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In this supplemental document, we provide a few more lengthy

proofs and derivations, discuss technical details of our implementa-

tion and provide complete descriptions of all of our algorithms.

A PROJECTED SOLID ANGLE SAMPLING OF
POLYGONS

This section revisits different aspects of our sampling procedure

in the order in which they are mentioned in the paper. It provides

many of the more technical details, provides mathematical proof for

several claims, describes the initialization in detail and summarizes

the complete algorithms.

A.1 Clipping Polygons
In principle, clipping of convex polygons is a simple problem. We

may iterate over the vertices in order. Vertices above the horizon get

copied to the output sequence. If the previous vertex is above the

horizon but the current vertex is below the horizon, or vice versa, a

new vertex at the intersection of the edge and the horizon is output.

Otherwise, the vertex is discarded.

The problem with this approach is that the location at which we

write to the output array is dynamically computed. Thus, we incur

the cost of register spilling on GPUs. We devised an alternative

method for polygons with up to seven vertices.

First, we encode the geometric configuration into a 32-bit integer.

The three least significant bits store the vertex count of the input.

Each of the next seven bits is set to one, if and only if the corre-

sponding vertex is above the horizon. If none of these bits is set, the

clipped polygon is empty. If all are set, the input is the output.

Otherwise, the integer encodes which edges should be clipped to

create two new vertices and which vertices need to be part of the

output. We use a single large switch statement to jump to optimal

code for every possible value of the integer. This branching control

flow may seem like an unorthodox solution for GPUs. However,

execution of branches is coherent for smooth surfaces and we only

need a single jump with this design.
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We generate this code through a brute force search. The search

space includes different cyclic shifts of the output polygon and dif-

ferent orders of assignment. Our method works in situ, overwriting

the input with the output. If there is enough space in the output

sequence, the first vertex is repeated after the last vertex to simplify

iteration over edges. If vertices that are still needed get overwritten,

the candidate is discarded. Preprocessor directives specialize the

code to a maximal vertex count. The generated code and the code

generator are part of the supplementary materials.

In most cases, our method overwrites only three vertices. In the

worst case it overwrites six vertices. We have compared our method

to prior work for clipping of triangles and quads on GPUs [McGuire,

2011]. We were unable to measure a significant difference in run

times. However, our method supports polygons with up to seven

vertices.

A.2 Great Circles through the Zenith
The algorithms described in the paper assume that the normal vector

of an edge 𝑛 𝑗 has non-zero z-coordinate 𝑛 𝑗,z. If it gets close to zero,

our methods remain stable but once the coordinate underflows, they

fail. This section explains how we handle the case 𝑛 𝑗,z = 0 correctly.

This effort is worthwhile because the case is fairly common in man-

made environments with lots of right angles.

Our approach assumes that no three vertices of the polygon are

collinear. Otherwise, it is possible to remove the offending vertices

without changing the polygon. If the edge normal satisfies 𝑛 𝑗,z = 0,

its plane contains the zenith (0, 0, 1)T. Thus, the edge is an arc

of a great circle through the zenith. We call such edges and the

corresponding ellipses degenerate.

We make three small adjustments to our algorithm:

(1) For degenerate ellipses, we set 𝑢 𝑗,x = ∞ (which is repre-

sentable in floating point numbers). Thus, degenerate ellipses

are marked as such and additionally count as outer ellipses,

(2) If a degenerate ellipse is involved, any attempt to compute

the area within the sector according to Equation (1) yields

zero area,

(3) If two vertices compare equal during sorting, vertices associ-

ated with a degenerate ellipse come first.

We now explain why these rules give the correct behavior in all

cases. Once again, there are two major cases to distinguish (Fig. A.1).

Either a degenerate edge passes through the zenith or the edge itself

does not pass through the zenith but its great circle does.

If an edge passes through the zenith, this edge counts as outer

edge, just like all other edges of this polygon (Fig. A.1a). Thus, our

algorithm treats the situation as central case. The sector for the

degenerate edge is large but its intersection with the polygon has

zero area. Due to rule 2, the area for this sector is computed correctly.

Since it is zero, there will never be an attempt to sample from this
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(b) Decentral case

Fig. A.1. The great circles of edges may pass through the zenith. If the edge
itself passes through the zenith, the central case is present. The edge gives
rise to a 180° sector but the projected solid angle of the polygon within this
sector is zero. Otherwise, the decentral case is present and these edges give
rise to empty sectors.

sector. The other sectors do not involve degenerate edges and get

sampled correctly.

A related case occurs when all ellipses are degenerate. It arises

when the shading point lies in the plane of the polygon. In that

case, rule 2 correctly computes zero projected solid angle and the

polygon does not get sampled at all.

Otherwise, there are at most two degenerate edges: One at the

clockwise end of the polygon with index 𝑗cw ∈ {0, . . . ,𝑚 − 1} and
one at its counterclockwise end with index 𝑗ccw ∈ {0, . . . ,𝑚−1}. For
example, in Fig. A.1b 𝑗cw = 4 and 𝑗ccw = 2. More degenerate edges

would require a non-convex polygon or collinear vertices, which

we forbid. Since the degenerate ellipses count as outer ellipses, they

get associated with vertices 𝑗cw, 𝑗ccw.

Vertices 𝑗cw and 𝑗cw + 1 compare equal. Then due to rule 3, the

degenerate edge comes first in the sorted list. The first sector is

empty and associated with the degenerate ellipse 𝑗cw. By rule 2, its

area evaluates to zero and it will not be sampled. The outer ellipse

for the next sector is the one associated with vertex 𝑗cw + 1, which

is the correct outcome. Inner ellipses are never degenerate by rule 1.

What happens in the sector at the counterclockwise end barely

matters. If one of the ellipses is degenerate, its area evaluates to zero

by rule 2. Otherwise, it evaluates to zero because the sector itself is

empty. Either way, it is not sampled.

Note that these arguments still imply correctness if either one of

the degenerate edges does not exist. The degenerate sectors turn

into common sectors and are handled correctly as usual. Overall, all

cases with or without degenerate ellipses are handled properly.

A.3 Iterative Procedure for the Decentral Case
In each step, our iterative procedure finds a direction𝑤 ∈ R2 such
that the area enclosed between two tangent lines within the sec-

tor𝑤𝑛,𝑤 is exactly 𝐴𝛿 (𝑤𝑛). The direction is characterized by the

homogeneous quadratic equation𝑤T𝑇𝑤 = 0. This quadratic com-

monly has two different solutions, i.e. the solution set consists of

two lines through the origin. In this section, we address the rather

technical question how our algorithm picks the correct solution.

The ambiguity of solutions stems from the fact that our areas are

signed. The ray through𝑤𝑛 first intersects the tangent line for the

inner ellipse and then the one for the outer ellipse. As we move𝑤

counterclockwise starting at𝑤𝑛 , the enclosed area grows for some

time. However, if the ray through𝑤 reaches the intersection of the

two tangent lines, the tangent line for the outer ellipse becomes the

inner tangent line. At this point, contributions to the area become

negative and the enclosed area starts shrinking. As 𝑤 becomes

parallel to the inner tangent, the negative contribution becomes

infinite. Thus, we certainly find another root somewhere between

the global maximum at the intersection and the direction of the

inner tangent.

If the intersection is located clockwise of𝑤𝑛 , it works analogically.

We know that it is not exactly at𝑤𝑛 because ellipses only intersect

at boundaries of the domain but there we disable the iteration. If the

solution to the homogeneous quadratic is exactly at the intersection,

we have a double root because the root is simultaneously a critical

point. In that case the discriminant vanishes.

We could compute both roots and discard the one on the wrong

side of the intersection. However, it is more efficient to compute

only the relevant root. To this end, we ensure that results of our

quadratic solver depend continuously on the input.

Lemma 1. Let 𝑇 ∈ R2×2 such that Δ := − 1

4
|𝑇 +𝑇 T | > 0 and let

𝑤𝑛+1 :=


( |𝑇x,y+𝑇y,x |

2
+
√
Δ, −𝑇x,x

)T
if 𝑇x,y +𝑇y,x ≥ 0,(

𝑇y,y,
|𝑇x,y+𝑇y,x |

2
+
√
Δ
)T

otherwise.

If we interpret𝑤𝑛+1 ∈ R2 as point in projective space, it depends on 𝑇
continuously.

Proof. Both of the possible outputs depend on 𝑇 continuously.

We only need to prove that the transition at the case 𝑇x,y +𝑇y,x = 0

is continuous. In that case, the possible outputs simplify to

(
√
Δ, −𝑇x,x)T, (𝑇y,y,

√
Δ)T, where Δ = −𝑇x,x𝑇y,y.

To prove that these vectors are identical in the projective sense, we

make a case distinction based on the sign of 𝑇y,y. Note that 𝑇x,x has

opposite sign since Δ > 0.

Case 1. If 𝑇y,y > 0( √
Δ

−𝑇x,x

)
=

( √︁
−𝑇x,x𝑇y,y√︁

−𝑇x,x
√︁
−𝑇x,x

)
=

√︄
−𝑇x,x
𝑇y,y

(
𝑇y,y√︁

−𝑇x,x𝑇y,y

)
=

√︄
−
𝑇x,x

𝑇y,y

(
𝑇y,y√
Δ

)
.

Case 2. If 𝑇y,y < 0( √
Δ

−𝑇x,x

)
=

(√︁
𝑇x,x (−𝑇y,y)

−
√︁
𝑇x,x

√︁
𝑇x,x

)
=

√︄
𝑇x,x

−𝑇y,y

(
−𝑇y,y

−
√︁
𝑇x,x (−𝑇y,y)

)
= −

√︄
−
𝑇x,x

𝑇y,y

(
𝑇y,y√
Δ

)
.

□
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Now we prove that this strategy gives us the correct root if the

current direction 𝑤𝑛 is close enough to the converged result of

the iteration, i.e. if |𝐴𝛿 (𝑤𝑛) | is small enough. Such a local result is

enough to retain local cubic convergence. Our extensive search for

failure cases shows that the error with our initialization strategy is

indeed small enough.

Proposition 2. Let𝑤𝑛 ∈ R2 with𝑤𝑛 ≠ 0 and consider the homoge-
neous quadratic for our iterative procedure

𝑇 := 𝑇 (𝑤𝑛) := 𝑅𝑤𝑛𝑤
T
𝑛 (𝐶𝑖 −𝐶𝑜 ) − 2𝐴𝛿 (𝑤𝑛)𝐶𝑖𝑤𝑛𝑤

T
𝑛𝐶𝑜 .

