0.963

Turbine
0.33 44.63 0.983 0.33 45.15 0.983 0.44 30.12 0.948 0.38 38.61 0.948 0.34 42.58 0.982
0.51 50.11 0.995 0.51 51.81 0.996 0.57 29.87 0.959 0.46 48.49 0.984 0.58 48.01 0.995
0.98 55.43 0.998 0.98 57.21 0.998 1.70 30.00 0.989 0.50 53.16 0.992 0.82 53.66 0.996

TABLE 3: Run-time measurements from our datasets.

Dataset Reference Generation Rendering

Ray marching Determining
moments

Coding Quantization
curve

Lossless
encoding

Lossless
decoding

Moment
preparation

Ray marching

Richtmyer-
Meshkov

28.9 ms 1025.6 ms 1722.7 ms 926.5 ms 565.5 ms 235.1 ms 458.7 ms 708.9 ms 136.2 ms

Rayleigh-
Taylor

27.1 ms 244.7 ms 827.3 ms 411.6 ms 226.7 ms 124.7 ms 221.9 ms 318.4 ms 20.6 ms

Turbine 18,731 ms 6392.6 ms 1810.3 ms 825.3 ms 507.0 ms 312.1 ms 507.5 ms 647.7 ms 49.9 ms

performance measurements are shown in Table 3. Note that the
Fourier reconstruction uses the exact same steps except for the
final ray marching. In comparison to the ray-histogram approach,
generating an image is significantly faster with our approach
since we do not have to repeatedly ray march the data. The
encoding steps for ZFP and TTHRESH require significantly
more compute and memory resources. For example, TTHRESH
encodes the Richtmyer-Meshkov data in between 152s and 180s,
whilst ZFP takes between 4s and 22s. This excludes the already
costly generation of the perspective grid. In comparison, our
approach requires less memory, takes only a few seconds, and
is highly parallelizable. In the supplemental document, we perform
additional scalability measurements on a CPU.

In comparison to a reference ray marching implementation,
the generation of a moment image is several times slower. Since
each step is trivial to parallelize, generating the moment images on
a compute cluster would be significantly faster or could produce
multiple images in parallel. Moreover, ray marching SPH data is
extremely costly and not suited for interactive rendering. With our
approach, the rendering step is decoupled from data access and the
SPH interpolation and is thus interactive.

5.4 Number of Moments

In Figure 15, we change the maximum number of moments for all
datasets and measure the accuracy of the reconstruction. Increasing
this maximum improves the overall accuracy of moment images,
but also leads to higher computational and storage requirements.
Additional experiments regarding the maximal number of moments
can be found in the supplemental document.
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Fig. 15: We compute moment images with a differing maximum
number of moments and determine the respective accuracy of
reconstructed scalar values.

5.5 Discussion

Our evaluation shows that our proposed moment image repre-
sentation is both compact and accurate. Selecting the number of
moments per pixel, encoding, and quantizing the moments is key
to achieve small image sizes. Our technique enables scientists to
create a large amount of images from different views or simulation
time steps. However, moment images are still an approximate
representation, which is necessary to compactly represent large
volumetric data. As such, moment images are unsuited for data
that have to be represented as accurately as possible, such as
medical scans. Furthermore, our evaluation shows that datasets
containing discontinuous or high frequent signals, for example the
Richtmyer-Meshkov dataset, are more difficult to represent than
datasets consisting mostly of continuous and smooth signals.

Compared to ray-histograms [7], our representation is both
smaller and more accurate since we do not store distributions,
which cannot reconstruct the ordering of densities. Moreover, our
evaluation shows that our approach outperforms more general
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Fig. 14: The turbine dataset with direct volume rendering and single scattering using brute-force ray marching (a), using a moment
image to compute single scattering from the directional light source (b), and using moment images for both (c).

contains noise, for example on the upper right side. These artifacts
might be due to the depth ordering of samples that is not considered
in their approach. They might also stem from quantization of
the floating point values due to the use of histograms. Note that
our approach does not quantize the sampled densities. Instead,
we quantize the moments from which we reconstruct a smooth
signal. Lastly, ZFP in (e) shows block artifacts whilst the results of
TTHRESH (f) are similar to ours.

