
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Analysis of Acceleration Structure Parameters
and Hybrid Autotuning for Ray Tracing
Killian Herveau, Philip Pfaffe, Martin Tillmann, Walter F. Tichy, Carsten Dachsbacher

(Invited Paper)

Abstract—Finding optimal parameters for acceleration structures for raytracing is key to improved performance. Previous research has
shown that a speedup of over 10% of rendering time is possible. Some parameters are interdependent which complicates the process
of finding an optimal configuration. It is hence interesting to find them efficiently. Autotuning is an automatic optimization scheme able to
search for optimal configurations and has been applied successfully to kD-trees in the past, which we apply today on BVHs.

The more parameters to optimize, the more difficult it is to find optimal solutions. In this paper, we analyze in detail the behavior
of the parameters and their impact on acceleration structure building and rendering time. We show the interdependence and context
sensitivity (i.e., scene, viewpoint) of the parameters. Based on the use case, this allows to target only crucial parameters.

Convergence speed towards an optimal configuration is essential. To find better parameters, the autotuner needs to build the
acceleration structure over and over, changing parameters every time. We introduce a hybrid model-based prediction and online
autotuning method to address this issue. The prediction model allows for both instantaneous near-optimal configurations when inputs
are known or similar, and efficient search of the configuration space when inputs are completely new.

Online autotuning outperforms configurations recommended in literature by up to 11% median. The prediction model achieves 95%
of the maximum speedup of the autotuner while reducing 90% of its overhead. Thus, hybrid online autonuning enables always-on
tuning in ray tracing.

F

1 INTRODUCTION

P ERFORMANCE and image quality are the decisive met-
rics of ray tracing. In its widespread application in

movie production, architecture, or starting in video games,
its users are often forced to prioritize one over the other.
Advances in both hardware and software however seek to
accelerate the rendering performance while achieving ever
better quality and fidelity. Parallelization and specialized
hardware features such as NVIDIA’s RTX technology [1]
open new ways to accelerate ray tracing.

Acceleration structures such as Bounding Volume Hier-
archies (BVH) [2] are always necessary and heavily opti-
mized in many renderers. The quality of acceleration struc-
tures is crucial and yet there is still untapped potential even
in state-of-the-art acceleration structures. The issue lies in
the configuration of these structures. The default configura-
tion can be enough when ray tracing is a small subset of the
end application, where optimization would not be worth
the cost. On the other hand, when a project relies heavily
on ray tracing, the default is almost always suboptimal [3].
The recommended settings are static, based on experiences
or experiments on specific hardware and specific inputs.
In specific contexts, the configuration is likely to be near
optimal, but we cannot expect it to generalize to the variety
of hardware or inputs that ray tracing applications must
deal with.

As an example, the SAH metric, used to measure the
tree quality, introduces two parameters: intersection cost
and traversal cost. The values recommended in the literature
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are, as we will see, not optimal. Other parameters such as
the tree leaf size or its depth make the optimization more
complex and error prone. A scene containing large and
small triangles would likely benefit from triangle splitting
[4] to prevent overly large nodes. These examples illustrate
that dynamically selecting configurations according to the
context is necessary to obtain the best performance.

Human decision is still involved in today’s pipelines in
the choice of many parameters, which makes the process
unreliable especially with changing context. Autotuning is
one method to find the best parameters. The underlying
idea is simple: sample configurations one after the other
using an intelligent search algorithm. During runtime, this
approach allows the configuration to adapt to the context.
The algorithm simply restarts upon context change.

This mechanism presents certain caveats. Autotuning
uses heuristic search algorithms on a parameter space that
is too large to be entirely explored. Consequently, the con-
figurations found are only locally (in parameter space) op-
timal. The second caveat is the overhead. Some autotuning
methods have a notion of convergence, where the search
algorithm eventually produces a single final point. Others
simply search until a time or iteration budget is exhausted.
In either case, the search will inevitably sample configura-
tions whose performance is (substantially) worse than both
the default and the global optimum. This opportunity cost
accumulates during tuning and can introduce a significant
overhead. When used in a production environment, users
may notice the decreased performance and varying frame
rate.

Contributions. We propose a study of the parameter
space of the BVH acceleration structure in a ray tracing con-
text. Using 800 000 random configuration samples, we ana-
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lyze the interconnections between the different parameters
and their behavior for a variety of inputs. This analysis can
provide relevant insight regarding acceleration structures
independently of autotuning. Yet, it also helps to reduce
configuration space by constraining the range of param-
eters, or selecting only the most crucial ones, improving
reliability of our hybrid method.

We propose the Hybrid Online Autotuning technique
to address the overhead of autotuning. It combines clas-
sical search-based tuning with online learning. The search
explores the configuration space and trains a predictor si-
multaneously. The predictor maps from inputs to configura-
tions. Inputs are represented through a set of metrics called
indicators. Example indicators are the number of triangles,
total surface area or camera position. Upon a change in the
input, the hybrid tuning method decides whether to search
the configuration space or to exploit the predictor. We show
that classical search achieves a performance speedup of up
to 11% median over the recommended default configura-
tion. The predictor trained during the search reduces the
overhead of the search by almost 90%. It, alone, achieves
95% of the performance of the configuration found by
searching.

2 RELATED WORK

Several works established the link between scene properties
and acceleration structure quality. Such properties can be
the distribution and overlap of triangles in a scene [5]
or visibility [6]. Dammertz et al. [7] evaluated the impact
of the number of triangles per leaf node of several BVH
implementations and found substantial variations.

Recent work focuses on an incremental or iterative con-
struction process. This process involves quickly building a
low-quality data structure and then refining it over multiple
iterations. Bittner et al. [8] presented an incremental data
structure where the number of modified nodes and the
fraction of nodes to be updated each iteration are free
parameters. Wodniok et al. [9] hand pick several parameter
values for their BVH’s partitioning strategy. More recently,
Meister et al. [10] expose a configurable parameter for the
density of search nodes in their reinsertion strategy. These
recent examples show that the work on acceleration struc-
tures is ongoing. Nevertheless, new approaches still expose
performance-critical parameters for which a configuration
must be selected.

In the following sections we present approaches aiming
at optimizing ray tracing and acceleration structures auto-
matically for given inputs or hardware. We then discuss
recent works in the wider field of autotuning including
context-sensitive tuning. Finally, we explore some applica-
tions related to the exploration of the parameter space in
visualization.