Suppose 𝐴𝛿 (𝑤𝑛) = 0, i.e.𝑤𝑛 already solves our inverse problem, and

𝑤T
𝑛𝐶𝑖𝑤𝑛 > 𝑤T

𝑛𝐶𝑜𝑤𝑛 ,

i.e. it does not point towards the intersection of the two ellipses. Then
the discriminant Δ is positive and the homogeneous quadratic solver
in Lemma 1 applied to 𝑇 (𝑤𝑛) produces a non-zero multiple of𝑤𝑛 .

Additionally, sufficiently small perturbations to 𝐴 (or equivalently
𝐴𝛿 (𝑤𝑛)) do not lead to a vanishing discriminant and induce continu-
ous changes in the solution of the homogeneous quadratic.

Proof. We prove that the solution is a non-zero multiple of𝑤𝑛

constructively. We begin with a reformulation of the discriminant:

4Δ = −|𝑇 (𝑤𝑛) +𝑇 T (𝑤𝑛) |

= −|𝑅𝑤𝑛𝑤
T
𝑛 (𝐶𝑖 −𝐶𝑜 ) + (𝐶𝑖 −𝐶𝑜 )𝑤𝑛𝑤

T
𝑛𝑅 |

= −
����(𝑅𝑤𝑛, (𝐶𝑖 −𝐶𝑜 )𝑤𝑛)

(
𝑤T
𝑛 (𝐶𝑖 −𝐶𝑜 )
𝑤T
𝑛𝑅

)����
= | (𝑅𝑤𝑛, (𝐶𝑖 −𝐶𝑜 )𝑤𝑛) |2

= (𝑤T
𝑛 (𝐶𝑖 −𝐶𝑜 )𝑅𝑅𝑤𝑛)2

= (𝑤T
𝑛 (𝐶𝑖 −𝐶𝑜 )𝑤𝑛)2

Then due to our assumptionΔ > 0. Since the discriminant is positive,

the solution to the homogeneous quadratic in Lemma 1 cannot be

zero either.

We also formulate new expressions for the entries of 𝑇 . Using

𝑒0 := (1, 0)T and 𝑒1 := (0, 1)T

𝑇x,x = 𝑒T
0
𝑇𝑒0 = (𝑒T

0
𝑅𝑤𝑛) (𝑤T

𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒0)

= −𝑤T
𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒0𝑤𝑛,y,

𝑇y,x +𝑇x,y = 𝑒T
1
𝑅𝑤𝑛𝑤

T
𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒0 + 𝑒T

0
𝑅𝑤𝑛𝑤

T
𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒1

= 𝑤T
𝑛 (𝐶𝑖 −𝐶𝑜 ) (𝑒0𝑤𝑛,x − 𝑒1𝑤𝑛,y),

𝑇y,y = (𝑒T
1
𝑅𝑤𝑛) (𝑤T

𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒1)

= 𝑤T
𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒1𝑤𝑛,x.

To prove that we get some multiple of𝑤𝑛 , we make the same case

distinction as in the quadratic solver.

Case 1. If 𝑇x,y +𝑇y,x ≥ 0, the solution is(
|𝑇x,y+𝑇y,x |

2
+
√
Δ

−𝑇x,x

)
=

1

2

(
𝑤T
𝑛 (𝐶𝑖 −𝐶𝑜 ) (𝑒0𝑤𝑛,x − 𝑒1𝑤𝑛,y +𝑤𝑛)

2𝑤T
𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒0𝑤𝑛,y

)
= 𝑤T

𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒0𝑤𝑛 .

Case 2. If 𝑇x,y +𝑇y,x < 0, the solution is(
𝑇y,y

|𝑇x,y+𝑇y,x |
2

+
√
Δ

)
=

1

2

(
2𝑤T

𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒1𝑤𝑛,x

𝑤T
𝑛 (𝐶𝑖 −𝐶𝑜 ) (−𝑒0𝑤𝑛,x + 𝑒1𝑤𝑛,y +𝑤𝑛)

)
= 𝑤T

𝑛 (𝐶𝑖 −𝐶𝑜 )𝑒1𝑤𝑛 .

𝑇 (𝑤𝑛) depends continuously (even linearly) on 𝐴 and so does Δ.
Thus, a neighborhood where the discriminant is still positive ex-

ists. Applying Lemma 1, we then find that the solution changes

continuously as well. □

In other words, if𝑤𝑛 is already the correct solution, we compute

𝑤𝑛+1 = 𝑤𝑛 and do not move away from it. Within a neighborhood

of 𝐴𝛿 (𝑤𝑛) = 0 there are no double roots and the next direction

𝑤𝑛+1 depends continuously on𝐴 as it should. Thus, we still pick the

correct root there. From the proof and our previous considerations

it is clear that these arguments may collapse at the point where the

two tangent lines intersect. However, our search for failure cases

shows that this point is never too close, at least if we disable the

iteration when 𝜉0 is too close to the boundary.

A.4 Initialization for the Decentral Case
Recall that the sector boundary 𝑗 ∈ {0, ℎ, 1} intersects ellipse 𝑙 ∈
{𝑖, 𝑜} at 𝜆𝑙, 𝑗𝑠 𝑗 . Disregarding the sign, the area of the quad in sec-

tor 𝑠ℎ, 𝑠𝑘 where 𝑘 ∈ {0, 1} is
1

2

| (𝜆𝑜,ℎ𝑠ℎ, 𝜆𝑜,𝑘𝑠𝑘 ) | −
1

2

| (𝜆𝑖,ℎ𝑠ℎ, 𝜆𝑖,𝑘𝑠𝑘 ) |

=
1

2

(𝜆𝑜,ℎ𝜆𝑜,𝑘 − 𝜆𝑖,ℎ𝜆𝑖,𝑘 ) | (𝑠ℎ, 𝑠𝑘 ) |.

Note that −|(𝑠ℎ, 𝑠0) | = | (𝑠ℎ, 𝑠1) | since 𝑠ℎ is a half-vector. Thus, we

drop this factor and the factor
1

2
during randomized selection of a

quad and incorporate it later.

Our algorithm selects a quad 𝑘 ∈ {0, 1}. For all ellipses 𝑙 ∈ {𝑖, 𝑜},
the paper defines the edge normal

𝑟𝑙 = 𝐶𝑙 (𝜆𝑙,ℎ𝑠ℎ + 𝜆𝑙,𝑘𝑠𝑘 ).
Indeed, this vector is orthogonal to the edge connecting 𝜆𝑙,ℎ𝑠ℎ to

𝜆𝑙,𝑘𝑠𝑘 because

(𝜆𝑙,ℎ𝑠ℎ − 𝜆𝑙,𝑘𝑠𝑘 )T𝑟𝑙
=𝜆2

𝑙,ℎ
𝑠T
ℎ
𝐶𝑙𝑠ℎ + 𝜆𝑙,ℎ𝜆𝑙,𝑘𝑠

T
ℎ
𝐶𝑙𝑠𝑘 − 𝜆𝑙,𝑘𝜆𝑙,ℎ𝑠

T
𝑘
𝐶𝑙𝑠ℎ − 𝜆2

𝑙,𝑘
𝑠T
𝑘
𝐶𝑙𝑠𝑘

=𝜆2
𝑙,ℎ
𝑠T
ℎ
𝐶𝑙𝑠ℎ − 𝜆2

𝑙,𝑘
𝑠T
𝑘
𝐶𝑙𝑠𝑘

=1 − 1 = 0.

A point 𝑞 ∈ R2 lies on this edge if 𝑟T
𝑙
𝑞 = 𝐷𝑙 .

The intersection of a ray through𝑤 ∈ R2 with this edge is at

𝐷𝑙

𝑟T
𝑙
𝑤
𝑤 .

Then the signed area in the sector 𝑠𝑘 ,𝑤 between the two edges is

1

2

����(𝜆𝑜,𝑘𝑠𝑘 , 𝐷𝑜

𝑟T𝑜𝑤
𝑤

)���� − 1

2

�����
(
𝜆𝑖,𝑘𝑠𝑘 ,

𝐷𝑖

𝑟T
𝑖
𝑤
𝑤

)�����
=
1

2

(
𝜆𝑜,𝑘𝐷𝑜

𝑟T𝑜𝑤
−
𝜆𝑖,𝑘𝐷𝑖

𝑟T
𝑖
𝑤

)
| (𝑠𝑘 ,𝑤) |.
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For sampling, we have to select 𝑤 such that this area matches a

prescribed value 𝐴𝑞 ∈ R:

1

2

(
𝜆𝑜,𝑘𝐷𝑜

𝑟T𝑜𝑤
−
𝜆𝑖,𝑘𝐷𝑖

𝑟T
𝑖
𝑤

)
| (𝑠𝑘 ,𝑤) | = 𝐴𝑞

⇔ (𝜆𝑜,𝑘𝐷𝑜𝑟
T
𝑖 𝑤 − 𝜆𝑖,𝑘𝐷𝑖𝑟

T
𝑜𝑤)𝑤T𝑅𝑠𝑘 = 2𝐴𝑞𝑤

T𝑟𝑜𝑟
T
𝑖 𝑤

⇔ 𝑤T (𝑅𝑠𝑘 (𝜆𝑜,𝑘𝐷𝑜𝑟
T
𝑖 − 𝜆𝑖,𝑘𝐷𝑖𝑟

T
𝑜 ) − 2𝐴𝑞𝑟𝑜𝑟

T
𝑖 )𝑤 = 0

⇔ 𝑤T (𝜆𝑜,𝑘𝐷𝑜𝑅𝑠𝑘𝑟
T
𝑖 − (𝜆𝑖,𝑘𝐷𝑖𝑅𝑠𝑘 + 2𝐴𝑞𝑟𝑖 )𝑟T𝑜︸                                            ︷︷                                            ︸

=:𝑄

)𝑤 = 0

As for the iteration, we have reduced the problem to solving a homo-

geneous quadratic equation𝑤T𝑄𝑤 = 0. This time, the homogeneous

quadratic solver in Lemma 1 is guaranteed to compute the correct

root globally:

Proposition 3. Let 𝐴𝑞 lie between 0 and the signed area of quad 𝑘

1

2

(𝜆𝑜,ℎ𝜆𝑜,𝑘 − 𝜆𝑖,ℎ𝜆𝑖,𝑘 ) | (𝑠ℎ, 𝑠𝑘 ) |.

Suppose that 𝜆𝑖,𝑘 < 𝜆𝑜,𝑘 . Then the homogeneous quadratic 𝑄 has
positive discriminant and the solver in Lemma 1 computes a root
within the quad.

