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Figure 1. Welch’s t-test in an empty, gray box: (a) an unbiased forward path tracer reference

implementation compared to (b) a biased bidirectional path tracer, each limited to paths with

three vertices, and 10 samples per pixel. The two center images show the difference (c) and

tile-wise difference (d), revealing hardly any bias. Welch’s t-test outputs a color map (e)

revealing bias to the right and a non-uniform histogram of p-values (f) as strong evidence that

(a) and (b) will not converge to the same image with more samples.

Abstract

When checking the implementation of a new renderer, one usually compares the output to

that of a reference implementation. However, such tests require a large number of samples to

be reliable, and sometimes they are unable to reveal very subtle differences that are caused

by bias, but overshadowed by random noise. We propose using Welch’s t-test, a statistical

test that reliably finds small bias even at low sample counts. Welch’s t-test is an established

method in statistics to determine if two sample sets have the same underlying mean, based

on sample statistics. We adapt it to test whether two renderers converge to the same image,

i.e., the same mean per pixel or pixel region. We also present two strategies for visualizing

and analyzing the test’s results, assisting us in localizing especially problematic image regions

and detecting biased implementations with high confidence at low sample counts both for the

reference and tested implementation.

1. Introduction

The underlying integrals for generating photorealistic imagery are only solvable using

statistical methods, the most common being Monte Carlo integration. In this work,

we focus on verifying that an implementation of a Monte Carlo estimator does what
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it is supposed to do. We only consider unbiased estimators, i.e., estimators whose

expected value at any final sample count is equal to the true solution of the integral

that needs to be solved—at least, if the estimator was designed and implemented

correctly.

Conventional tests for verifying the correctness of a new renderer implementation

are typically based on comparisons to a reference implementation. For example, we

can compute difference images or analyze the behavior of the root-mean-square error

(RMSE) at increasing sample counts with respect to a converged reference image.

However, strong noise at lower sample counts can make those tests unreliable at low

computation times. Even with increased computation times, subtle bias may still be

hidden by weak remaining noise.

Visual metrics are an alternative approach to evaluate correctness with respect

to ground-truth photographs. These techniques focus on the visual similarity in the

context of the human visual system instead of on a purely mathematical error analysis.

Their goal is to find images that look as plausible as possible, but they do not provide

any measure of the mathematical accuracy of a renderer’s implementation.

We propose using Welch’s t-test, a statistical test, to determine whether an im-

plementation of an unbiased renderer does indeed produce an unbiased result when

tested against an unbiased reference implementation. Welch’s t-test is a two-sided

hypothesis test to decide whether the underlying means of two normal-distributed

sample sets are equal. In the context of rendering, a correctly implemented unbiased

Monte Carlo estimator converges to the underlying mean of the samples drawn during

rendering. The test’s results help detect bias and thus faulty implementations by con-

sidering statistics of the samples generated during rendering. We can thus use Welch’s

t-test to test whether the underlying mean of the distribution sampled by the Monte

Carlo estimator is equal to the mean of a reference implementation. The test can only

be used to check whether a new implementation is correct; to compare convergence

speed, one still has to fall back on other methods such as RMSE over time or sample

count.

Our contributions include

• a detailed description of the steps necessary for applying Welch’s t-test to test

implementations of supposedly unbiased renderers for bias;

• a method for converting samples generated by a Monte Carlo renderer to sam-

ples that can be used as input to Welch’s t-test;

• two visualization schemes for analyzing the test’s result;

• an evaluation of the test’s behavior under various settings.
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Figure 2. RMSE of an unbiased PT render and an intentionally slightly biased BDPT render

of the corner scene (Figure 1(a)). The BDPT’s bias only becomes noticeable with over 1000

samples per pixel (spp) which required two hours of render time, not including the time spent

rendering the reference.

2. Related Work

Quantitative Image Metrics. Typical quantitative metrics for comparing two images

are the root-mean-square error (RMSE) or the absolute-difference image. The RMSE

between an image X and a reference R is the root of the normalized sum of squared

pixel differences over the entire image with N pixels:

RMSE =

√

1

N

∑

N

(xi − ri)2.