2.1 Optimizing Ray Tracing and Acceleration Structure
Parameters
Although the importance of ray tracing and acceleration
structure parameters is known, only few works aim at
automating the search for configurations.

Ganestam et al. [11] employ a model-based online auto-
tuner to optimize GPU ray tracing. They measure how the

acceleration structure is queried by evaluating the number
of cache hits and the number of hits per BVH. To ensure
a constant frame rate, image quality is adapted when the
complexity of the scene increases. In their work, the quality
is variable while our approach aims at keeping a constant
quality and speeding up rendering.

Targeting the GPU, Weber et al. [12] employ autotuning
to optimize the memory layout of the binning of kD-trees.
They build a decision tree based on empirical measurements
that halves construction time. The approach is orthogonal
to ours. It could, however, be used in conjunction, as the
authors only modify the memory layout of the acceleration
structure and none of its exposed parameters.

Several works demonstrated the benefits of machine
learning for rendering. Vorba et al. [13] and later Reibold
et al. [14] used Gaussian Mixture Models (GMM) to repre-
sent sampling distributions. They show improvements in
the convergence rate for path tracing, bidirectional path
tracing, and Metropolis light transport. Similarly, Dahm et
al. [15] improved the sampling scheme by using Q-learning,
a model-free Reinforcement Learning (RL) technique. They
perform training during rendering and learn to find light
source paths. They reduce the number of zero contribution
paths and reduce the average path length. Our approach
employs a concept related to GMMs, but uses it to optimize
acceleration structure parameters without modifying the
underlying image synthesis algorithm.

Search-based online tuning has been used in a ray trac-
ing application by Tillmann et al. [3]. They build a kD-
tree by optimizing the splitting criteria, obtaining up to
1.96× speedup over the standard SAH kD-tree. However,
they do not investigate techniques to reduce the autotuning
overhead.

2.2 Parameterization
The rise of machine learning methods requiring optimiza-
tion renewed the interest in visualization methods to as-
sist users in finding optimal configurations. Human-in-the-
loop methods are still an active area of research. Recently,
Liu et al. [16], [17] created interactive visualization recom-
mendations that guide human-in-the-loop parameterisation.
Many works deal with hyperparameterisation, especially
for machine learning techniques sensitive to initializations.
Hence, Angelos et al. [18] create a visualization tool for
evolutionary optimization, guiding the user to find the
best starting parameters for the model. HyperTuner [19]
and more recently HyperTendril [20] help encapsulate the
automatic optimization of hyperparameters and let the
user guide the optimization by choosing initial parameters.
These approaches are difficult to apply in ray tracing. They
can be valuable for searching one optimal configuration,
but will not adapt continuously as the scene changes, and
have to be used offline. Our work focuses on automatic
and continuous iterations, applying the optimization in an
online context.

2.3 Input-Sensitive Autotuning
Autotuning as a tool to optimize program parameters
automatically has been around for two decades. It was
made popular by the ATLAS library [21], which optimizes
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BLAS primitives during installations using training exam-
ples shipped with the software. Currently, ActiveHarmony
[22] and OpenTuner [23] are among the most widely used
general purpose autotuning tools. Both use a heuristic
search to navigate the configuration search space and are
oblivious to changing program inputs. ActiveHarmony uses
the Nelder-Mead algorithm, whereas OpenTuner employs
an ensemble of different search methods concurrently.

Active learning refers to autotuning approaches that build
and refine prediction models online. The basic principle of
active learning is to use the prediction model itself to recom-
mend samples to refine the model [24]. A recent occurrence
of this method was presented by Balaprakash et al. [25].
They build a performance model using dynamic trees. As
part of a compiler, the model is applied to loop optimization
of numerical kernels and to predict the performance of MPI
codes.

Bao et al. [26] apply model-based tuning to minimize
energy consumption by selecting an optimal CPU frequency
at program runtime. They benchmark the system on indi-
vidual relevant features, from which they build a decision
tree.

These related works build their models offline or online.
In the former case, a-priori training data is required. In
the latter case, the model is used to select training data.
The performance of the configurations sampled while a
model is still learning is subpar. Our approach provides
a target-oriented way to train the model and to optimize
performance even during training.

3 RAY TRACING

In this section we present the design and implementation of
our parallel renderer, its acceleration structure (AS), and its
integration with the autotuner. We also discuss the various
tuning parameters exposed by the AS and the indicators the
renderer reports to the tuner.

3.1 Renderer
Ray tracing [27] and especially path tracing are today a
standard of the movie industry [28], [29]. It is increasingly
used for interactive applications [30] to help rasterization
with global illumination [31]. Interactive ray tracing is also
available on CPU, e.g. with OSPRay [32]. In real-time appli-
cations, it is common to use one sample per pixel (spp) and
then process the image with denoising techniques [33], [34],
[35].

Embree [36] is Intel’s open-source implementation of
state-of-the-art BVHs, and is representative of optimized
BVH implementations. As such, we use it for BVH build-
ing and traversal. Our findings are mostly renderer-
independent and can be reproduced with an Embree imple-
mentation. This allows us to use our own renderer [37]. To
stay within real time constraints, we limit the path length
to three bounces. A shorter path length is detrimental to
the quality of the measurements since it overemphasizes
the importance of primary rays. Primary rays are coherent,
subsequent rays are not. Coherent rays result in similar
accesses and traversal orders of the acceleration structures.
While it is possible to optimize for coherent rays, this is not
the purpose of our study.

TABLE 1
Embree parameters. Branching Factor has 2, 4 and 8 as possible

values and is hardware dependent because traversal can be optimized
by AVX. intcost and travcost are SAH-related parameters and are

real numbers between 0 and 10.

Name Default
Value Description

quality 2 1: Morton codes
2: binned SAH

3: primitive split
branchingFactor 2 Max # of child nodes

maxDepth 32 Max depth of BVH tree
sahBlockSize 1 Optimization AVX/SSE
minLeafSize 1 Min # triangles per leaf
maxLeafSize 32 Max # triangles per leaf

travcost 1 Cost node traversal
intcost 1 Cost triangle intersection
static false Optimize for static scene

compact false Optimize memory usage
robust false Robust intersection

3.2 Parameters and Indicators
In this section we discuss the choice of the acceleration struc-
ture. We further detail its parameters and scene indicators
which represent context specific information such as camera
position or triangle count.