Proof. We begin with the case 𝐴𝑞 = 0. Using 𝐷𝑙 = 𝜆𝑙,𝑘𝑟
T
𝑙
𝑠𝑘 , the

quadratic simplifies to

𝑄 = 𝑅𝑠𝑘 (𝜆𝑜,𝑘𝐷𝑜𝑟
T
𝑖 − 𝜆𝑖,𝑘𝐷𝑖𝑟

T
𝑜 )

= 𝑅𝑠𝑘 (𝜆2𝑜,𝑘𝑟
T
𝑜 𝑠𝑘𝑟

T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 ).

Clearly, 𝑠T
𝑘
𝑄𝑠𝑘 = 0 and our goal is to prove that the solver in Lemma 1

produces this solution. We begin by reformulating the discriminant

as in the proof of Proposition 2:

4Δ = | (𝑅𝑠𝑘 , 𝜆2𝑜,𝑘𝑟
T
𝑜 𝑠𝑘𝑟𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟𝑜 ) |

2

= (𝜆2
𝑜,𝑘

𝑟T𝑜 𝑠𝑘𝑟
T
𝑖 𝑅𝑅𝑠𝑘 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜𝑅𝑅𝑠𝑘 )2

= ((𝜆2
𝑜,𝑘

− 𝜆2
𝑖,𝑘
)𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 𝑠𝑘 )2.

We know 𝜆2
𝑜,𝑘

− 𝜆2
𝑖,𝑘

> 0. Note that 𝑅𝑢𝑙 ∈ R2 is the direction where

the great circle intersects the horizon. Thus, this vector cannot be

located between two sector boundaries. Therefore,

𝑟T
𝑙
𝑠𝑘 = 𝑠T

𝑘
𝐶𝑙 (𝜆𝑙,ℎ𝑠ℎ + 𝜆𝑙,𝑘𝑠𝑘 )

= 𝜆𝑙,ℎ𝑠
T
𝑘
𝑠ℎ + 𝑠T

𝑘
𝑢𝑙𝑢

T
𝑙
𝑠ℎ + 𝜆𝑙,𝑘𝑠

T
𝑘
𝐶𝑙𝑠𝑘

> 𝜆𝑙,ℎ𝑠
T
𝑘
𝑠ℎ ≥ 0.

The last step exploits that sectors are at most 90° large once we have

split them in half. Therefore, the discriminant is positive and the

solver returns a non-zero vector.

As before, we also reformulate the polynomial coefficients.

𝑄x,x = 𝑒T
0
𝑄𝑒0 = −(𝜆2

𝑜,𝑘
𝑟T𝑜 𝑠𝑘𝑟

T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 )𝑒0𝑠𝑘,y

𝑄x,y +𝑄y,x = 𝑒T
1
𝑄𝑒0 + 𝑒T

0
𝑄𝑒1

= (𝜆2
𝑜,𝑘

𝑟T𝑜 𝑠𝑘𝑟
T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 ) (𝑒0𝑠𝑘,x − 𝑒1𝑠𝑘,y)

𝑄y,y = 𝑒T
1
𝑄𝑒1 = (𝜆2

𝑜,𝑘
𝑟T𝑜 𝑠𝑘𝑟

T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 )𝑒1𝑠𝑘,x

Case 1. If 𝑄x,y +𝑄y,x ≥ 0,

|𝑄x,y +𝑄y,x | + 2

√
Δ

=(𝜆2
𝑜,𝑘

𝑟T𝑜 𝑠𝑘𝑟
T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 ) (2𝑒0𝑠𝑘,x − 𝑠𝑘 ) + (𝜆2

𝑜,𝑘
− 𝜆2

𝑖,𝑘
)𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 𝑠𝑘

=(𝜆2
𝑜,𝑘

𝑟T𝑜 𝑠𝑘𝑟
T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 )2𝑒0𝑠𝑘,x.

Then the solver returns the root(
|𝑄x,y+𝑄y,x |

2
+
√
Δ

−𝑄x,x

)
= (𝜆2

𝑜,𝑘
𝑟T𝑜 𝑠𝑘𝑟

T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 )𝑒0𝑠𝑘 .

Case 2. If 𝑄x,y +𝑄y,x < 0,

|𝑄x,y +𝑄y,x | + 2

√
Δ

=(𝜆2
𝑜,𝑘

𝑟T𝑜 𝑠𝑘𝑟
T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 ) (2𝑒1𝑠𝑘,y − 𝑠𝑘 ) + (𝜆2

𝑜,𝑘
− 𝜆2

𝑖,𝑘
)𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 𝑠𝑘

=(𝜆2
𝑜,𝑘

𝑟T𝑜 𝑠𝑘𝑟
T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 )2𝑒1𝑠𝑘,y.

Then the solver returns the root(
𝑄y,y

|𝑄x,y+𝑄y,x |
2

+
√
Δ

)
= (𝜆2

𝑜,𝑘
𝑟T𝑜 𝑠𝑘𝑟

T
𝑖 − 𝜆2

𝑖,𝑘
𝑟T𝑖 𝑠𝑘𝑟

T
𝑜 )𝑒1𝑠𝑘 .

Thus, we get the correct result if 𝐴𝑞 = 0. We know that the edges

do not intersect within the quad and therefore the discriminant

remains positive for relevant values of 𝐴𝑞 . Then by Lemma 1, the

computed root as function of𝐴𝑞 changes continuously. Since double

roots cannot occur, we must get the correct root throughout the

quad, which is the one within the quad. □

The only case excluded by Proposition 3 is the one where the ray

through 𝑠𝑘 intersects both quad edges in the same point. This case

commonly occurs for the first and last sector. Since our method be-

haves continuously, it still picks the correct solution in this case. We

carefully designed the implementation to ensure that this remains

true in presence of rounding errors. However, in some degenerate

variants of this case, it is possible that the homogeneous quadratic

solver returns a zero vector. This problem could be avoided with

two additional branches for the case 𝑄x,y + 𝑄y,x = 0 in the qua-

dratic solver [Blinn, 2006]. Though, we never encountered issues in

practice and omit the additional branches for the sake of increased

efficiency.

Algorithm 3 presents our complete initialization procedure among

with the iterative procedure.

A.5 Theoretical Error Analysis
Next we prove the claims on local cubic convergence. The core of

this proof is to show that the mapping from 𝑤𝑛 to 𝑤𝑛+1 has two
vanishing derivatives when𝑤𝑛 is already converged. Thus, we first

take two derivatives of our algorithm and show that they vanish

under the right circumstances. Once we have proven that, we prove

local cubic convergence.
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We use the following conventions for these calculations:

Definition 4. We are given inner and outer ellipses 𝐶𝑖 ,𝐶𝑜 ∈ R2×2.
As before, we consider the residual error and the homogeneous

quadratic as functions of𝑤𝑛 ∈ R2 with𝑤𝑛 ≠ 0, i.e.

𝐴𝛿 (𝑤𝑛) := 𝐴−

1

2

√︁
|𝐶𝑜 |

atan2

(
−𝑠T

0
𝑅𝑤𝑛

1√
|𝐶𝑜 |

𝑠T
0
𝐶𝑜𝑤𝑛

)
+ 1

2

√︁
|𝐶𝑖 |

atan2

(
−𝑠T

0
𝑅𝑤𝑛

1√
|𝐶𝑖 |

𝑠T
0
𝐶𝑖𝑤𝑛

)
,

𝑇 (𝑤𝑛) := 𝑅𝑤𝑛𝑤
T
𝑛 (𝐶𝑖 −𝐶𝑜 ) − 2𝐴𝛿 (𝑤𝑛)𝐶𝑖𝑤𝑛𝑤

T
𝑛𝐶𝑜 .

The function𝑤𝑛+1 (𝑤𝑛) implements our iteration, i.e.𝑤𝑛+1 (𝑤𝑛) ≠ 0,

𝑤T
𝑛+1 (𝑤𝑛)𝑇 (𝑤𝑛)𝑤𝑛+1 (𝑤𝑛) = 0,

and this root is selected by the solver in Lemma 1. For a direction

𝑣 ∈ R2, we write
𝜕

𝜕𝑣
𝐴𝛿 (𝑤𝑛) ∈ R

to denote the derivative of 𝐴𝛿 with respect to variable𝑤𝑛 in direc-

tion 𝑣 .

The laborious part of the proof is concerned with the following

lemma:

Lemma 5. Let𝑤𝑛 ∈ R2 with
𝑤𝑛 ≠ 0, 𝐴𝛿 (𝑤𝑛) = 0, 𝑤T

𝑛𝐶𝑖𝑤𝑛 > 𝑤T
𝑛𝐶𝑜𝑤𝑛 .

Let 𝑤𝑛+1 := 𝑤𝑛+1 (𝑤𝑛). Then the first two directional derivatives of
𝑤𝑛+1 (𝑤𝑛) in direction 𝑣 := 𝑅𝑤𝑛 satisfy

𝑣T
𝜕

𝜕𝑣
𝑤𝑛+1 (𝑤𝑛) = 0, (A.1)

𝑣T
𝜕2

𝜕𝑣2
𝑤𝑛+1 (𝑤𝑛) = 0. (A.2)

Proof. First, we note that Proposition 2 is applicable and thus

𝑤𝑛+1 is a non-zero multiple of 𝑤𝑛 . Let 𝑙 ∈ {𝑖, 𝑜}. We begin by

computing first-order derivatives:

𝜕

𝜕𝑣
𝑇 (𝑤𝑛) = 𝑅(𝑣𝑤T

𝑛 +𝑤𝑛𝑣
T) (𝐶𝑖 −𝐶𝑜 ) − 2

𝜕𝐴𝛿 (𝑤𝑛)
𝜕𝑣

𝐶𝑖𝑤𝑛𝑤
T
𝑛𝐶𝑜

− 2𝐴𝛿 (𝑤𝑛)𝐶𝑖 (𝑣𝑤T
𝑛 +𝑤𝑛𝑣

T)𝐶𝑜
Let 𝐿𝐿T := 𝐶𝑙 be a Cholesky decomposition and recall from the

proof of Proposition 1 that

atan2

(
−𝑠T

0
𝑅𝑤𝑛

1√
|𝐶𝑜 |

𝑠T
0
𝐶𝑜𝑤𝑛

)
= atan2

(
(𝑅𝐿T𝑠0)T𝐿T𝑤𝑛

(𝐿T𝑠0)T𝐿T𝑤𝑛

)
.