The log-log plot of an unbiased renderer’s RMSE over samples is a straight line,

due to the convergence behavior of Monte Carlo integration. However, testing in

the form of checking whether the RMSE behaves as a straight line requires both a

converged reference image and running the tested renderer for a large enough sample

count to get a reliable plot. An example is shown in Figure 2.

The RMSE can also be adapted, e.g., by giving less weight to noise in especially

bright regions using a term such as

1

N

∑

N

(xi − ri)
2

r2i + offset
.

Instead of waiting for the tested renderer to somewhat converge before computing

the RMSE, [Celarek et al. 2019] compute many low-sample renderings and estimate

the MSE’s expected value and variance. This allows them to detect renderers with

occasional outliers and measure the distribution of errors over frequencies. However

they still rely on a converged reference, and use the same budget for rendering many

unconverged renders as would typically be used to generate one converged render.

So while RMSE plots are a good tool for comparing convergence of different

renderers, they are time consuming to use for debugging purposes.
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Pixel-wise or tile-wise signed or absolute-different images are a subjective tool

for detecting problematic image regions; however, they may be unreliable due to re-

maining or unevenly distributed noise in unconverged images.

Predictive Rendering. In the context of predictive rendering it is especially impor-

tant that a renderer is able to match the appearance of real-world objects. There-

fore renderers are validated with respect to real data, such as measurements of real

materials, light sources or photographs. One example is the Cornell Box [Cornell

University Program of Computer Graphics 1998], a real-world model of a box, pho-

tographs of which can then be compared to the output of a renderer [Goral et al.

1984] [Meyer et al. 1986]. [Ulbricht et al. 2006] and [Drago and Myszkowski 2001]

give an overview of techniques used to verify light transport compared to physical

measurements for predictive rendering.

Visual Metrics. Other metrics such as [Mantiuk et al. 2011] focus on humanly per-

ceived image quality instead of mathematical difference to a reference render or pho-

tograph. For instance, structural similarity (SSIM) [Wang et al. 2004] captures the

effect on a human observer of image artifacts, such as overall bias, additional noise,

or blurring, better than purely quantitative errors such as RMSE.

Statistical Methods. To our knowledge, Subr and Arvo [2007] are the only ones to

employ classical statistical methods for testing renderers, aside from the MSE esti-

mation done by [Celarek et al. 2019]. They propose using various statistical tests to

analyze variances and means of renderers, including Welch’s t-test to test for equal

means. Their work covers the basics of statistical hypothesis-testing and also tests

isolated components such as the BRDF, but Welch’s t-test and its application are only

briefly discussed. We provide a more in-depth explanation of the test and the steps

necessary for applying it to Monte Carlo renderers, as well as a more extensive anal-

ysis, including visualization of the test results.

3. Welch’s t-test

Given two sets {X1,1, . . . , X1,N1
}, {X2,1, . . . , X2,N2

} with N1 and N2 individual

independent random samples, where each sample set was drawn from a normal dis-

tribution with unknown individual means µ1, µ2 and variances σ1, σ2, Welch’s t-test

can be used to test either of the hypotheses µ1 = µ2 or µ1 ≥ µ2. Unlike similar tests,

it does not require the variances σ1, σ2 of the underlying distributions to be equal.

We use the two-tailed Welch’s t-test for testing µ1 = µ2. First, we compute a

statistic of the sample sets. If µ1 = µ2, that statistic is distributed according to a

known two-tailed distribution. This allows us to evaluate the probability of observing

the measured sample sets under the tested hypothesis µ1 = µ2, which then lets us

draw conclusions about the hypothesis’ plausibility.
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Welch’s t-test is based on the sample sets’ properties, i.e., the sample mean,

X̄k =
1

N

∑

N

Xk,i,

and the unbiased sample variance,

S2
k =

1

Nk − 1

∑

Nk

(Xk,i − X̄k)
2 =

1

Nk − 1





∑

Nk

(Xk,i)
2 −

(
∑

Nk
Xk,i)