Embree targets high performance and provides a large
set of parameters to tailor the BVH to any need. It includes
algorithms for low, medium, and high quality BVHs. Em-
bree exposes eleven tunable parameters which we summa-
rize in Table 1. These parameters affect the construction
of the BVH, and they are interdependent. For instance,
reducing the number of triangles per leaf (min/max leaf
size) is linked to the maximum depth (maxdepth). The
tree will expand significantly more if the leaf size is small.
The quality parameter selects the subdivision algorithm.
It can either be Morton codes, binned SAH or binned SAH
with primitive splitting, which allows for tighter bounding
boxes. For Morton codes the sahBlockSize, travcost
and intcost parameters are ignored.

The tuner modifies these eleven parameters to optimize
a metric based on rendering and build time. For our analysis
we further require a starting configuration. As we want
to compare to expert knowledge, we use the configuration
recommended by Embree.

We compute 17 indicators as listed in Table 2 to describe
the input. We roughly estimate the complexity of the scene
with the following indicators: the number of triangles, the
number of meshes (triangularly tessellated surfaces) and the
number of light sources.

Scenes with the same number of triangles can have dif-
ferent optimal configurations. Triangle sizes vary depending
on the meshes in the scene, as walls for instance typically
have large triangles while detailed objects have smaller
ones. In addition, triangle sizes can vary within a mesh
and BVHs are susceptible to this variation. To take this into
account, we compute the variance of the triangle sizes for
each mesh and name this set VarTriSize. As we cannot afford
to have one indicator per mesh (more indicators hinder
model learning), we compute the average and variance of
VarTriSize. Additionally, we compute the average area per
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TABLE 2
Indicators. The camera uses the target position to extract the
orientation relative to an up vector (0, 1, 0). VarTriSize is a list

containing the variance of triangle sizes for each mesh.

Name Range

Number of meshes 0 to 105

Number of triangles 0 to 107

Number of lights 0 to 105

Camera Position −10 to 10 (x,y and z)
Target Position −10 to 10 (x,y and z)

Vertical FoV 0 to 180
Diffuse Ratio 0 to 1

Extent 0 to 105

Total area 0 to 10
Area of lights 0 to 10

Area per Mesh 0 to 10
Mean of VarTriSize 0 to 10−2

Variance of VarTriSize 0 to 10−2

Register Tuning
Parameters

Set Parameters
&

Start measurement

Build BVH

Query BVH

Stop
Measurement

Advance Camera

Compute Indicators
on Input

iterate until desired
quality is reachedfor each

camera position

for each
ray

Tuning Loop

compute metric from measurement

Rendering

Fig. 1. The tuning scenario. Integration of the tuner in the ray tracing
workflow.

mesh and the total area of the scene. For scaling reasons,
we divide any surface-related value by the square of the
diagonal of the scene’s bounding box. This normalization is
not accurate but sufficient for our needs. The bounding box
diagonal is also used as an indicator for the scene’s extent.
The diffuse ratio indicator is a measure of the average
specularity of the surfaces using material properties, hinting
on potentially more coherent rays. We also added camera
parameters: position, orientation, and the vertical field of
view.

3.3 Tuner integration
Integrating any existing tuner in the ray tracing code is
straightforward. It is a simple loop in which the tuner
chooses parameters for the acceleration structure based on
the feedback computed with rendering time and building
time. Note that the classic tuning loop and the hybrid tuning
loop differ only by the use of indicators. Figure 1 provides
an overview of the tuning scenario. Before the loop, we

measure the indicators and register the parameters in the
autotuner. Every frame follows these four steps:

• Recording of the indicators,
• AS building with current parameters
• Rendering
• Recording of the optimization metrics as feedback,
• Updating current parameters with the values computed

by the autotuner
The optimization metric is a lever to affect the tuner

behavior, as shown on sponza in Figure 2. We first observe
the initial performance degradation caused by rebuilding
the BVH with subpar configurations during the first few
iterations. After about 60 iterations the runtime converges
to a better result than the recommended configuration.

Additionally, we see how the choice of the optimization
metric affects the configuration found, and hence perfor-
mance. When tuning rendering time, the tuning config-
uration outperforms the default one by 18% as shown
in the left-hand plot. Considering the total time on the
other hand, the same tuning result shown in the right-hand
plot degrades performance by 14%, while the configuration
found by optimizing for total time performs 4% better than
recommended configuration. However, long convergence
and wildly varying render time are still a major problem
for online-autotuning.

This exploration data - the indicators, parameters, and
corresponding performance - is learned by our hybrid tuner
to compute a model giving us efficient configurations that
we can then query at runtime, which we call exploitation.
During exploitation, no search is performed. Instead, the
learned model predicts a configuration based on the current
indicators.

4 PARAMETER ANALYSIS

The previously described parameters each have their in-
fluence on the rendering time or the acceleration structure
build time. This section will first present each parameter’s
influence on the timings. We then describe the interaction
between these parameters using the sponza scene as a
support for the analysis. We finally compare the behavior
of the building algorithms and especially how it handles
more complex animated geometry setups.

Note that the analysis has been conducted on all scenes,
see Figure 3, and the full results are presented in the
supplemental. We provide the full data as well as the
corresponding R scripts to generate graphs.

4.1 Correlation of random configurations

To explore the parameter space, we use a correlation matrix
as a guide for our analysis, computed between BVH param-
eters and timings, the one for the sponza scene is shown
in Figure 4. This matrix shows how the change in one pa-
rameter affects timings. Because we use random sampling,
all parameters show 0 correlation with other parameters.
Full correlation matrices for other scenes are available in
the supplemental. The parameters quality and compact
play an important role in the behavior of the acceleration
structure according to their 57% and −58% of correlation
with rendering time. We note that min/maxLeafSize have
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Fig. 3. Image of the scenes: fireplace room, living room, bmv,
sponza, buddha, gallery, and vokselia
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decent impact with 29% of correlation with rendering time.
We will see that these parameters have a non-negligible
effect on the AS build time as well. sahBlockSize and
intcost/travcost show small correlation with the ren-
dering and AS build time, but we will show that the low
correlation reflects their complex interaction.

The compact parameter entirely disables all the others.
It is a specialized implementation optimized for memory
consumption. As this is not the focus of the paper, we
assume compact being disabled in the following.