For the purpose of derivative computation, a constant offset is irrele-

vant. Thus, it is safe to replace 𝐿T𝑠0 by 𝑒0 := (1, 0)T and accordingly

𝑅𝐿T𝑠0 by 𝑒1 := (0, 1)T. Then

𝜕

𝜕𝑣
atan2

(
−𝑠T

0
𝑅𝑤𝑛

1√
|𝐶𝑜 |

𝑠T
0
𝐶𝑜𝑤𝑛

)
=

𝜕

𝜕𝑣
atan2

(
𝑒T
1
𝐿T𝑤𝑛

𝑒T
0
𝐿T𝑤𝑛

)
=
𝑣T𝐿𝑅𝐿T𝑤𝑛

𝑤T
𝑛𝐿𝐿

T𝑤𝑛

=
|𝐿 |𝑣T𝑅𝑤𝑛

𝑤T
𝑛𝐿𝐿

T𝑤𝑛

=
√︁
|𝐶𝑙 |

𝑣T𝑅𝑤𝑛

𝑤T
𝑛𝐶𝑙𝑤𝑛

.

Thus, the derivative of 𝐴𝛿 (𝑤𝑛) is
𝜕𝐴𝛿 (𝑤𝑛)

𝜕𝑣
= −1

2

𝑣T𝑅𝑤𝑛

𝑤T
𝑛𝐶𝑜𝑤𝑛

+ 1

2

𝑣T𝑅𝑤𝑛

𝑤T
𝑛𝐶𝑖𝑤𝑛

.

Coincidentally, this is the derivation for the derivative in Equation 9,

which would be used by Newton’s method.

We know for all𝑤𝑛 ∈ R2 with𝑤𝑛 ≠ 0

𝑤T
𝑛+1 (𝑤𝑛)𝑇 (𝑤𝑛)𝑤𝑛+1 (𝑤𝑛) = 0

⇒ 𝑤T
𝑛+1 (𝑇 (𝑤𝑛) +𝑇 T (𝑤𝑛))

𝜕𝑤𝑛+1 (𝑤𝑛)
𝜕𝑣

= −𝑤T
𝑛+1

𝜕𝑇 (𝑤𝑛)
𝜕𝑣

𝑤𝑛+1
(A.3)

By definition

𝑤T
𝑛+1 (𝑇 (𝑤𝑛) +𝑇 T (𝑤𝑛))𝑤𝑛+1 = 0

but by our assumption

𝑤T
𝑛+1 (𝑇 (𝑤𝑛) +𝑇 T (𝑤𝑛)) = 𝑤T

𝑛+1 (𝐶𝑖 −𝐶𝑜 )𝑤𝑛𝑤
T
𝑛𝑅

T ≠ 0.

Thus, we have a non-zero vector orthogonal to𝑤𝑛 . Since we are in

2D, it must be a multiple of 𝑣 = 𝑅𝑤𝑛 . Then to prove Equation (A.1), it

suffices to prove that the right-hand side in Equation (A.3) vanishes:

𝑤T
𝑛

𝜕

𝜕𝑣
𝑇 (𝑤𝑛)𝑤𝑛

=𝑤T
𝑛𝑅(𝑣𝑤T

𝑛 +𝑤𝑛𝑣
T) (𝐶𝑖 −𝐶𝑜 )𝑤𝑛 − 2

𝜕𝐴𝛿 (𝑤𝑛)
𝜕𝑣

𝑤T
𝑛𝐶𝑖𝑤𝑛𝑤

T
𝑛𝐶𝑜𝑤𝑛

=𝑤T
𝑛𝑅𝑣𝑤

T
𝑛 (𝐶𝑖 −𝐶𝑜 )𝑤𝑛 + (𝑤T

𝑛𝐶𝑖𝑤𝑛 −𝑤T
𝑛𝐶𝑜𝑤𝑛)𝑣T𝑅𝑤𝑛

=0.

Note that we have exploited 𝑣T𝑅𝑤𝑛 = −𝑤T
𝑛𝑅𝑣 .

For second-order derivatives, we exploit𝐴𝛿 (𝑤𝑛) = 0 immediately

since we do not need further derivatives:

𝜕2

𝜕𝑣2
𝑇 (𝑤𝑛) = 2𝑅𝑣𝑣T (𝐶𝑖 −𝐶𝑜 ) − 2

𝜕2𝐴𝛿 (𝑤𝑛)
𝜕𝑣2

𝐶𝑖𝑤𝑛𝑤
T
𝑛𝐶𝑜

− 4

𝜕𝐴𝛿 (𝑤𝑛)
𝜕𝑣

𝐶𝑖 (𝑣𝑤T
𝑛 +𝑤𝑛𝑣

T)𝐶𝑜 ,

𝜕

𝜕𝑣

1

2

𝑣T𝑅𝑤𝑛

𝑤T
𝑛𝐶𝑙𝑤𝑛

=
1

2

𝑣T𝑅𝑣𝑤T
𝑛𝐶𝑙𝑤𝑛 − 2𝑣T𝑅𝑤𝑛𝑤

T
𝑛𝐶𝑙𝑣

(𝑤T
𝑛𝐶𝑙𝑤𝑛)2

= −𝑣
T𝑅𝑤𝑛𝑤

T
𝑛𝐶𝑙𝑣

(𝑤T
𝑛𝐶𝑙𝑤𝑛)2

,

𝜕2𝐴𝛿 (𝑤𝑛)
𝜕𝑣2

=
𝑣T𝑅𝑤𝑛𝑤

T
𝑛𝐶𝑜𝑣

(𝑤T
𝑛𝐶𝑜𝑤𝑛)2

− 𝑣T𝑅𝑤𝑛𝑤
T
𝑛𝐶𝑖𝑣

(𝑤T
𝑛𝐶𝑖𝑤𝑛)2

.

Since we are in 2D, Equation (A.1) implies that
𝜕𝑤𝑛+1 (𝑤𝑛)

𝜕𝑣 is a mul-

tiple of𝑤𝑛 . In particular,

0 =𝑤T
𝑛𝑇 (𝑤𝑛)𝑤𝑛 =

𝜕𝑤T
𝑛+1 (𝑤𝑛)
𝜕𝑣

𝑇 (𝑤𝑛)𝑤𝑛

=
𝜕𝑤T

𝑛+1 (𝑤𝑛)
𝜕𝑣

𝑇 (𝑤𝑛)
𝜕𝑤𝑛+1 (𝑤𝑛)

𝜕𝑣
,

0 =𝑤T
𝑛+1 (𝑤𝑛)

𝜕𝑇 (𝑤𝑛)
𝜕𝑣

𝑤𝑛+1 (𝑤𝑛)

=
𝜕𝑤T

𝑛+1 (𝑤𝑛)
𝜕𝑣

𝜕𝑇 (𝑤𝑛)
𝜕𝑣

𝑤𝑛+1 (𝑤𝑛).

As we take a second directional derivative of Equation (A.3), only

terms with second derivatives of 𝑇 (𝑤𝑛) or𝑤𝑛+1 (𝑤𝑛) remain, i.e.

𝑤T
𝑛+1 (𝑇 (𝑤𝑛) +𝑇 T (𝑤𝑛))

𝜕2𝑤𝑛+1 (𝑤𝑛)
𝜕𝑣2

= −𝑤T
𝑛+1

𝜕2𝑇 (𝑤𝑛)
𝜕𝑣2

𝑤𝑛+1.
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For the same reasons as before, it now suffices to prove that the

right-hand side vanishes:

𝑤T
𝑛

𝜕2𝑇 (𝑤𝑛)
𝜕𝑣2

𝑤𝑛

=2𝑤T
𝑛𝑅𝑣𝑣

T (𝐶𝑖 −𝐶𝑜 )𝑤𝑛

−2 𝜕
2𝐴𝛿 (𝑤𝑛)
𝜕𝑣2

𝑤T
𝑛𝐶𝑖𝑤𝑛𝑤

T
𝑛𝐶𝑜𝑤𝑛

−4 𝜕𝐴𝛿 (𝑤𝑛)
𝜕𝑣

(𝑤T
𝑛𝐶𝑖𝑣𝑤

T
𝑛𝐶𝑜𝑤𝑛 +𝑤T

𝑛𝐶𝑖𝑤𝑛𝑣
T𝐶𝑜𝑤𝑛)

=2𝑣T𝑅𝑤𝑛 (𝑤T
𝑛𝐶𝑜𝑣 −𝑤T

𝑛𝐶𝑖𝑣)

−2𝑣T𝑅𝑤𝑛

(
𝑤T
𝑛𝐶𝑜𝑣

𝑤T
𝑛𝐶𝑖𝑤𝑛

𝑤T
𝑛𝐶𝑜𝑤𝑛

−𝑤T
𝑛𝐶𝑖𝑣

𝑤T
𝑛𝐶𝑜𝑤𝑛

𝑤T
𝑛𝐶𝑖𝑤𝑛

)
−2𝑣T𝑅𝑤𝑛

(
𝑤T
𝑛𝐶𝑖𝑣

𝑤T
𝑛𝐶𝑜𝑤𝑛

𝑤T
𝑛𝐶𝑖𝑤𝑛

+𝑤T
𝑛𝐶𝑜𝑣 −𝑤T

𝑛𝐶𝑖𝑣 −𝑤T
𝑛𝐶𝑜𝑣

𝑤T
𝑛𝐶𝑖𝑤𝑛

𝑤T
𝑛𝐶𝑜𝑤𝑛

)
=0.

□

The proof of local cubic convergence is now mostly a matter of

transitioning from direction vectors to angles. For 𝑤 ∈ R2 with

𝑤 ≠ 0 and 𝛼 ∈ R, we introduce the functions

𝛼 (𝑤) := atan2(𝑤y,𝑤x), 𝑤 (𝛼) := (cos𝛼, sin𝛼)T.

If 𝛼 (𝑤) has its discontinuity at an inconvenient location, we move

it somewhere else using e.g.

𝛼 (𝑤) := atan2(𝑤x,−𝑤y) −
𝜋

2

.

Proposition 6. Let𝑤∗ ∈ R2 with

𝑤∗ ≠ 0, 𝐴𝛿 (𝑤∗) = 0, 𝑤T
𝑛𝐶𝑖𝑤𝑛 > 𝑤T

𝑛𝐶𝑜𝑤𝑛 .

Let𝑤0 ∈ R2 be sufficiently close to𝑤∗ and for all 𝑛 ∈ N0 consider the
sequence𝑤𝑛+1 := 𝑤𝑛+1 (𝑤𝑛). Then there exists a 𝜁 > 0 such that for
all 𝑛 ∈ N0

|𝛼 (𝑤𝑛+1) − 𝛼 (𝑤∗) | ≤ 𝜁 |𝛼 (𝑤𝑛) − 𝛼 (𝑤∗) |3.

