BRDF Importance Sampling for Linear Lights

Christoph Peters Karlsruhe Institute of Technology High-Performance Graphics 2021 (CGF) 2021-07-07

Resident Evil 7 (© Capcom)

Linear light := infinitesimally thin cylinder

Linear light := infinitesimally thin cylinder

$R \rightarrow 0$

BRDF importance sampling for cylindrical lights

Area sampling

Area sampling

Area sampling

Result at 1 sample per pixel

Area

Solid angle sampling

$$L_o(\omega_o) = \int_{\Omega} L_i(\omega_i) f_r(\omega_i, \omega_o) \, n \cdot \omega_i \, \mathrm{d}\omega_i$$

$$p(\omega_i) \propto L_e(\omega_i)$$

Results at 1 sample per pixel

Projected solid angle sampling (ours)

$$L_o(\omega_o) = \int_{\Omega} L_i(\omega_i) f_r(\omega_i, \omega_o) \, n \cdot \omega_i \, \mathrm{d}\omega_i$$
$$p(\omega_i) \propto \overline{L_e(\omega_i) \, n \cdot \omega_i}$$

 \boldsymbol{n}

at the set

Results at 1 sample per pixel

Projected solid angle sampling [Li et al. 2018]


```
for (uint i = 0; i != 20; ++i) {
    bool no_bisection = (current >= left && current <= right);
    current = no_bisection ? current : (0.5f * (left + right));
    float error = get_line_sampling_cdf_li(line, current) - random_number;
    if (abs(error) < 1.0e-5f || i == 19) break;
    left = (error > 0.0f) ? left : current;
    right = (error > 0.0f) ? current : right;
    float derivative = get_line_sampling_pdf_li(line, current);
    current -= error / derivative;
```


}

$$\Omega_R \coloneqq 2\varphi_R \int_{l_{0,s}}^{l_{1,s}} 1 \,\mathrm{d}\omega_s$$

$$F_{n_s,\,n_t}(\omega_s) \coloneqq 2 \int_0^{\omega_s} n_s \omega_s' + n_t \sqrt{1 - \omega_s'^2} \,\mathrm{d}\omega_s'$$

$$\begin{split} F_{n_s, n_t}(\omega_s) &\coloneqq 2 \int_0^{\omega_s} n_s \omega_s' + n_t \sqrt{1 - \omega_s'^2} \, \mathrm{d}\omega_s' \\ &= n_s \omega_s^2 + n_t (\sqrt{1 - \omega_s^2} \, \omega_s + \arcsin \omega_s) \end{split}$$

$$F_{n_s, n_t}(\omega_s) \coloneqq 2 \int_0^{\omega_s} n_s \omega'_s + n_t \sqrt{1 - \omega'_s^2} \, \mathrm{d}\omega'_s$$

$$= n_s \omega_s^2 + n_t (\sqrt{1 - \omega_s^2} \, \omega_s + \arcsin \, \omega_s)$$

$$\frac{\pi}{2} \left[-F_{n_s, n_t} \right]_{-\frac{\pi}{2} - 1.0 - 0.5 - 0.0 - 0.5 - 1.0}$$

$$\begin{split} F_{n_s,n_t}(\omega_s) &\coloneqq 2 \int_0^{\omega_s} n_s \omega_s' + n_t \sqrt{1 - \omega_s'^2} \, \mathrm{d}\omega_s' \\ &= n_s \omega_s^2 + n_t (\sqrt{1 - \omega_s^2} \, \omega_s + \arcsin \omega_s) \end{split}$$

$$\begin{split} F_{n_s,n_t}(\omega_s) &\coloneqq 2 \int_0^{\omega_s} n_s \omega_s' + n_t \sqrt{1 - \omega_s'^2} \, \mathrm{d}\omega_s' \\ &= n_s \omega_s^2 + n_t (\sqrt{1 - \omega_s^2} \, \omega_s + \arcsin \omega_s) \end{split}$$

$$G_{n_s, n_t}(\alpha) \coloneqq F_{n_s, n_t}(\sin \alpha) = n_s \sin^2 \alpha + n_t (\cos \alpha \sin \alpha + \alpha)$$

$$G_{n_s, n_t}(\alpha) \coloneqq F_{n_s, n_t}(\sin \alpha) = n_s \sin^2 \alpha + n_t (\cos \alpha \sin \alpha + \alpha)$$

$$G_{n_s, n_t}(\alpha) \coloneqq F_{n_s, n_t}(\sin \alpha) = n_s \sin^2 \alpha + n_t (\cos \alpha \sin \alpha + \alpha)$$

Error analysis

Fix iteration count to 2

Worst case error in ξ : $1.6 \cdot 10^{-5}$

Error analysis

Fix iteration count to 2

Worst case error in ξ : $1.6 \cdot 10^{-5}$

 \rightarrow unbiased

Newton's method

$$G_{n_s, n_t}(\alpha) \coloneqq F_{n_s, n_t}(\sin \alpha) = n_s \sin^2 \alpha + n_t (\cos \alpha \sin \alpha + \alpha)$$

Diffuse and specular shading (1 spp)

Projected solid angle sampling

LTC importance sampling

$$L_o(\omega_o) = \int_{\Omega} L_i(\omega_i) f_r(\omega_i, \omega_o) \, n \cdot \omega_i \, \mathrm{d}\omega_i$$
$$p(\omega_i) \propto \overline{L_e(\omega_i) f_r(\omega_i, \omega_o) \, n \cdot \omega_i}$$

Linearly transformed cosines [Heitz et al. 2016]

cosine distribution

Linearly transformed cosines [Heitz et al. 2016]

linearly transformed cosine distribution

Diffuse and specular shading (2 spp)

MIS: LTC + projected solid angle sampling

Timings (RTX 2080 Ti, 1920×1080, 1 spp)

Timings (RTX 2080 Ti, 1920×1080, 128 spp)

Linear lights are cheap

Linear lights are cheap

Blue noise works great

Linear lights are cheap

Blue noise works great

Newton is bad for sampling

Linear lights are cheap

Blue noise works great

Newton is bad for sampling

Put it into your renderer now

Code at https://momentsingraphics.de/HPG2021.html

Linear lights are cheap

Blue noise works great

Newton is bad for sampling

Put it into your renderer now

Code at https://momentsingraphics.de/HPG2021.html

Thanks!

Bonus: Stratification

Independent blue noise

Jittered uniform blue noise