The quality parameter enables or disables triangle
splitting. It impacts AS build time and rendering in both
value and variance. Triangle splitting creates a better AS,
improving rendering time at the cost of build time. The
efficiency of this feature depends on the application-specific
rendering workload. To illustrate this, we compare two
common screen resolutions on the sponza scene. The dif-
ference of rendering load between 480p and 720p is 432000
pixels. The total time speedup achieved by choosing to split
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Fig. 5. Min Max Leaf Size. Performance distribution with splitting dis-
abled. We observe a similar trend in every scene: small leaf size is
preferable for rendering, big leaf size for AS build time.

triangles is −5.8% for 480p and +8% for 720p. It scales very
rapidly as the rendering load increases.

Constraining the number of primitives per leaves in
the BVH tree is possible using min-maxLeafSize. It im-
pacts mostly rendering time, but its effect on AS build
time in the case of complex scenes stays relevant. Because
triangle splitting disables control over minLeafSize and
maxLeafSize, it is disabled to study these two param-
eters. Figure 5 shows the distribution of average render-
ing time and average build time, with minLeafSize and
maxLeafSize in the horizontal and vertical axis. The trian-
gular shape results from minLeafSize < maxLeafSize.
AS build time and rendering time present a clear trade-
off: build time is faster with large leaves while rendering
time is faster with small leaves. The optimal point is once
again input dependent. Because the tradeoff is very clear
despite the data being an average over many different
configurations, we deduce that these two parameters offer
consistent control in every circumstance.

The sahBlockSize parameter is related to hardware
vectorization (SSE, AVX) optimizations. The API of Embree
provides a range between 1 and 32, and we treat it as such
even though only steps of powers of 2 impact the perfor-
mance significantly. The parameter value matching the CPU
specification, 4 in our case, tends to improve rendering time;
and larger values tend to improve build time.

The SAH metric computation requires the weights de-
fined by intcost/travcost. Their absolute correlation
(between each other) is very low due to the need to find
both parameters together in quite a small range of values to
obtain a good configuration. They are interesting for tuning,
as we will see in the next section.
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Fig. 6. Optimization Process and Performance Left : Tuner iterations.
Right : Evolution of the performance across iterations for multiple runs.
The tuner converged indeed toward the expected values from Figure 5.
Looking at the area of the position of left side blue dots in the right plot
gives the converged performance.

4.2 Partial Tuning
Parameters can have non-trivial inter-relationships difficult
to grasp using random sampling, even with high sample
counts. By tuning a small subset of parameters only, we can
better understand their coupling. In this section, we study
the interplay of the following parameters:

• minLeafSize with maxLeafSize
• intcost with travcost
• intcost with travcost and sahBlockSize.

These parameters have been chosen because of their higher
influence on performance and high degree of interdepen-
dency (see Figure 4). For this experiment, we allow the tuner
to only tune the said parameters, the others are fixed to their
default value.

Tuning only min-maxLeafSize improves rendering
time up to 8% compared to the recommended configuration.
The left side of Figure 6 shows the convergence process
toward a small subset of points, indicating consistent be-
havior, and on the right the associated performance. For
sponza, the optimum leaf size is 4 to 7, while it is between
25 and 30 for vokselia. The tuner appears to indeed
converge toward the values found in Figure 5.

The SAH metric uses both intcost/travcost. Fig-
ure 7 shows the same data as previously, but with
intcost/travcost instead of min-maxLeafSize. High
traversal cost and small intersection cost seem to be favored.
A high traversal cost makes the builder create shallow
trees, which improves AS build performance but decreases
rendering performance. The visible presence of diagonals
shows the optimization path taken by the Nelder-Mead
algorithm used by the tuner. Here, sahBlockSize is still
set to 1. We will now see how this parameter changes the
distribution.

The modification of the vectorization parameter in-
fluences the optimum of some other parameters, mostly
the SAH costs. We study the triplet of parameters
intcost/travcost/sahBlockSize. Figure 8 represents
data the same way as the previous plots, but here
sahBlockSize is tuned as well. sahBlockSize is not rep-
resented because its converged value is always the hardware
optimum when the optimization metric is rendering time. It
only changes the distribution of the other parameters. The
same experiment yields different clusters of convergence for
each scene. The density of samples in the cluster regions is
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very high, indicating a quick convergence, but more spread-
out local optima. The scene vokselia shows more similar-
ities with the previous graph than the other scenes. It seems
more efficient for this scene to still construct a shallow tree.
The construction of shallow trees (with leaves containing
many primitives) is allowed by the default values of Em-
bree: minLeafSize = 1 and maxLeafSize = 32. If these
two values can change as well, the resulting performance
and convergence is expected to change.

Up until now, the scenes were tested as is. Adding
difficult geometry will challenge the building algorithm and
provide insights on dynamic effects and limits of the AS
itself.

4.3 Build time stability

The stability and reproducibility seemingly provided by
triangle splitting will be put in perspective in this section.
To expose the behavior of the building algorithm with
complicated cases, we use a rotating cylinder containing
long and thin triangles, intersecting the geometry of the
scene. The cylinder is half as long as the diagonal of the
scene. These triangles will put the building algorithm under
heavy load, allowing us to evaluate how it handles hard
cases. Figure 9 shows the performance during the rotation of
the cylinder. The confidence interval at 99.99% is displayed
as a greyed area around the average sampled value.

All scenes show improved rendering performance with
splitting, but a significantly worse build performance: more
than doubled for all scenes. The variability of the rendering
time — or the vertical spread — is also very high as shown



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

quality 1: SAH 2: SAH triangle splitTotal Time(ms)

500
600
700
800
900

0 2 4 6

vo
ks

el
ia

400

450

500

550

0 2 4 6

sp
on

za

250

275

300

0 2 4 6
angle (rad)

fir
ep

la
ce

Fig. 9. Evolution of performance depending on triangle splitting
along a rotation of the cylinder. Each graph is one of three scenarios:
when splitting is not worth it: vokselia, when it is: sponza, and when it
is about the same: fireplace_room. Note the difference in rendering
time variance in each scene and among scenes.

particularly clearly by sponza where rendering time spans
almost 175ms which is 50% of variation around the average
value.

vokselia’s build time in Figure 9 increases of 26%:
from 560ms without splitting to 710ms with triangle split-
ting. The cylinder starts intersecting a significant portion
of the underground geometry, causing a large amount of
triangle splits, which is made apparent by the sharp increase
in total time with triangle splits.