Proof. For 𝛼 ∈ R, consider the function

𝛽𝑛+1 (𝛼) := 𝛼 (𝑤𝑛+1 (𝑤 (𝛼))).

The chain rule and Lemma 5 applied to𝑤∗ let us compute its deriva-

tives at 𝛽∗ := 𝛼 (𝑤∗):

𝛽 ′𝑛+1 (𝛽∗) = 𝛼 ′(𝑤𝑛+1 (𝑤 (𝛽∗)))
𝜕

𝜕𝑤 ′(𝛽∗)
𝑤𝑛+1 (𝑤 (𝛽∗))

= 𝛼 ′(𝑤𝑛+1 (𝑤 (𝛽∗)))
𝜕

𝜕𝑅𝑤 (𝛽∗)
𝑤𝑛+1 (𝑤 (𝛽∗)) = 0,

𝛽 ′′𝑛+1 (𝛽∗) = 𝛼 ′′(𝑤𝑛+1 (𝑤 (𝛽∗)))
𝜕

𝜕𝑅𝑤 (𝛽∗)
𝑤𝑛+1 (𝑤 (𝛽∗))

+ 𝛼 ′(𝑤𝑛+1 (𝑤 (𝛽∗)))
𝜕2

𝜕(𝑅𝑤 (𝛽∗))2
𝑤𝑛+1 (𝑤 (𝛽∗)) = 0.

Therefore, a Taylor expansion of 𝛽𝑛+1 (𝛼) around 𝛽∗ takes the form

𝛽𝑛+1 (𝛼) = 𝛽∗ +
𝛽 ′′′
𝑛+1 (𝛽∗)

3

(𝛽∗ − 𝛼)3 + . . . .

Table A.1. The number of comparisons in our sorting networks for bitonic
sequences of different size, compared to the number of comparisons in
optimal sorting networks for arbitrary sequences.

Element count 3 4 5 6 7 8

Our network 3 4 8 9 12 12

General network 3 5 9 12 16 19

Then there exists a 𝜁 slightly bigger than
1

3
|𝛽 ′′′
𝑛+1 (𝛽∗) | such that for

all 𝛼 sufficiently close to 𝛽∗

|𝛽𝑛+1 (𝛼) − 𝛽∗ | ≤ 𝜁 |𝛼 − 𝛽∗ |3.

In particular,

|𝛼 (𝑤𝑛+1) − 𝛽∗ | = |𝛽𝑛+1 (𝛼 (𝑤𝑛)) − 𝛽∗ | ≤ 𝜁 |𝛼 (𝑤𝑛) − 𝛽∗ |3.

□

A.6 Sorting Bitonic Sequences
In a way, the input to our algorithm is already sorted, just not with

respect to the zenith. Suppose 𝑣0 happens to be the vertex at the

clockwise end of the polygon with respect to the zenith. As we move

on to vertex 𝑣 𝑗 by increasing 𝑗 ∈ {0, . . . ,𝑚 − 1}, we first pass along
one or more outer edges, i.e. we move counterclockwise. Eventually,

we encounter the first inner edge and move clockwise (Fig. 3b).

Consequently, the indices indicating the positions of the vertices

𝑣0, . . . , 𝑣𝑚−1 in a sorted sequence first increase and then decrease.

Therefore, it is a bitonic sequence. If the vertex at the clockwise end

is in a different position, we have a circular shift of such a sequence.

By definition, that is still a bitonic sequence.

We seek optimal sorting networks that sort bitonic sequences

with up to eight elements. A sorting network is a sequence of index

pairs. In each step, the array entries at the two indices are compared

and swapped if their order is wrong. As for the clipping, our search

employs brute force. We prescribe a number of allowed comparisons

and enumerate all sequences of index pairs of this length. We apply

each of them to a complete list of bitonic sequences with entries

{0, . . . ,𝑚 − 1}. If all sequences get sorted correctly, the sorting

network is a candidate. We retain the candidate of minimal depth.

This approach scales poorly but is trivial to parallelize. We used

CUDA and packed complete sequences into 32-bit integers. For up

to six elements, it is no problem to try all possibilities. For seven

elements, we invested 5.5 hours of GPU time to find that none of

the 21
11 ≈ 3.5 · 1014 sorting networks with eleven comparisons is

successful. An educated guess for the last few comparisons allowed

us to find sorting networks with twelve comparisons, which must

be optimal. For eight elements, we found sorting networks with

twelve comparisons in the same manner. Such a sorting network is

also used in bitonic merge sort.

To eliminate some conditional code execution, we designed net-

works for different element counts that share the last few compar-

isons. Fig. A.2 visualizes our optimal sorting networks. Table A.1

gives the savings that we achieve by specializing our networks to

bitonic sequences.
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Fig. A.2. Visualizations of our optimal sorting networks for bitonic se-
quences. Each black line connects two channels. In sequence, the elements
in these channels are compared and if the one with the greater index is less,
they are swapped.

A.7 The Full Algorithm
In this section, we assemble all the pieces described thus far into the

algorithm for projected solid angle sampling. First, we need to estab-

lish a few little helper functions. The function is_inner(𝑢 𝑗)returns
true if the sign bit on 𝑢 𝑗,x is one (indicating an inner ellipse) and

false otherwise. The function ellipse_area_in_sector(𝑢 𝑗 , 𝑠0, 𝑠1)
implements Equation (1), i.e. it evaluates to

1

2

√︃
1 + ∥𝑢 𝑗 ∥2

atan2

(
−𝑠T

0
𝑅𝑠1

1√
1+∥𝑢 𝑗 ∥2

𝑠T
0
(𝑠1 + 𝑢 𝑗𝑢T𝑗 𝑠1)

)
.

For degenerate ellipses, it returns zero according to rule 2. Algo-

rithm 1 produces our representation of ellipses through vectors

𝑢 𝑗 ∈ R2 and Algorithm 2 solves homogeneous quadratics [Blinn,

2006].

The core problem is sampling of the area between two ellipses

within a sector. This part is implemented by Algorithm 3. Our im-

plementation of this algorithm eliminates a few more common

subexpressions. For example, ellipse_area_in_sector() should

utilize𝑤𝑖 and𝑤𝑜 . The normalization of the current direction via

𝑤𝑛

|𝑤𝑛,x | + |𝑤𝑛,y |
also deserves some attention. In theory, it could be omitted but in

floating point arithmetic it is crucial to avoid under- or overflow.

Though, there is no need for an exact reciprocal. Our implementation

instead flips all exponent bits on the floating-point number |𝑤𝑛,x | +
|𝑤𝑛,y | (i.e. it does an XOR with 0x7F800000). If the original exponent

is 𝐸 ∈ {−127, . . . , 128}, the new exponent is 1 − 𝐸. Consequently,

Algorithm 1 ellipse_from_edge
Input: Vertices 𝑣 𝑗 , 𝑣 𝑗+1 ∈ R3.
Output: A vector 𝑢 𝑗 ∈ R2 such that 𝐶 𝑗 := 𝐼 + 𝑢 𝑗𝑢

T
𝑗
describes the

ellipse that arises from projection of the great circle through 𝑣 𝑗 , 𝑣 𝑗+1
to the xy-plane.

𝑛 𝑗 := 𝑣 𝑗 × 𝑣 𝑗+1 // using Kahan’s algorithm for each entry

𝑢 𝑗 :=

{
− 1

𝑛 𝑗,z
𝑛 𝑗,xy if is_inner_ellipse(𝑛 𝑗,xy),

1

𝑛 𝑗,z
𝑛 𝑗,xy otherwise.

if 𝑛 𝑗,z = 0 : 𝑢 𝑗,x := ∞
return 𝑢 𝑗

after this normalization 2 ≤ |𝑤𝑛,x | + |𝑤𝑛,y | ≤ 8. The approach fails

for denormal numbers but GPUs flush these to zero anyway.

Algorithm 4 implements the sampling procedure for complete

polygons. It is split into two parts. The first part needs to run once

per polygon, the second part once per sample. The primary purpose

of the first part is to pair ellipses with sectors and to compute the

areas for each sector. In the decentral case, that includes sorting

with the sorting networks described in Supplement A.6. Vertex 𝑣 𝑗,xy
is less than 𝑣𝑘,xy if | (𝑣 𝑗,xy, 𝑣𝑘,xy) | > 0. This determinant is evaluated

using Kahan’s algorithm. If the vertices are equal, the one with the

degenerate ellipse comes first (rule 3).

In the central case, the sampling procedure sets

𝑤 := cos(2
√︃
|𝐶 𝑗 |𝐴)

√︃
|𝐶 𝑗 |𝑠0 + sin(2

√︃
|𝐶 𝑗 |𝐴)𝑅𝐶 𝑗𝑠0.

Except for a constant factor, this is a correct solution because(
−𝑠T

0
𝑅

1√
|𝐶 𝑗 |

𝑠T
0
𝐶 𝑗

)
𝑤

= cos(2
√︃
|𝐶 𝑗 |𝐴)

√︃
|𝐶 𝑗 |

(
0

1√
|𝐶 𝑗 |

𝑠T
0
𝐶 𝑗𝑠0

)
+ sin(2

√︃
|𝐶 𝑗 |𝐴)

(
−𝑠T

0
𝑅𝑅𝐶 𝑗𝑠0
0

)
=𝑠T

0
𝐶 𝑗𝑠0

(
sin(2

√︁
|𝐶 𝑗 |𝐴)

cos(2
√︁
|𝐶 𝑗 |𝐴)

)
.

And as explained in the paper, constant factors cancel out.

There is one more ingredient to the efficiency of our implementa-

tion, which might be specific to Vulkan or the used GPU. We found

that use of atan2 is considerably more expensive than use of its

single-parameter counterpart atan. Therefore, we designed every in-

vocation of atan2 such that the passed 𝑦-coordinate is non-negative.

In presence of rounding errors, clamping to zero is needed. Under

these circumstances

atan2(𝑦, 𝑥) = atan

𝑦

𝑥
+

{
𝜋 if

𝑦
𝑥 < 0,

0 otherwise.

Since no offset gets added for small outputs, this formula avoids

numeric cancellation.

Table A.2 compares timings of this method to competing tech-

niques when using polygons with six or seven vertices.
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Table A.2. Timings in milliseconds for rendering a frame at 1920 × 1080

resolution using 128 samples per pixel. The samples are either taken from
128 different polygonal lights or all from the same light. The baseline timings
in the last row, which include access to random numbers, BRDF evaluation,
etc., have been subtracted from each timing in the rows above.