In Figure 12, we use the same moment image as for Figure 11,
but change the transfer function to show two small intervals. Our
bounded MESE (b) and Fourier (c) reconstructions accurately
incorporate this transfer function and lead to results that are
nearly indistinguishable from the reference. Note that the transfer
function can be changed interactively, whilst the reference performs
expensive SPH interpolation during rendering. The image-based
approaches enable the interactive exploration of this large dataset.
In the supplemental video, we employ spatial and temporal
interpolation of moment images to visualize the full time-dependent
dataset.

We use a single moment image to render Figure 13 (a). Then,
we rotate the view to the other side of the volume (b). We reproject
our moment image (c), which still leads to accurate results. Some
regions of the volume are outside the view frustum of the moment
image. These regions are shown in green since we do not have
any information in these areas. The employed direct reprojection
renders in 1.2 seconds. In the supplemental video, we render each
frame in 4 milliseconds after spending one second on resampling
to a uniform grid of size 512×256×256 (Section 4.3).

In Figure 14 we show the turbine dataset with direct volume
rendering and single scattering using brute-force ray marching
(a), using a moment image for single scattering (b), and using
moment images for both single scattering and volume rendering (c).
The single scattering moment image is computed in a resolution
of 5122 with a maximum of 50 moments. Using our coding and
quantization scheme it is only 5.3 MB in file size, but the single
scattering is nearly indistinguishable from the reference.

5.2 Quantitative Evaluation
Table 1 shows the size of moment images after adaptively deter-
mining the number of moments and after performing quantization
and compression. Reducing the number of moments and especially
quantizing the moments lead to the most significant reduction in
size. Our compact compression thus makes it possible to store and
transfer larger quantities of moment images.

Table 2 compares our approach using the bounded MESE
and Fourier reconstruction to ray-histograms, as well as ZFP
and TTHRESH. Note that the middle row of the turbine dataset
corresponds to the results shown in Figure 11. We compare all
of these methods by measuring the compression rate in bits per
sample (bps) and distortion of scalar samples along each ray as
the peak signal-to-noise ratio (PSNR) in the logarithmic scale
(db). Additionally, we use the structural similarity index measure
(SSIM) [40] to assess the accuracy of composited color images.

Our approach performs similarly with the bounded MESE and
the Fourier reconstruction. The bounded MESE performs best for
the Richtmyer-Meshkov dataset, whilst the Fourier reconstruction
leads to the best results for the turbine dataset. Note that the image-
based representation is identical, regardless of the reconstruction.
The ray-histogram approach shows a low and noisy PSNR due to
its stochastic reconstruction, but the final image accuracy is better.
Still, the distortion as well as the compression rate are noticeably
worse compared to our approach.

ZFP and especially TTHRESH lead to a similar rate-distortion
at often better compression rates compared to our approach. With
the exception of the Richtmyer-Meshkov dataset, the quality of
composited images is worse, especially for lower bitrates. Since
ZFP and TTHRESH lead to better results when compressing the
original volumetric datasets, the perspective transformation seems
to be responsible. For example, we noticed block artifacts for
images generated after ZFP compression of the perspective grid.

5.3 Performance Analysis

For comparability, we measure the generation and reconstruction
steps of our approach on the same system: An AMD Ryzen 5 3600
with 16GB RAM and an NVIDIA GeForce 1080Ti. We accelerate
all steps using CUDA, except for the lossless compression. The

TABLE 1: Storage sizes after reducing the number of moments
(32-bit floats), quantization (b1 = 10), and lossless compression.
Initially, each image contains 1024 × 768 × 100 moments, i.e.
300 MB.

Dataset Reduced Quantized Compressed
(Sec. 3.5) (Sec. 3.6.3) (Sec. 3.6.4)

Rayleigh-Taylor 129.02MB 37.23MB 25.84MB
Richtmyer-Meshkov 279.02MB 56.09MB 39.34MB
Turbine 254.24MB 62.31MB 51.89MB
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TABLE 2: We compare our method using the bounded MESE and Fourier reconstruction, ray-histograms, and the compression methods
ZFP and TTHRESH. For all datasets, we implicitly or explicitly compress a 768×1024×768 perspective grid. We measure the required
bits per sample (bps), distortion (PSNR), and quality of composited color images (SSIM).