4.4 Observations
The analysis exposes certain behaviors of acceleration struc-
tures in general. This section summarizes the findings for
different use cases.

When only rendering time is important, triangle splitting
offers good performance and a more consistent average.
Triangle splitting is tempting but is to be used only if
the input is carefully controlled, without long, thin, and
intersecting triangles because the cost can ramp up very
quickly and not be amortized by the rendering.

When the build time is also important, disabling the tri-
angle splitting is a significantly more versatile setting. It al-
lows for fine adjustments on different trade-offs, i.e., smaller
leaf size tends to reduce rendering time; 4−10 seem optimal
in our test cases. To reduce build time, minLeafSize can be
increased. A value between 20 to 30 offers a good reduction
in build time.

Unsurprisingly, sahBlockSize will perform best for
rendering time at the corresponding hardware value. It is
2 for SSE, 4 for AVX2, 8 for AVX512, 32 for GPUs (warp
size). Taking larger values than the one of the hardware will
increase rendering time and decrease build time.

Thorough analysis of scenes is of course not common,
and dynamic scenes require even more care. In the next
sections, we expose how we create prediction models able
to find near optimal configuration even in dynamic context.

5 FROM ANALYSIS TO PRACTICAL

Using the insights of Section 4, we can refine the autotuning
process in several ways. We can set smaller intervals for
the values of each parameters. These intervals can depend

explore

exploit
configure

configure

feedback

report new program state

Search

Predictor

Database

Fig. 10. The hybrid online tuning workflow.

on the optimization target, i.e., rendering time, total time, or
other relevant metrics. Reducing the range of the parameters
allows a significant improvement of the worst configura-
tion sampled during optimization. The exact improvement
highly depends on the optimization method (for us: Nelder-
Mead). Since this is an interchangeable part of our method,
we refer to the literature on parameter sensitivity [38].
Another optimization is fixing certain parameters to values
close to optimal values. This is easier for parameters related
to hardware, such as sahBlockSize.

Applying the above suggestions helps in creating rele-
vant indicators. Indeed, less but carefully chosen parameters
imply a clearer relationship between them and indicators.
For our hybrid online autotuning method, we will only
restrict the parameters to algorithmically valid values and
will keep all parameters including the most irrelevant. In-
deed, these optimizations are not compulsory. We wish to
keep a more general approach since optimizations are use-
case specific. Our goal is to show that our method is robust
enough to still produce encouraging results, and this shows
that there is much to be gained with more efforts towards
engineering indicators and reducing parameter space de-
pending on the use case.

6 HYBRID ONLINE AUTOTUNING

The main obstacle to practical deployments of machine-
learning or model-based methods is training. Pure offline
techniques require massive amounts of samples a-priori to
build the models. The quality of the models depends on
the representativeness of the samples. Online approaches,
on the other hand, learn from new data that is generated in
the deployment context. The main question becomes how
to construct the initial model. Starting with an imprecise
initial model means sub-optimal predictions and decreased
performance. While offline training is certainly viable to
seed an online approach, it still requires input samples,
which can be hard to obtain in particular given the hetero-
geneity of 3D scenes. As a compromise, we propose hybrid
online autotuning, combining classical search-based tuning
with model-based prediction. The high-level tuning process
is shown in Figure 10. The tuner observes the program
and the system state through the indicators. They serve
as an approximation of the program and system state in
the remainder of the paper. We therefore use the term
“state” to refer to the current indicator values. For every
change in state, the hybrid tuner chooses to either exploit
the model or to explore the configuration space. In either



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

mode, performance feedback from the application for every
sampled configuration is used to update the model. Ob-
served states, sampled configurations, and the performance
feedback can be stored in the tuning database to avoid
sampling the same state-configuration pair twice. Choosing
between exploration to gather new data and exploitation of
known information is a central operation in Reinforcement
Learning (RL) [39]. To implement the decision process, we
apply the ε-Greedy algorithm. The ε-Greedy algorithm is re-
markably simple: With a probability of ε, choose to explore,
otherwise greedily exploit.

A key difference between exploring and exploiting is
that exploitation is one-shot. For a new state, the autotuner
produces exactly one configuration which once applied is
kept until the next state change. Exploring on the other
hand samples multiple configurations per state. That con-
trast is important because for ray tracing, updating the
configuration incurs cost: Changing the BVH parameters
requires rebuilding the data structure, which is an expensive
operation. For exploration, we use a variant of the Nelder-
Mead simplex algorithm [40]. Our version is similar to that
of Chang [41], using Latin Hypercube sampling [42] as an
initialization method.

We investigate two different types of models for the
exploitation in this paper. The first one is a naive tabular
approach and the second is based on a generalized rein-
forcement learning method. Both approaches are described
in detail in the following two sections.

6.1 Nearest-Neighbor Prediction
The naive way to predict configurations is to record a
table of previous states, configurations, and the observed
runtime of those configurations. When the application en-
ters a known state, the best-known configuration can be
selected from the table. This solution is also quite limited:
the state space is practically unbounded and too large to
store let alone to explore it in its entirety. Even if it could
be stored, we must assume that most states would not be
in the table. Therefore, a successful predictor must be able
to service queries for unknown states. To realize such a
predictor on the tabular model, we use a nearest neighbor
approach: If the current state is unknown, respond with the
best configuration for the state that is closest regarding the
distance metric (Euclidean in our case) in the state space.

6.2 Prediction Through Function Approximation
Even when using nearest-neighbor predictions, achieving
high accuracy may require enormous tables, which are
expensive to store and query. Fortunately, that problem has
been investigated in the past in the field of Reinforcement
Learning. Generalized RL methods offer control (i.e., state-
sensitive decision making) for large, both discrete and con-
tinuous state spaces through function approximation [39].
A recent such algorithm is Greedy-GQ [43]. The algorithm
is an off-policy gradient-based temporal difference learning
method. It is relevant to our use-case because of a set of
interesting properties: Off-policy learning enables learning
from samples obtained using a different method than the
predictor. That allows us to learn from offline data (e.g.,
from past experiments or tuning searches) but also during

online search. Additionally, Greedy-GQ supports incremen-
tal online training and imposes no limits on the features we
can use to represent the model inputs. Features are high-
dimensional functions, in our case Gaussians, representing
how parameters and indicators relate with performance.
More features mean we can more finely describe this re-
lation, but we also risk overfitting. Both the memory and
runtime complexity of the Greedy-GQ algorithm are linear
in the number of features. The number of features is both
constant and much smaller than the cardinality of the search
space. Greedy-GQ is thus an improvement in terms of size
over the tabular approach.