128 lights 128 samples

Polygon vertex count 6 7 6 7

Area, Turk 8.65 11.4 1.29 1.52

Solid angle, Arvo 13.1 16.4 2.57 2.99

Solid angle, ours 9.45 11.0 2.11 2.37

Solid angle, clipped, ours 12.6 15.5 2.75 3.53

Bilinear, Hart et al. 11.9 13.7 3.20 3.89

Biquadratic, Hart et al. 20.6 24.9 8.46 9.38

Proj., central, Arvo 65.2 75.4 13.4 13.6

Proj., central, ours 17.4 22.6 3.24 3.47

Biased, central, ours 19.0 21.3 2.84 3.42

Proj., decentral, Arvo 100 132 22.7 23.8

Proj., decentral, ours 45.6 59.4 12.4 12.9

Biased, decentral, ours 36.4 45.0 6.23 7.00

+ Baseline 6.71 6.60 3.59 3.65

Algorithm 2 solve_homogeneous_quadratic
Input: A matrix 𝑄 ∈ R2×2.
Output: A direction𝑤 ∈ R2 such that𝑤T𝑄𝑤 = 0.

𝑏 :=
𝑄x,y +𝑄y,x

2

Δ := 𝑏2 −𝑄x,x𝑄y,y

if 𝑏 ≥ 0 : return

(
|𝑏 | +

√
Δ, −𝑄x,x

)T
else: return

(
𝑄y,y, |𝑏 | +

√
Δ
)T

B MULTIPLE IMPORTANCE SAMPLING HEURISTICS
In the paper, we advocate use of clamped optimal MIS but only

provide an intuitive justification. The way in which it blends two

familiar heuristics is rather obvious. However, our starting point

for this formulation is optimal MIS [Kondapaneni et al., 2019]. In

the following, we first derive a more efficient variant of optimal

MIS using strong assumptions that model our particular setting

(Supplement B.1). This estimator has an usual structure but is still

unbiased (Supplement B.2). Then we arrive at our clamped optimal

MIS by clamping negative MIS weights (Supplement B.3).

B.1 Optimal Multiple Importance Sampling
Our weighted balance heuristic is optimized for situations without

occlusion. To incorporate occlusion, we adapt optimal MIS [Konda-

paneni et al., 2019]. We still base this derivation on the assumption

that LTCs provide perfect fits and that the light source is Lambertian.

Thus, the integrand is

𝑓 (𝜔𝑖 ) := 𝐿𝑒𝑉 (𝜔𝑖 ) 𝑓𝑟 (𝜔𝑜 , 𝜔𝑖 )𝑛T𝜔𝑖 = 𝑉 (𝜔𝑖 )
𝑁−1∑︁
𝑗=0

𝑐 𝑗𝑝 𝑗 (𝜔𝑖 ). (B.1)

Algorithm 3 sample_sector_between_ellipses
Input: Uniform random numbers 𝜉0, 𝜉1 ∈ [0, 1), 𝐴 = 𝜉0𝐴𝑠 where

𝐴𝑠 is the size of the area being sampled, inner and outer ellipses

𝑢𝑖 , 𝑢𝑜 ∈ R2 and a sector 𝑠0, 𝑠1.

Output: A uniform sample𝑤 ∈ R2 of the area between the ellipses

in the sector.

𝑠0 :=
𝑠0

∥𝑠0∥
, 𝑠1 :=

𝑠1

∥𝑠1∥
, 𝑠ℎ := 𝑠0 + 𝑠1

for 𝑙 ∈ {𝑖, 𝑜} and 𝑗 ∈ {0, ℎ, 1} :

𝜆𝑙, 𝑗 :=
1√︃

∥𝑠 𝑗 ∥2 + (𝑢T
𝑙
𝑠 𝑗 )2

𝐴𝑞,0 := 𝜆𝑜,0𝜆𝑜,ℎ − 𝜆𝑖,0𝜆𝑖,ℎ, 𝐴𝑞,1 := 𝜆𝑜,ℎ𝜆𝑜,1 − 𝜆𝑖,ℎ𝜆𝑖,1

// Select a quad and move its attributes to index 1

𝐴𝑞 := (1 − 𝜉0) (−𝐴𝑞,0) + 𝜉0𝐴𝑞,1

if 𝐴𝑞 ≤ 0 : (𝑠1, 𝜆𝑖,1, 𝜆𝑜,1) := (𝑠0, 𝜆𝑖,0, 𝜆𝑜,0)

𝐴𝑞 := 𝐴𝑞 +
{
𝐴𝑞,0 if 𝐴𝑞 ≤ 0,

−𝐴𝑞,1 otherwise.

𝐴𝑞 :=
𝐴𝑞

2

| | (𝑠ℎ, 𝑠1) | |

for 𝑙 ∈ {𝑖, 𝑜} :

𝑟𝑙 := 𝜆𝑙,ℎ𝑠ℎ + 𝜆𝑙,1𝑠1, 𝑟𝑙 := 𝑟𝑙 + 𝑢𝑙𝑢T𝑙 𝑟𝑙 , 𝐷𝑙 := 𝜆𝑙,ℎ𝑟
T
𝑙
𝑠ℎ

𝑄 := 𝜆𝑜,1𝐷𝑜𝑅𝑠1𝑟
T
𝑖 − (𝜆𝑖,1𝐷𝑖𝑅𝑠1 + 2𝐴𝑞𝑟𝑖 )𝑟T𝑜

𝑤𝑛 := solve_homogeneous_quadratic(𝑄)

// Determine the iteration count and iterate

𝑁 :=

{
2 if 10

−5 ≤ 𝜉0 ≤ 1 − 10
−5
,

0 otherwise.

for 𝑛 ∈ {0, . . . , 𝑁 − 1} :

𝑤𝑛 :=
𝑤𝑛

|𝑤𝑛,x | + |𝑤𝑛,y |
if 𝑠T

ℎ
𝑤𝑛 < 0 : 𝑤𝑛 := −𝑤𝑛

𝑤𝑖 := 𝑤𝑛 + 𝑢𝑖𝑢T𝑖 𝑤𝑛, 𝑤𝑜 := 𝑤𝑛 + 𝑢𝑜𝑢T𝑜𝑤𝑛

𝐴𝛿 := 𝐴 − ellipse_area_in_sector(𝑢𝑜 , 𝑠0,𝑤𝑛)

+ ellipse_area_in_sector(𝑢𝑖 , 𝑠0,𝑤𝑛)

𝑇 := 𝑅𝑤𝑛 (𝑤𝑖 −𝑤𝑜 )T − (2𝐴𝑤𝑖 )𝑤T
𝑜

𝑤𝑛 := solve_homogeneous_quadratic(𝑇)

if 𝑠T
ℎ
𝑤𝑛 < 0 : 𝑤𝑛 := −𝑤𝑛

𝑤 :=

√︄
(1 − 𝜉1)

1

∥𝑤𝑛 ∥2 + (𝑢T
𝑖
𝑤𝑛)2

+ 𝜉1
1

∥𝑤𝑛 ∥2 + (𝑢T𝑜𝑤𝑛)2
𝑤𝑛

return𝑤

Optimal MIS [Kondapaneni et al., 2019] uses a technique matrix

𝐴 := (𝐴 𝑗,𝑘 )𝑁−1
𝑗,𝑘=0

:=

(∫
P

𝑝 𝑗 (𝜔)𝑝𝑘 (𝜔)∑𝑁−1
𝑙=0

𝑝𝑙 (𝜔)
d𝜔

)𝑁−1

𝑗,𝑘=0

∈ R𝑁×𝑁
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Algorithm 4 sample_projected_solid_angle_polygon
Input: A polygon with vertices 𝑣0, . . . , 𝑣𝑚−1 ∈ R3 subject to the

requirements explained in Sec. 3.1 and Supplement A.2, 𝑣𝑚 := 𝑣0
and uniform random numbers 𝜉0, 𝜉1 ∈ [0, 1).
Output: The sampled direction𝜔𝑖 ∈ S2 and its density with respect

to solid angle measure.

// Associate vertices with ellipses (next counterclockwise)

𝑢0 := ellipse_from_edge(𝑣0, 𝑣1)

𝑢prev := 𝑢0, 𝑢𝑖,0 := (1, 0)T

for 𝑗 = 1, . . . ,𝑚 − 1:

𝑢cur := ellipse_from_edge(𝑣 𝑗 , 𝑣 𝑗+1)

𝑢 𝑗 :=

{
𝑢prev if is_inner(𝑢cur),

𝑢cur otherwise.

if is_inner(𝑢prev) and not is_inner(𝑢cur) : 𝑢𝑖,0 := 𝑢prev

𝑢prev := 𝑢cur

𝑢cur := 𝑢0 // Close the edge loop

𝑢0 :=

{
𝑢prev if is_inner(𝑢cur),

𝑢cur otherwise.

if is_inner(𝑢prev) and not is_inner(𝑢cur) : 𝑢𝑖,0 := 𝑢prev

// Compute the projected solid angle sector by sector

𝐴Σ := 0

if not is_inner(𝑢𝑖,0): // Central case

for 𝑗 = 0, . . . ,𝑚 − 1:

𝐴 𝑗 := ellipse_area_in_sector(𝑢 𝑗 , 𝑣 𝑗,xy, 𝑣 𝑗+1,xy)

𝐴Σ := 𝐴Σ +𝐴 𝑗

else: // Decentral case

sort (𝑣0,xy, 𝑢0), . . . , (𝑣𝑚−1,xy, 𝑢𝑚−1) in place

𝑢𝑖 := 𝑢𝑖,0

for 𝑗 = 0, . . . ,𝑚 − 2:

if 𝑗 > 0 and is_inner(𝑢 𝑗) : 𝑢𝑖 := 𝑢 𝑗

if 𝑗 = 0 or not is_inner(𝑢 𝑗) : 𝑢𝑜 := 𝑢 𝑗

𝐴 𝑗 := ellipse_area_in_sector(𝑢𝑜 , 𝑣 𝑗,xy, 𝑣 𝑗+1,xy)

− ellipse_area_in_sector(𝑢𝑖 , 𝑣 𝑗,xy, 𝑣 𝑗+1,xy)

𝐴Σ := 𝐴Σ +𝐴 𝑗

// continued below

and a contribution vector 𝑏 ∈ R𝑁 with entries

𝑏 𝑗 :=

∫
P

𝑝 𝑗 (𝜔) 𝑓 (𝜔)∑𝑁−1
𝑙=0

𝑝𝑙 (𝜔)
d𝜔 =

𝑁−1∑︁
𝑘=0

𝑐𝑘

∫
P
𝑉 (𝜔)

𝑝 𝑗 (𝜔)𝑝𝑘 (𝜔)∑𝑁−1
𝑙=0

𝑝𝑙 (𝜔)
d𝜔 .