Ours (Bounded MESE) Ours (Fourier) Ray-histograms ZFP TTHRESH

bps PSNR SSIM bps PSNR SSIM bps PSNR SSIM bps PSNR SSIM bps PSNR SSIM

Richtmyer-
Meshkov

0.43 24.33 0.645 0.43 23.03 0.550 2.85 10.08 0.448 0.29 23.42 0.579 0.01 21.17 0.875
0.53 25.19 0.683 0.53 23.83 0.585 4.00 10.36 0.503 0.37 25.92 0.720 0.03 24.33 0.908
0.87 27.41 0.754 0.87 25.82 0.675 5.55 10.54 0.550 0.44 30.91 0.931 0.26 32.10 0.928

Rayleigh-
Taylor

0.25 30.31 0.939 0.25 30.83 0.951 1.78 13.91 0.831 0.37 26.99 0.850 0.06 28.06 0.846
0.38 35.50 0.977 0.38 36.41 0.985 2.05 14.14 0.869 0.44 30.91 0.910 0.32 33.55 0.936
0.53 38.24 0.986 0.53 39.42 0.992 3.20 13.68 0.937 0.53 34.95 0.956 0.71 36.73 0.963

Turbine
0.33 44.63 0.983 0.33 45.15 0.983 0.44 30.12 0.948 0.38 38.61 0.948 0.34 42.58 0.982
0.51 50.11 0.995 0.51 51.81 0.996 0.57 29.87 0.959 0.46 48.49 0.984 0.58 48.01 0.995
0.98 55.43 0.998 0.98 57.21 0.998 1.70 30.00 0.989 0.50 53.16 0.992 0.82 53.66 0.996

TABLE 3: Run-time measurements from our datasets.

Dataset Reference Generation Rendering

Ray marching Determining
moments

Coding Quantization
curve

Lossless
encoding

Lossless
decoding

Moment
preparation

Ray marching

Richtmyer-
Meshkov

28.9 ms 1025.6 ms 1722.7 ms 926.5 ms 565.5 ms 235.1 ms 458.7 ms 708.9 ms 136.2 ms

Rayleigh-
Taylor

27.1 ms 244.7 ms 827.3 ms 411.6 ms 226.7 ms 124.7 ms 221.9 ms 318.4 ms 20.6 ms

Turbine 18,731 ms 6392.6 ms 1810.3 ms 825.3 ms 507.0 ms 312.1 ms 507.5 ms 647.7 ms 49.9 ms

performance measurements are shown in Table 3. Note that the
Fourier reconstruction uses the exact same steps except for the
final ray marching. In comparison to the ray-histogram approach,
generating an image is significantly faster with our approach
since we do not have to repeatedly ray march the data. The
encoding steps for ZFP and TTHRESH require significantly
more compute and memory resources. For example, TTHRESH
encodes the Richtmyer-Meshkov data in between 152s and 180s,
whilst ZFP takes between 4s and 22s. This excludes the already
costly generation of the perspective grid. In comparison, our
approach requires less memory, takes only a few seconds, and
is highly parallelizable. In the supplemental document, we perform
additional scalability measurements on a CPU.

In comparison to a reference ray marching implementation,
the generation of a moment image is several times slower. Since
each step is trivial to parallelize, generating the moment images on
a compute cluster would be significantly faster or could produce
multiple images in parallel. Moreover, ray marching SPH data is
extremely costly and not suited for interactive rendering. With our
approach, the rendering step is decoupled from data access and the
SPH interpolation and is thus interactive.

5.4 Number of Moments

In Figure 15, we change the maximum number of moments for all
datasets and measure the accuracy of the reconstruction. Increasing
this maximum improves the overall accuracy of moment images,
but also leads to higher computational and storage requirements.
Additional experiments regarding the maximal number of moments
can be found in the supplemental document.

20 40 60 80 100 120 140
Max. moments
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30

40

50

PS
N

R
 (d

b)

Richtmyer-Meshkov
Rayleigh-Taylor
Turbine

Fig. 15: We compute moment images with a differing maximum
number of moments and determine the respective accuracy of
reconstructed scalar values.