At its core, Greedy-GQ manages the linear value func-
tion Qθ(s, a) = ~θ · ϕ(s, a) where ϕ(s, a) is a vector of real-
valued features, and ~θ are the coefficients to be learned.
This function associates a scalar value with every state s
and “action” a. Intuitively, this value estimates the benefit
(higher is better) of choosing the action a in state s. An
action corresponds to one of the configurations investigated
by the tuning search. We thus use the terms interchangeably
here. During exploitation, the predictor selects the action
that maximizes Qθ for the current state. When a state-
action pair st, at is evaluated in search mode, the coefficients
are updated based on the “reward” Rt+1 observed by the
application, which is the inverse of the runtime measure for
the configuration at.

The update equations for ~θ are controlled by three
hyper-parameters: α and β, which are learning rates, and
γ, which is a discount factor governing the influence of
expected future values. The latter parameter has a partic-
ularly interesting semantic in our use case. In the basic
RL framework, actions taken in a given state influence the
possible future states. However, in our application, state
changes are unaffected by the parameter configuration we
pick. This means that we can set γ to zero, creating an algo-
rithm that is sometimes called a “myopic” [39]. The update
rule in our implementation of Greedy-GQ thus becomes
~θt+1 = ~θt + α(Rt+1 − ~θt · ϕ(st, at))ϕ(st, at).

As features we use radial basis functions [44]. A ra-
dial basis function (RBF) has an N-dimensional Gaussian
ϕi(x) = exp(−ωi||x− ci||), where x = (s, a) is the concate-
nation of the state and action vectors. The RBF is centered at
ci with a width determined by ωi. The hyper-parameters of
our RBF model are the number of features and each feature’s
center and width. Based on preliminary experiments we
chose 3.5 times the number of parameters and indicators
as feature count, which results in 100 features. The widths
are set to a fixed value of 1.

The scales of the indicators vary drastically. Because the
distance metric is scale-variant, indicators spanning larger
scales will carry more weight in the distance computation
than smaller ones. We thus need to normalize parameters
and indicators to a comparable scale before passing them
to the RBF model. For each of them we estimate their min-
imum and their maximum value. This is quite easy for the
parameters since they are constrained by the design of the
acceleration structure. For the indicators, we need to select
a meaningful maximum based on the data. This preprocess
is necessary to compute our features’ parameters, ci in our
case. We choose our upper bounds to be on the above order
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of magnitude of the largest value found in our data set, e.g.,
the largest evaluation scene has 1.8 million triangles, we
chose 10 million as our virtual upper bound.

Finally, we define the centers of the features to form the
RBF model. We produce the centers by quasi-randomly plac-
ing them in the re-scaled parameter and indicator space. Us-
ing Latin Hypercube Sampling we obtain a space-spanning
set of points.

7 EVALUATION

In this section we present the evaluation of our method. We
compare hybrid autotuning to classical continuous online-
autotuning. The ε-Greedy policy used to choose between
exploration and exploitation is purely stochastic. Therefore,
we are able to evaluate the performance in production from
the two behaviors in isolation.

We benchmark on seven scenes with differing
complexities and characteristics. The scenes are
sponza, gallery, vokselia_spawn, conference,
fireplace_room, buddha [45] and bmw-m6 (which we
call car) [46]. These scenes have been chosen for their wide
variety of geometry. Some of them can be seen in Figure 3.

We distinguish two ray tracing use-cases: progressive
and real-time rendering. In the former, the acceleration data
structure is constructed once, and the rendering takes place
as long as the scene/camera does not move. For real-time,
the acceleration structure is used for a single rendering step
only and rebuilt thereafter. Of course, real-time systems
often have a complex datastructure management system,
and this is a simplification. This distinction affects the target
function of our tuning scenario. The performance of pro-
gressive rendering is dominated by the rendering step, so
the tuner should minimize rendering time. The target func-
tion of real-time rendering must additionally account for the
time required to build the data structure. We minimize the
sum of build and rendering time in this case.

7.1 Performance Results: Exploitation Through Predic-
tive Online-Autotuning

In the following we report the performance results achieved
by the prediction component of our hybrid tuner.

We compare the performance of the predicted configu-
rations to search based tuning. To understand the compar-
isons, consider the motivating example shown in Figure 11:
we show the typical runtime behavior as observed during
the tuning process for one of the camera positions of the
car scene. The jagged black curve shows the measured
runtime during every iteration of a Nelder-Mead search. The
purple dashed line represents the tuning curve (roofline) of
an ideal predictive autotuner: using the best configuration
from the baseline. Note that this is not the true roofline,
which we cannot know without exhaustively exploring
the configuration space. We consider as roofline here the
best configuration we found using the search. Lastly, the
green horizontal line exemplifies the result produced by
our predictor. In general, it produces a configuration that
is worse than both the roofline and the tuning result. In
the following sections, we quantify how much worse the
prediction result is. The primary goal of the predictor is not
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Fig. 11. Example: Tuning on the car scene. The orange area shows
the total overhead of 80 iterations over the best configuration (purple
dashed). The hashed area shows the difference between our predictor
(green) and an ideal predictor (purple dashed).

to produce a configuration as good as the roofline or the
tuning search. Instead, its purpose is to reduce the total
time spent searching. Progressive rendering accumulates
each subsequent iteration to improve quality. For our eval-
uation, we want to improve the time required to compute a
fixed number of frames. The time required to complete 80
frames, or iterations, in the example in Figure 11 is the area
under the respective curves. The area highlighted in orange
shows the performance of the autotuner. The hashed area
in turn shows the predictor performance. In the evaluation
presented in this section, we analyze our tuner with regard
to both aspects: How much does our predictor improve the
time required to complete a fixed number of iterations, and
how close to the ideal performance does it get.

7.1.1 Generating Training and Validation Data

We want to generate the baseline in order to train and eval-
uate our model. We need a variety of indicator states for the
evaluation scenes, for which we generate camera positions
throughout the scenes. The camera path is designed on each
scene to explore different amount of visible geometry and
more or less complex lighting environments. We create 100
camera positions for every scene, interpolating the move-
ment using a simple spline.