If we were to disregard the visibility term, our special setting

would turn 𝑏 𝑗 into a linear combination of entries in the technique

matrix. Since visibility cannot exceed one, we certainly have

0 ≤ 𝑏 𝑗 ≤
𝑁−1∑︁
𝑘=0

𝐴 𝑗,𝑘𝑐𝑘 .

Algorithm 4 continued

// Begin the sampling itself

𝐴 := 𝜉0𝐴Σ

if not is_inner(𝑢𝑖,0): // Central case

for 𝑗 = 0, . . . ,𝑚 − 1:

if 𝑗 > 0: 𝐴 := 𝐴 −𝐴 𝑗−1
𝑢𝑜 := 𝑢 𝑗 , 𝑠0 := 𝑣 𝑗,xy

if 𝐴 < 𝐴 𝑗 : break√︃
|𝐶 𝑗 | :=

√︁
1 + ∥𝑢𝑜 ∥2

𝑤 := cos(2
√︃
|𝐶 𝑗 |𝐴)

√︃
|𝐶 𝑗 |𝑠0 + sin(2

√︃
|𝐶 𝑗 |𝐴)𝑅(𝑠0 − 𝑠0𝑢𝑜𝑢

T
𝑜 )

𝑤 :=

√︄
𝜉1

1

𝑤T𝐶 𝑗𝑤
𝑤

else: // Decentral case

𝑢𝑖 := 𝑢𝑖,0

for 𝑗 = 0, . . . ,𝑚 − 2:

if 𝑗 > 0: 𝐴 := 𝐴 −𝐴 𝑗−1
if 𝑗 > 0 and is_inner(𝑢 𝑗) : 𝑢𝑖 := 𝑢 𝑗

if 𝑗 = 0 or not is_inner(𝑢 𝑗) : 𝑢𝑜 := 𝑢 𝑗

𝑠0 := 𝑣 𝑗,xy, 𝑠1 := 𝑣 𝑗+1,xy, 𝐴𝑠 := 𝐴 𝑗

if 𝐴 < 𝐴𝑠 : break

𝜉0 :=
𝐴

𝐴𝑠

𝑤 := sample_sector_between_ellipses(𝜉0, 𝜉1, 𝐴,𝑢𝑖 , 𝑢𝑜 , 𝑠0, 𝑠1)

𝜔𝑖 :=

(
𝑤√︁

1 − ∥𝑤 ∥2

)
return 𝜔𝑖 ,

𝜔𝑖,z

𝐴Σ

We now assume that visibility affects samples from all techniques

equally, i.e. there exists a visibility factor 𝑣 ∈ [0, 1] such that𝑏 = 𝑣𝐴𝑐 ,

where 𝑐 := (𝑐0, . . . , 𝑐𝑁−1)T. When the densities 𝑝0, 𝑝1 are similar, e.g.

for distant light sources, that is a good approximation. Otherwise,

it may be inaccurate but it is key to the efficiency of our approach

and works well in practice.

Optimal MIS weights are defined in terms of the coefficient vector

𝛼 ∈ R𝑁 that solves 𝐴𝛼 = 𝑏 = 𝑣𝐴𝑐 . Thanks to our assumptions, the

solution is simply

𝛼 = 𝑣𝑐 .

The technique matrix and the contribution vector have dropped out

entirely. Thus, we have eliminated themain hurdle to the application

of optimal MIS. Normally these coefficients must be learned from

a substantial number of samples [Kondapaneni et al., 2019]. Our

approach only requires some estimate of average visibility 𝑣 .

The optimal MIS weights are [Kondapaneni et al., 2019]

𝑤𝑜
𝑗 (𝜔𝑖 ) := 𝛼 𝑗

𝑝 𝑗 (𝜔𝑖 )
𝑓 (𝜔𝑖 )

+
𝑝 𝑗 (𝜔𝑖 )∑𝑁−1

𝑘=0
𝑝𝑘 (𝜔𝑖 )

(
1 −

∑𝑁−1
𝑘=0

𝛼𝑘𝑝𝑘 (𝜔𝑖 )
𝑓 (𝜔𝑖 )

)
.
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0.356
0.185

(a) Our optimal MIS, 𝑣 = 1/2

0.353
0.188

(b) Our clamped optimal MIS, 𝑣 = 1/2

Fig. B.1. A blue diffuse plane and a white glossy plane, both lit by a rectan-
gular Lambertian emitter that is partially occluded by a wall. Optimal MIS
introduces noise into umbras. We report RMSEs of HDR frames without
(top) and with (bottom) clamping of overexposed pixels.

There is an intriguing aspect of optimal MIS that prior work does

not discuss. Division by the integrand 𝑓 (𝜔𝑖 ) may be division by zero.

The proof of optimality [Kondapaneni et al., 2019, Equation (30)]

assumes
𝑓 (𝜔𝑖 )
𝑓 (𝜔𝑖 ) = 1. Thus, the MIS estimate must be constructed

accordingly, even when 𝑓 (𝜔𝑖 ) = 0. Another way to see this is to

replace the value of the integrand by 𝜀 > 0 wherever it is zero. For

𝜀 → 0 the integral approaches the intended value and
𝑓 (𝜔𝑖 )
𝑓 (𝜔𝑖 ) = 1.

Then the contribution of a sample 𝜔 𝑗 from technique 𝑝 𝑗 is

𝑓 (𝜔 𝑗 )
𝑝 𝑗 (𝜔 𝑗 )

𝑤𝑜
𝑗 (𝜔 𝑗 ) = 𝑣𝑐 𝑗 +

1∑𝑁−1
𝑘=0

𝑝𝑘 (𝜔 𝑗 )

(
𝑓 (𝜔 𝑗 ) − 𝑣

𝑁−1∑︁
𝑘=0

𝑐𝑘𝑝𝑘 (𝜔 𝑗 )
)
.

Due to the treatment of division by zero, this contribution may be

non-zero when 𝑓 (𝜔 𝑗 ) = 0. The method is unbiased nonetheless

because the terms without 𝑓 (𝜔 𝑗 ) have zero mean (see the next

section). In practice, we still discard samples 𝜔1 below the horizon.

To understand how these zero-mean contributions improve opti-

mality, we consider a case with weak specular shading and a distant

light source. We idealize the weak specular contribution by 𝑐1 = 0.

Since the light source is distant, its solid angle is small and we

assume that both sampling densities are practically constant. In

particular, 𝑝0 = 𝑝1. Then

1∑︁
𝑗=0

𝑓 (𝜔 𝑗 )
𝑝 𝑗 (𝜔 𝑗 )

𝑤𝑜
𝑗 (𝜔 𝑗 ) =

1∑︁
𝑗=0

𝑣𝑐 𝑗 +
1

2

(𝑉 (𝜔 𝑗 )𝑐0 − 𝑣𝑐0) =
1∑︁
𝑗=0

𝑉 (𝜔 𝑗 )
𝑐0

2

.

Thus, diffuse and specular samples make equal contributions, inde-

pendent of 𝑣 , which is the intended outcome.

The visibility factor 𝑣 , weights down the zero-mean contributions

in umbras. In our evaluation, we just set 𝑣 = 1/2 globally. Thus,
optimal MIS helps to reduce variance in many spots but introduces

zero-mean noise into umbras, which manifests as a sort of light

leaking (Fig. B.1a). We recommend use of our optimal MIS only if

reasonable estimates of 𝑣 are available, e.g. from a denoised previous

frame.

B.2 Proof of Unbiasedness
Our optimal MIS is a specialization of prior work [Kondapaneni

et al., 2019]. In principle, the corresponding proofs apply and show

that our method is unbiased as long as the visibility factor 𝑣 is inde-

pendent of the current samples. However, we discard samples below

the horizon, which could cause problems. Besides, the treatment of

division by zero makes it problematic to apply classic proofs [Veach

and Guibas, 1995].

Therefore, we now provide a concise proof that our optimal MIS

is unbiased. The contribution of a sample 𝜔 𝑗 from technique 𝑝 𝑗 is

𝑓 (𝜔 𝑗 )
𝑝 𝑗 (𝜔 𝑗 )

𝑤𝑜
𝑗 (𝜔 𝑗 ) = 𝑣𝑐 𝑗 +

1∑𝑁−1
𝑘=0

𝑝𝑘 (𝜔 𝑗 )

(
𝑓 (𝜔 𝑗 ) − 𝑣

𝑁−1∑︁
𝑘=0

𝑐𝑘𝑝𝑘 (𝜔 𝑗 )
)
.

The term

𝑓 (𝜔 𝑗 )∑𝑁−1
𝑘=0

𝑝𝑘 (𝜔 𝑗 )

matches MIS with the balance heuristic. Therefore, it is an unbiased

estimate on its own. If the overall estimate is unbiased, the remaining

terms

𝑣𝑐 𝑗 − 𝑣

∑𝑁−1
𝑘=0

𝑐𝑘𝑝𝑘 (𝜔 𝑗 )∑𝑁−1
𝑘=0

𝑝𝑘 (𝜔 𝑗 )
(B.2)

must have zero mean.

Let K ⊂ S2 be a subset of the unit sphere such that for all 𝜔 ∈ K
𝑁−1∑︁
𝑘=0

𝑝𝑘 (𝜔) > 0.

If we discard samples 𝜔 𝑗 that do not fall into the set K, the expecta-
tion of the terms in Equation (B.2) is

𝑁−1∑︁
𝑗=0

∫
K

(
𝑣𝑐 𝑗 − 𝑣

∑𝑁−1
𝑘=0

𝑐𝑘𝑝𝑘 (𝜔)∑𝑁−1
𝑘=0

𝑝𝑘 (𝜔)

)
𝑝 𝑗 (𝜔) d𝜔

=𝑣

∫
K

𝑁−1∑︁
𝑗=0

𝑐 𝑗𝑝 𝑗 (𝜔) −
∑𝑁−1
𝑘=0

𝑐𝑘𝑝𝑘 (𝜔)∑𝑁−1
𝑘=0

𝑝𝑘 (𝜔)

𝑁−1∑︁
𝑗=0

𝑝 𝑗 (𝜔) d𝜔

=0.

Thus, the expression has zero mean, no matter how we pick the

admissible set K because contributions cancel out in every single

point. If our estimate discards samples below the horizon, it is still

unbiased.