5.5 Discussion

Our evaluation shows that our proposed moment image repre-
sentation is both compact and accurate. Selecting the number of
moments per pixel, encoding, and quantizing the moments is key
to achieve small image sizes. Our technique enables scientists to
create a large amount of images from different views or simulation
time steps. However, moment images are still an approximate
representation, which is necessary to compactly represent large
volumetric data. As such, moment images are unsuited for data
that have to be represented as accurately as possible, such as
medical scans. Furthermore, our evaluation shows that datasets
containing discontinuous or high frequent signals, for example the
Richtmyer-Meshkov dataset, are more difficult to represent than
datasets consisting mostly of continuous and smooth signals.

Compared to ray-histograms [7], our representation is both
smaller and more accurate since we do not store distributions,
which cannot reconstruct the ordering of densities. Moreover, our
evaluation shows that our approach outperforms more general
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compression methods applied to image-based volume visualization,
regarding both the quality of composited images and performance.
Compared to the bounded MESE, Fourier reconstruction yields
surprisingly good results, especially for smooth signals such as the
SPH dataset. However, ringing can cause strong artifacts for the
Fourier reconstruction. In comparison, the bounded MESE yields
good and more predictable results. Therefore, we recommend
the Fourier reconstruction for known smooth datasets, such as
SPH data, and the bounded MESE otherwise. Note that most of
the concepts discussed in this paper, including our coding and
quantization strategy, are equally applicable to both.

We have shown that moment images can be used for single
scattering illumination. Since that requires less accuracy, the
corresponding moment images take only a few megabytes. Lastly,
we were surprised how changing the view configuration still leads
to accurate results. This shows that our representation is indeed a
volumetric representation, but compactly encoded in an image.

6 CONCLUSION AND FUTURE WORK

Our image-based representation enables the interactive exploration
of large and arbitrarily structured volumetric data by decoupling
the access to the data from interactive rendering and exploration. It
is suited for in situ applications since it is fast, highly parallelizable,
and produces small images. Since our representation is completely
volumetric, it allows for some changes in the view configuration
and the exploration with arbitrary transfer functions.

In the future, we want to investigate whether subdividing a ray
into less complex signals can increase the accuracy or decrease the
total number of moments per pixel. Lastly, we want to explore if
we can combine multiple moment images to reconstruct a complete
volume with high accuracy.
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compression methods applied to image-based volume visualization,
regarding both the quality of composited images and performance.
Compared to the bounded MESE, Fourier reconstruction yields
surprisingly good results, especially for smooth signals such as the
SPH dataset. However, ringing can cause strong artifacts for the
Fourier reconstruction. In comparison, the bounded MESE yields
good and more predictable results. Therefore, we recommend
the Fourier reconstruction for known smooth datasets, such as
SPH data, and the bounded MESE otherwise. Note that most of
the concepts discussed in this paper, including our coding and
quantization strategy, are equally applicable to both.

We have shown that moment images can be used for single
scattering illumination. Since that requires less accuracy, the
corresponding moment images take only a few megabytes. Lastly,
we were surprised how changing the view configuration still leads
to accurate results. This shows that our representation is indeed a
volumetric representation, but compactly encoded in an image.

6 CONCLUSION AND FUTURE WORK

Our image-based representation enables the interactive exploration
of large and arbitrarily structured volumetric data by decoupling
the access to the data from interactive rendering and exploration. It
is suited for in situ applications since it is fast, highly parallelizable,
and produces small images. Since our representation is completely
volumetric, it allows for some changes in the view configuration
and the exploration with arbitrary transfer functions.

In the future, we want to investigate whether subdividing a ray
into less complex signals can increase the accuracy or decrease the
total number of moments per pixel. Lastly, we want to explore if
we can combine multiple moment images to reconstruct a complete
volume with high accuracy.
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of Baden-Württemberg, Germany.
The Rayleigh-Taylor instability is due to A. W. Cook, W. Cabot, and
P. L. Miller. The simulation of a Richtmyer–Meshkov instability is
due to R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason,
A. A. Mirin, and Y. Zhou.

REFERENCES

[1] H. Childs, “Data exploration at the exascale,” Supercomputing frontiers
and innovations, vol. 2, no. 3, pp. 5–13, 2015.

[2] S. Li, N. Marsaglia, C. Garth, J. Woodring, J. Clyne, and H. Childs,
“Data reduction techniques for simulation, visualization and data analysis,”
Computer Graphics Forum, vol. 37, no. 6, pp. 422–447, 2018.

[3] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Pe-
tersen, “An image-based approach to extreme scale in situ visualization
and analysis,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2014, pp.
424–434.