To produce training and validation data, we first run the
classic Nelder-Mead tuner for 80 iterations. The number is
sufficient for the search to converge for all possible cam-
era positions. Each search iteration builds the acceleration
structure and renders one sample per pixel. Given seven
scenes, 100 cameras and 80 iterations, we obtain 56000 data
samples.

From the baseline data we randomly pick 80 camera
positions for training, and the remaining 20 for validation
for each scene. We repeat the training and verification
process 15 times. To train the nearest-neighbor predictor,
we generate a lookup table. It maps indicator states to
the optimal configuration from the baseline found for this
state. The table for each training round contains 80 · 7
configurations. For an unknown state, the nearest-neighbor
predictor returns the configuration that the table maps to
the closest known indicator state in terms of Euclidean
distance. The RBF model is trained on the full training set
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of 80 · 80 · 7 = 44700 data points. Using the update rule
described in Section 6.2 we obtain the linear combination of
RBF features.

For the verification phase we evaluate the predictor
on the 20 remaining camera positions. We compare the
performance of the configuration returned by the predictor
with the baseline data. Note that this leaves room for error:
the baseline data does not necessarily contain the globally
optimal configuration. Only an exhaustive exploration of
the parameter space could find that configuration. However,
since we are only comparing search-based and predictive
autotuning here, we believe that our comparison is suffi-
cient.

The evaluation machine features an i7-6700 at 3.40GHz
with 8 hardware threads, 8MB of cache and 32GB of RAM.
The baseline data is recorded as mappings of indicator states
to parameter configurations and timings.

7.1.2 Optimizing Render Time
We first analyze the behavior of our predictor for progres-
sive rendering, which means only rendering time is to be
minimized. In Figure 12 we show the speedup achieved by
the predictors over the search baseline. The search baselines
are the accumulated rendering times for 80 spp for the
respective scenes and camera positions. In the figure, we
compare the result of the table-based nearest neighbor pre-
dictor and the RBF model. We train the model as explained
above. Although all observations are used to build the
model, only the last iteration of each search is considered
by the predictor, assuming the search converged.

The speedup results show that both the nearest neighbor
and the RBF model predictor outperform the baseline in
most cases. On average, using the geo mean, they achieve
a speedup of 1.05 and 1.04, respectively. However, we see
two scenes where the RBF model does not find adequate
configurations, namely buddha and vokselia_spawn.

Based on the speedup results, we also compare the over-
heads against a virtual baseline, which is the best-known
configuration for a camera and scene. Unlike for the roofline
comparison done above, we choose the best among both
the search and the predictions to make sure the overhead
is non-negative. We achieve a geo mean overhead reduction
of up to 87.5% (sponza scene) using the nearest-neighbor
predictor. The RBF predictor reduces only up to 79.2% of the
overhead (gallery scene). Although the speedups appear
to be small, the presentation hides that we are comparing
only render time. The Nelder-Mead search samples different
configurations at every iteration. Changing the configura-
tion requires rebuilding the acceleration structure. In prac-
tice this incurs a substantial overhead for the baseline, but
we exclude this in our comparison for fairness.

In Figure 13 we compare our predictors against the
roofline for every scene and camera position. In all cases
both nearest neighbor and the RBF model are close to a
speedup of one versus the rooflines. The geo mean for
both is above 95%. Although the speedup we achieve over
the search appears small, we are close to what is actually
achievable. Interestingly, the RBF model outperforms the
roofline in several cases. This indicates that the baseline
search has not found the globally optimal configuration for
these scenes. This is a caveat of the Nelder-Mead search
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Fig. 12. Speedups of our predictor over search-based tuning. Both
search and predictor minimize rendering time only.
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Fig. 13. Comparison of the predictors against the rooflines for every
scene and camera position. Both baseline and predictor minimize ren-
dering time only.

algorithm, which only converges to local optima. In Fig-
ures 12 and 13 we note outliers for the gallery and
sponza scenes. These data points are consistent with the
camera transitioning from non-occluded to highly occluded
configuration.

Given the performance increase of only five percent one
may ask: Why choose prediction over search? The answer
lies in the overhead of the baseline. We present another
view on the search and prediction comparison in Figure 14.
The graph shows the number of tuning iterations required
for the search to outperform the prediction. The graph
shows the number of iterations at which the cumulative
search time and cumulative prediction time cross. For the
RBF model the average break-even point is 362, and 1771
for nearest neighbor. On average at least 362 iterations
are necessary to observe a benefit from the configuration
found by the search. For visualization, we excluded 875 data
points from the plot. That set includes 30 points for which
the break-even point is greater than 10000. Those refer to
predicted configurations which yield similar performance to
what the search produced, so the curves are nearly parallel.
For 845 points the break-even point is negative, which are
cases where the predictor found a better configuration than
the search. For the RBF model these stem predominantly
from the car and fireplace_room scenes, where roughly
12% of the data points outperform the roofline.
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Fig. 14. Break-even points of the Nelder-Mead search. A substantial
number of Nelder-Mead iterations is required to break-even with pre-
dicted configurations.

7.1.3 Optimizing Render and Build Time
Next, we evaluate the behavior of our predictors in a real-
time raytracing context. In this use case the BVH must be
rebuilt for every frame. The feedback function of the tuner
measures the sum of rendering time and building time in
this scenario. Figure 15 shows that the nearest neighbor
approach still outperforms the baseline in most scenes.
The only scene where more than 25% of the runs do not
outperform the baseline is fireplace_room. On average,
the nearest-neighbor approach achieves a speedup of 12%.
The RBF model shows good behavior on car and gallery,
but the performance is underwhelming compared to the
previous approach and does not accelerate rendering. When
minimizing total time, we achieve a geo mean overhead
reduction of up to 89.3% (for the vokselia_spawn scene)
using the nearest-neighbor predictor. The RBF predictor
reduces only up to 53.4% of the overhead (for the gallery
scene). In Figure 16 we compare our predictors to the
roofline for every scene and camera position. Recall that the
roofline is the best configuration found during search. The
nearest-neighbor predictor is close to the roofline in most
cases with an average of 92%. Compared to the nearest-
neighbor predictor our RBF model shows greater variance
and slower performing averages with 83%. We note that
the RBF model tends to cross the roofline more often than
the nearest neighbor variant. This is due to the RBF model
finding a better local optimum in configurations that do not
appear in the nearest neighbor search. In other words, the
model sometimes outperforms the Nelder-Mead process.