B.3 Clamped Optimal Multiple Importance Sampling
If no good estimates of the visibility factor 𝑣 are available, we need

a more robust alternative. Through Equation (B.1), we rewrite the

contribution of sample 𝜔 𝑗 as

𝑓 (𝜔 𝑗 )
𝑝 𝑗 (𝜔 𝑗 )

𝑤𝑜
𝑗 (𝜔 𝑗 ) = 𝑣𝑐 𝑗 +

∑𝑁−1
𝑘=0

𝑐𝑘𝑝𝑘 (𝜔 𝑗 )∑𝑁−1
𝑘=0

𝑝𝑘 (𝜔 𝑗 )
(𝑉 (𝜔 𝑗 ) − 𝑣).

Nowwe separate the contributions for visible samples, where𝑉 (𝜔 𝑗 ) =
1 and thus 𝑓 (𝜔 𝑗 ) ≠ 0, and occluded samples, where 𝑉 (𝜔 𝑗 ) = 0:

𝑓 (𝜔 𝑗 )
𝑝 𝑗 (𝜔 𝑗 )

𝑤𝑜
𝑗 (𝜔 𝑗 ) = 𝑓 (𝜔 𝑗 )

(
𝑣𝑐 𝑗∑𝑁−1

𝑘=0
𝑐𝑘𝑝𝑘 (𝜔 𝑗 )

+ 1 − 𝑣∑𝑁−1
𝑘=0

𝑝𝑘 (𝜔 𝑗 )

)
(B.3)

+ (1 −𝑉 (𝜔 𝑗 ))𝑣
(
𝑐 𝑗 −

∑𝑁−1
𝑘=0

𝑐𝑘𝑝𝑘 (𝜔 𝑗 )∑𝑁−1
𝑘=0

𝑝𝑘 (𝜔 𝑗 )

)
. (B.4)
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The contribution for visible samples in Equation (B.3) matches our

clamped optimal MIS. For 𝑣 = 0, we get the standard balance heuris-

tic. For 𝑣 = 1, we use the weighted balance heuristic, which we

designed to have zero variance in absence of occluders.

The contribution for occluded samples in Equation (B.4) is the

cause of our problems with variance in umbras. We take a pragmatic

approach and simply remove this zero mean contribution. Then we

are left with our clamped optimal MIS. The MIS weights still sum

to one such that the estimate remains unbiased.

Through the clamping, the heuristic is no longer optimal, even

under our strong assumptions. However, it blends between two

heuristics, which are provably optimal for 𝑣 → 0 or for fully lit

regions. The derivation via the visibility factor 𝑣 provides a useful

interpretation of the blending parameter. In practice, our clamped

optimal MIS yields convincing results with 𝑣 = 1/2 (Fig. B.1b). In
some spots, variance is slightly greater than with our optimal MIS

but variance in umbras is gone.

C SOLID ANGLE SAMPLING OF POLYGONS
In this section, we provide the missing bits to turn the approach for

solid angle sampling from the paper into a complete, efficient and

robust algorithm.

The paper claims

𝑟 =

(
𝐺0 cos

𝐴

2

−𝐺1 sin

𝐴

2

)
𝑣0 +𝐺2 sin

𝐴

2

𝑣2,

where

𝐺0 = | (𝑣0, 𝑣1, 𝑣2) |, 𝐺1 = 𝑣T
0
𝑣2 + 𝑣T

1
𝑣2, 𝐺2 = 1 + 𝑣T

0
𝑣1.

Proof. By definition

𝑟 = 𝑢 × (𝑣0 × 𝑣2)

= cos

𝐴

2

(𝑣0 × 𝑣1) × (𝑣0 × 𝑣2) − sin

𝐴

2

(𝑣0 + 𝑣1) × (𝑣0 × 𝑣2).

The triple product expansion implies

(𝑣0 + 𝑣1) × (𝑣0 × 𝑣2) = (𝑣0 + 𝑣1)T𝑣2𝑣0 − (𝑣0 + 𝑣1)T𝑣0𝑣2
= 𝐺1𝑣0 −𝐺2𝑣2,

(𝑣0 × 𝑣1) × (𝑣0 × 𝑣2) = (𝑣0 × 𝑣1)T𝑣2𝑣0 − (𝑣0 × 𝑣1)T𝑣0𝑣2
= 𝐺0𝑣0.

Thus,

𝑟 = cos

𝐴

2

𝐺0𝑣0 − sin

𝐴

2

𝐺1𝑣0 + sin

𝐴

2

𝐺2𝑣2.

□

Once we have split the triangle 𝑣0, 𝑣1, 𝑣2 with a new edge connect-

ing 𝑣1, 𝑣
′
2
, we need to sample this edge. Our samples are generated

radially around 𝑣1. Thus, this problem has a lot in common with

solid angle sampling of the unit sphere [Pharr et al., 2016, chapter

13.6.1]. Our method takes the same approach as Arvo’s [1995] but

we employ minor optimizations.

The dot product of the sampled direction 𝜔𝑖 ∈ S2 with 𝑣1 should

be

𝑠 := (1 − 𝜉1) + 𝜉1𝑣
T
1
𝑣 ′
2
.

Algorithm 5 sample_solid_angle_triangle
Input: Normalized direction vectors to vertices 𝑣0, 𝑣1, 𝑣2 ∈ S2 and
uniform random numbers 𝜉0, 𝜉1 ∈ [0, 1).
Output: The sampled direction𝜔𝑖 ∈ S2 and its density with respect

to solid angle measure.

𝐺0 := | | (𝑣0, 𝑣1, 𝑣2) | |, 𝐺1 := 𝑣T
0
𝑣2 + 𝑣T

1
𝑣2, 𝐺2 := 1 + 𝑣T

0
𝑣1

𝐴Δ := 2 atan2

(
𝐺0

𝐺2 +𝐺1

)
, 𝐴 := 𝜉0𝐴Δ

𝑟 :=

(
𝐺0 cos

𝐴

2

−𝐺1 sin

𝐴

2

)
𝑣0 +𝐺2 sin

𝐴

2

𝑣2

𝑣 ′
2
:= −𝑣0 + 2

𝑣T
0
𝑟

∥𝑟 ∥2
𝑟

𝑠 ′
2
:= 𝑣T

1
𝑣 ′
2
, 𝑠 := (1 − 𝜉1) + 𝜉1𝑠

′
2
, 𝑡 ′ :=

√︄
1 − 𝑠2

1 − 𝑠 ′2
2

𝜔𝑖 := (𝑠 − 𝑡 ′𝑠 ′
2
)𝑣1 + 𝑡 ′𝑣 ′

2

Return 𝜔𝑖 , 𝐴
−1
Δ

And of course, it must be located in the plane of 𝑣1 and 𝑣 ′
2
. Arvo

projects 𝑣 ′
2
onto the plane orthogonal to 𝑣1 and normalizes via

𝑣⊥ :=
𝑣 ′
2
− 𝑣1𝑣

T
1
𝑣 ′
2

∥𝑣 ′
2
− 𝑣1𝑣

T
1
𝑣 ′
2
∥
.

Then the sampled direction is

𝜔𝑖 = 𝑠𝑣1 +
√︁
1 − 𝑠2𝑣⊥.

Our first optimization exploits

∥𝑣 ′
2
− 𝑣1𝑣

T
1
𝑣 ′
2
∥2 = ∥𝑣 ′

2
∥2 − 2(𝑣T

1
𝑣 ′
2
)2 + ∥𝑣1𝑣T1 𝑣

′
2
∥2

= 1 − (𝑣T
1
𝑣 ′
2
)2.

For the second optimization, we defer addition of vectors:

𝜔𝑖 = 𝑠𝑣1 +
√︄

1 − 𝑠2

1 − (𝑣T
1
𝑣 ′
2
)2
(𝑣 ′
2
− 𝑣1𝑣

T
1
𝑣 ′
2
)

=

(
𝑠 − 𝑣T

1
𝑣 ′
2

√︄
1 − 𝑠2

1 − (𝑣T
1
𝑣 ′
2
)2

)
𝑣1 +

√︄
1 − 𝑠2

1 − (𝑣T
1
𝑣 ′
2
)2
𝑣 ′
2
.

Eliminating common subexpressions then gives Algorithm 5.

Note that Algorithm 5 sets 𝐺0 to the absolute value of the de-

terminant, contrary to our previous definitions. van Oosterom and

Strackee’s formula [1983] for the solid angle of a triangle is designed

to give a negative sign when this determinant is negative. By taking

the absolute value of the determinant, we effectively also take the

absolute value of the solid angle. We observe that

−𝑟 =
(
−𝐺0 cos

(
−𝐴
2

)
−𝐺1 sin

(
−𝐴
2

))
𝑣0 +𝐺2 sin

(
−𝐴
2

)
𝑣2.

Thus, the only thing that changes about 𝑟 is the sign. Then the

constructed vertex

𝑣 ′
2
= −𝑣0 + 2

𝑣T
0
𝑟

∥𝑟 ∥2
𝑟 = −𝑣0 + 2

𝑣T
0
(−𝑟 )

∥ − 𝑟 ∥2
(−𝑟 )
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does not change at all. We get the same result but do not need to

bother with negative signs in several spots, e.g. in the arctangent.

When Algorithm 5 is implemented naively, small triangles will

lead to numerical noise. We traced this noise back to cancellations

in the 3 × 3 determinant computation with the Laplace expansion.

To overcome it, we construct a single Householder reflection from

𝑣1 ∈ S2. Let 𝜎 := −1 if 𝑣1,x > 0 and 𝜎 := 1 otherwise. Let 𝑒0 :=

(1, 0, 0)T. The Householder reflection is given by the vector

ℎ :=
𝑣1 − 𝜎𝑒0

∥𝑣1 − 𝜎𝑒0∥
=

𝑣1 − 𝜎𝑒0√︁
2( |𝑣1,x | + 1)

.

It mirrors 𝑣1 onto 𝜎𝑒0. Then

|𝐺0 | = | | (𝑣0, 𝑣1, 𝑣2) | | = | | (𝐼 − 2ℎℎT) (𝑣0, 𝑣1, 𝑣2) | |

= | | (𝑣0 − 2ℎ(ℎT𝑣0), 𝑒0, 𝑣2 − 2ℎ(ℎT𝑣2)) | |
Since one column is 𝑒0, only a 2 × 2 determinant remains to be com-

puted, which is far more stable. Our code exploits that 𝑣T
1
𝑣0 and 𝑣

T
2
𝑣0

are already available to optimize further. In the end, this formulation

is only marginally more costly than the Laplace expansion.

In practice, we split Algorithm 5 into a part that is executed once

per triangle and another part that is executed once per sample.

Besides, we support complete triangle fans.
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