[4] N. Shareef, T.-Y. Lee, H.-W. Shen, and K. Mueller, “An image-based
modelling approach to GPU-based unstructured grid volume rendering,”
in Volume Graphics, 2006.

[5] S. Frey, F. Sadlo, and T. Ertl, “Explorable volumetric depth images from
raycasting,” in XXVI Conference on Graphics, Patterns and Images, 2013,
pp. 123–130.

[6] O. Fernandes, S. Frey, F. Sadlo, and T. Ertl, “Space-time volumetric depth
images for in-situ visualization,” in IEEE 4th Symposium on Large Data
Analysis and Visualization, 2014, pp. 59–65.

[7] K. Wang, N. Shareef, and H. Shen, “Image and distribution based volume
rendering for large data sets,” in IEEE Pacific Visualization Symposium,
2018, pp. 26–35.

[8] K. C. Wang, T. H. Wei, N. Shareef, and H. W. Shen, “Ray-based explo-
ration of large time-varying volume data using per-ray proxy distributions,”
IEEE Transactions on Visualization and Computer Graphics, vol. 26,
no. 11, pp. 3299–3313, 2020.

[9] C. Peters, S. Merzbach, J. Hanika, and C. Dachsbacher, “Using moments
to represent bounded signals for spectral rendering,” ACM Transactions
on Graphics, vol. 38, no. 4, pp. 136:1–136:14, 2019.

[10] M. Balsa Rodrı́guez, E. Gobbetti, J. Iglesias Guitián, M. Makhinya,
F. Marton, R. Pajarola, and S. Suter, “State-of-the-art in compressed
GPU-based direct volume rendering,” Computer Graphics Forum, vol. 33,
no. 6, pp. 77–100, 2014.

[11] J. Beyer, M. Hadwiger, and H. Pfister, “State-of-the-art in GPU-based
large-scale volume visualization,” Computer Graphics Forum, vol. 34,
no. 8, pp. 13–37, 2015.

[12] B.-L. Yeo and B. Liu, “Volume rendering of DCT-based compressed 3D
scalar data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 1, no. 1, pp. 29–43, 1995.

[13] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[14] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH: Tensor
compression for multidimensional visual data,” IEEE Transactions on
Visualization and Computer Graphics, vol. 26, no. 9, pp. 2891–2903,
2020.

[15] J. Lukasczyk, E. Kinner, J. Ahrens, H. Leitte, and C. Garth, “Voidga: A
view-approximation oriented image database generation approach,” in
IEEE 8th Symposium on Large Data Analysis and Visualization, 2018, pp.
12–22.

[16] R. Bujack, D. H. Rogers, and J. Ahrens, “Reducing occlusion in cinema
databases through feature-centric visualizations,” in Leipzig Symposium
on Visualization In Applications (LEVIA), 2018.

[17] J. Lukasczyk, C. Garth, M. Larsen, W. Engelke, I. Hotz, D. Rogers,
J. Ahrens, and R. Maciejewski, “Cinema darkroom: A deferred rendering
framework for large-scale datasets,” in IEEE 10th Symposium on Large
Data Analysis and Visualization, 2020, pp. 37–41.

[18] A. Tikhonova, C. D. Correa, and K.-L. Ma, “Explorable images for
visualizing volume data,” in IEEE Pacific Visualization Symposium, 2010,
pp. 177–184.

[19] A. Tikhonova, C. D. Correa, and K.-L. Ma, “An exploratory technique for
coherent visualization of time-varying volume data,” Computer Graphics
Forum, vol. 29, no. 3, pp. 783–792, 2010.

[20] A. Tikhonova, C. D. Correa, and K.-L. Ma, “Visualization by proxy:
A novel framework for deferred interaction with volume data,” IEEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp.
1551–1559, 2010.

[21] K. Mueller, N. Shareef, J. Huang, and R. Crawfis, “IBR-assisted
volume rendering,” in Late Breaking Hot Topics, Proceedings of IEEE
Visualization, 1999, pp. 5–8.

[22] J. Shade, S. Gortler, L.-W. He, and R. Szeliski, “Layered depth images,”
in Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques. ACM, 1998, pp. 231–242.

[23] C. Peters and R. Klein, “Moment shadow mapping,” in Proceedings of the
19th Symposium on Interactive 3D Graphics and Games. ACM, 2015,
pp. 7–14.