8 CONCLUSION

In this paper, we addressed two major caveats encountered
with acceleration structure autotuning. We explored the con-
text sensitivity of their parameters and showed that while
some parameters can be easily tweaked by an experienced
engineer, some other parameters, such as the SAH costs,
require automated optimization schemes. We showed that
triangle splitting offers low variance for both rendering
and building time. Yet this stability is only apparent. When
under load, the performance drop in the case of animations
can be considerable: 26% in our test scene.

Selecting or constraining the tuning parameters will
reduce the parameter space and improve the convergence
of the autotuner. The exploration, improved or not, stays
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Fig. 15. Speedups of our predictor over search-based tuning. Both
search and predictor minimize rendering time and building time.
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Fig. 16. Comparison of the predictors against the rooflines for every
scene and camera position. Both baseline and predictor minimize ren-
dering time and building time.

relatively expensive within the constraints of ray tracing
applications, specifically real-time ones. The Hybrid On-
line Autotuning method further alleviates this caveat. Our
model-based prediction does not need a sampling scheme,
eliminating the need to rebuild acceleration structures.
Combining both search and model approaches is a good
balance to mitigate the downsides of each strategy.

Our evaluation on seven scenes of varying complexity
shows that our predictors can compensate for the overhead
of the search-based tuning. A nearest-neighbor method
achieves 95% of the performance offered by the search-
based tuning while reducing the overhead by 90% of the
rendering time. Because the nearest-neighbor predictor re-
quires maintaining large input state tables, we also inves-
tigated a function approximation approach. We trained a
radial basis function model during the search to provide the
predictions. Although the space complexity of the model
is constant with respect to the number of inputs, its per-
formance is competitive. Our approach is also scalable to
many-node parallelism. We can either use a predictor for
each node or a predictor for the entire architecture. Hierar-
chical optimization or per node optimization is promising
and future work in this direction is required.
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[22] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth, “Active Harmony:
Towards Automated Performance Tuning,” in Proceedings of the
2002 ACM/IEEE Conference on Supercomputing, 2002.

[23] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bos-
boom, U.-M. O’Reilly, and S. Amarasinghe, “OpenTuner: An
extensible framework for program autotuning,” in Proceedings of
the International Conference on Parallel Architectures and Compilation.
Association for Computing Machinery, 2014.

[24] B. Settles, “Active Learning Literature Survey,” University of
Wisconsin–Madison, Computer Sciences Technical Report 1648,
2009.

[25] P. Balaprakash, R. B. Gramacy, and S. M. Wild, “Active-learning-
based surrogate models for empirical performance tuning,” in
IEEE International Conference on Cluster Computing, 2013.

[26] W. Bao, C. Hong, S. Chunduri, S. Krishnamoorthy, L.-N. Pouchet,
F. Rastello, and P. Sadayappan, “Static and Dynamic Frequency
Scaling on Multicore CPUs,” ACM Trans. Archit. Code Optim., 2016.

[27] J. T. Kajiya, “The Rendering Equation,” in Proceedings of the 13th
Annual Conference on Computer Graphics and Interactive Techniques,
1986.

[28] P. Christensen, J. Fong, J. Shade, W. Wooten, and B. Schubert,
“RenderMan: An Advanced Path-Tracing Architecture for Movie
Rendering,” ACM Transactions on Graphics, vol. 37, 2018.

[29] B. Burley, D. Adler, M. J.-Y. Chiang, H. Driskill, R. Habel, P. Kelly,
P. Kutz, Y. K. Li, and D. Teece, “The Design and Evolution
of Disney’s Hyperion Renderer,” ACM Transactions on Graphics,
vol. 37, 2018.

[30] J. Novák, V. Havran, and C. Dachsbacher, “Path Regeneration for
Interactive Path Tracing,” in Eurographics, 2010.

[31] Y. Tokuyoshi and S. Ogaki, “Real-time Bidirectional Path Tracing
via Rasterization,” in Proceedings of the ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, 2012.

[32] I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, and
J. Jeffers, “OSPRay - A CPU Ray Tracing Framework for Scientific
Visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 23, 2017.

[33] C. Schied, C. Peters, and C. Dachsbacher, “Gradient Estimation for
Real-time Adaptive Temporal Filtering,” Proceedings of the ACM on
Computer Graphics and Interactive Techniques, vol. 2, pp. 1–16, 2018.

[34] C. Schied, M. Salvi, A. Kaplanyan, C. Wyman, A. Patney, C. R. A.
Chaitanya, J. Burgess, S. Liu, C. Dachsbacher, and A. Lefohn, “Spa-
tiotemporal variance-guided filtering: real-time reconstruction for
path-traced global illumination,” in Proceedings of High Performance
Graphics on - HPG ’17. ACM Press, 2017, pp. 1–12.

[35] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi,
A. Lefohn, D. Nowrouzezahrai, and T. Aila, “Interactive recon-
struction of Monte Carlo image sequences using a recurrent de-
noising autoencoder,” ACM Transactions on Graphics, vol. 36, pp.
1–12, 2017.

[36] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst, “Em-
bree: A Kernel Framework for Efficient CPU Ray Tracing,” ACM
Transactions on Graphics, vol. 33, 2014.

[37] H. Otsu. Lightmetrica3. [Online]. Available:
https://github.com/lightmetrica/lightmetrica-v3

[38] P. Wang and T. Shoup, “Parameter sensitivity study of the
Nelder–Mead Simplex Method,” Advances in Engineering Software,
vol. 42, pp. 529–533, Jul. 2011.

[39] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, 2018.

[40] J. A. Nelder and R. Mead, “A Simplex Method for Function
Minimization,” The Computer Journal, vol. 7, no. 4, 1965.

[41] K.-H. Chang, “Stochastic Nelder-Mead Simplex Method - A New
Globally Convergent Direct Search Method for Simulation Opti-
mization,” European Journal of Operational Research, pp. 834–837,
2012.

[42] M. D. McKay, R. J. Beckman, and W. J. Conover, “A Comparison
of Three Methods for Selecting Values of Input Variables in the
Analysis of Output from a Computer Code,” Technometrics, vol. 21,
no. 2, pp. 239–245, 1979.
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