[24] C. Peters, C. Münstermann, N. Wetzstein, and R. Klein, “Improved
moment shadow maps for translucent occluders, soft shadows and single
scattering,” Journal of Computer Graphics Techniques (JCGT), vol. 6,
no. 1, 2017.

[25] C. Peters, J. Klein, M. B. Hullin, and R. Klein, “Solving trigonometric
moment problems for fast transient imaging,” ACM Transactions on
Graphics, vol. 34, no. 6, 2015.

[26] C. Münstermann, S. Krumpen, R. Klein, and C. Peters, “Moment-based
order-independent transparency,” Proceedings of the ACM Computer
Graphics and Interaction Technics, vol. 1, no. 1, 2018.

[27] M. Kern, C. Neuhauser, T. Maack, M. Han, W. Usher, and R. Westermann,
“A comparison of rendering techniques for 3D line sets with transparency,”
IEEE Transactions on Visualization and Computer Graphics, pp. 1–1,
2020.

[28] I. Baeza Rojo, M. Gross, and T. Günther, “Fourier opacity optimization for
scalable exploration,” IEEE Transactions on Visualization and Computer
Graphics, pp. 1–1, 2019.

[29] M. Zeidan, T. Rapp, C. Peters, and C. Dachsbacher, “Moment-based
opacity optimization,” in Eurographics Symposium on Parallel Graphics
and Visualization, 2020.

[30] K. Engel, M. Kraus, and T. Ertl, “High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading,” in Proceedings of the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware.
ACM, 2001, p. 9–16.

[31] C. Peters, S. Merzbach, J. Hanika, and C. Dachsbacher, “Spectral
rendering with the bounded MESE and sRGB data,” in Workshop on
Material Appearance Modeling. The Eurographics Association, 2019.

[32] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Communications of the ACM, vol. 30, no. 6, pp. 520–540,
1987.

[33] C. Lundström, P. Ljung, A. Persson, and A. Ynnerman, “Uncertainty
visualization in medical volume rendering using probabilistic animation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 13,
no. 6, pp. 1648–1655, 2007.

[34] S. Liu, J. A. Levine, P. Bremer, and V. Pascucci, “Gaussian mixture model
based volume visualization,” in IEEE Symposium on Large Data Analysis
and Visualization, 2012, pp. 73–77.

[35] E. Sakhaee and A. Entezari, “A statistical direct volume rendering
framework for visualization of uncertain data,” IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 12, pp. 2509–2520,
2017.

[36] R. Jain and I. Chlamtac, “The p2 algorithm for dynamic calculation of
quantiles and histograms without storing observations,” Communications
of the ACM, vol. 28, no. 10, pp. 1076–1085, 1985.

[37] F. Lindemann and T. Ropinski, “About the influence of illumination
models on image comprehension in direct volume rendering,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp.
1922–1931, 2011.

[38] N. Max, “Optical models for direct volume rendering,” IEEE Transactions
on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108, 1995.

[39] L. Williams, “Casting curved shadows on curved surfaces,” SIGGRAPH
Computer Graphics, vol. 12, no. 3, pp. 270–274, 1978.

[40] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

Tobias Rapp received the PhD (Dr.-Ing.) degree
in computer science from the Karlsruhe Institute
of Technology, Germany. His research in the field
of visualization focuses on the visualization of
large scattered data and dynamical systems.

Christoph Peters received the PhD (Dr. rer. nat.)
degree in computer science from University of
Bonn, Germany. He has been a postdoctoral
researcher at the Karlsruhe Institute of Technol-
ogy, Germany, for four years and is now at Intel.
His research focuses real-time rendering with an
emphasis on mathematical methods.

Carsten Dachsbacher received the PhD (Dr.-
Ing.) degree in computer science from the Uni-
versity of Erlangen-Nuremberg, Germany. He is
a professor of computer science at the Karlsruhe
Institute of Technology, Germany, and heads the
Institute for Visualization and Data Analysis. His
research interests include computer graphics,
light transport simulation, interactive and percep-
tual rendering, and scientific visualization.

Authorized licensed use limited to: KIT Library. Downloaded on May 05,2022 at 14:26:52 UTC from IEEE Xplore.  Restrictions apply. 