2

Nk



 ,

for each sample set k = 1, 2. These properties can be combined into the t-statistic,

t =
X̄1 − X̄2

√

S2
1

N1
+

S2
2

N2

, (1)

which is a random variable itself and, if µ1 = µ2, the statistic is distributed according

to the t-distribution,

fν(t) =

Γ

(

ν + 1

2

)

√
νπΓ

(ν

2

)

(

1 +
t2

ν

)− ν+1

2

, (2)

with the appropriate degrees of freedom ν ∈ N. The Gamma function, Γ, is a gen-

eralization of the factorial. The degrees of freedom ν resulting in the t-distribution

of the measured t-statistic can be approximated by the Welch-Satterthwaite equation

[Satterthwaite 1946], based on the measured sample variances and sizes, as

ν =

(

S2
1

N1
+

S2
2

N2

)2

S4
1

N2
1 · (N1 − 1)

+
S4
2

N2
2 · (N2 − 1)

. (3)

Figures 3 and 4 show the t-distribution for several values of ν.

3.1. Testing for Equal Means

Now we can test whether the means of the underlying distributions (not the sample

means) are equal. We call this the null hypothesis

H0 : µ1 = µ2

and test it against the two-sided alternative hypothesis

Ha : µ1 6= µ2.

where two-sided simply means that if µ1 6= µ2 we do not care which one is bigger.
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Figure 3. Two-tailed Welch’s t-test where ν = 2 and the t-statistic of the observed sample

sets is 1.5. The p-value is the area of both tails of the t-distribution beyond t, which is ≈ 0.27.

The essential insight of Welch’s t-test is that if the null hypothesis H0 is true,

the t-statistic computed from the observed sample sets (Equation (1)) approximately

follows the t-distribution (Equation (2)) with degrees of freedom approximated using

Equation (3). We can use this knowledge to compute the probability pν(t), called the

p-value, of measuring the observed t-statistic or something more extreme (i.e., any t′

with |t′| ≥ |t|) for the measured t-statistic t computed from the available samples:

pν(t) = 2 ·
∫ ∞

|t|
fν(t̄)dt̄. (4)

A p-value below a certain threshold (e.g., a = 0.01) suggests it is rather unlikely

that two sample sets, drawn from normal distributions with equal means, result in the

t-statistic computed from the observed sample sets, and as such, it is unlikely that

the two sample sets were indeed drawn from normal distributions with equal means.

In turn, this indicates H0 is likely false, and we can reject it with a confidence of

(1− a) · 100%. In other words, the probability of falsely rejecting H0 is a · 100%.

Visually speaking, the p-value equals two times the area of the tail of the t-

distribution beyond the computed t-statistic, as illustrated in Figure 3.

To conclude, in order to conduct Welch’s t-test, we need to

1. measure two normal-distributed sample sets;

2. compute their respective sample means and sample variances;

3. compute the t-statistic;

4. compute the degrees of freedom ν;

5. compute the p-value based on t and ν.
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For evaluating the integral in Equation (4) we use the algorithm presented by

Cooper [Cooper 1968]. If conducting a single test, a p-value below a user-defined

threshold can then be used to reject H0. However, note that Welch’s t-test can only

be used to detect a false hypothesis; a p-value above some threshold does not prove

H0 to be true.

In the context of rendering, we will in fact conduct separate tests per image re-

gion and color channel, and combine their results to gain more conclusive insights in

Section 4.

3.2. Properties of the p-value

Since the p-value depends on t and ν, which in turn depend on the samples, the p-

value is a random variable itself. As p describes the probability of observing the

measured t or something more extreme given H0, if H0 is indeed true, p should take

any value in [0, 1] with equal probability. It turns out that if the null hypothesis is true

(i.e., the two distributions have the same underlying mean), the p-value is actually

uniformly distributed. This also implies that p is smaller than some a ∈ [0, 1] with a

probability of a · 100%, or P (p < a) = a.

Therefore we can reject H0 if p < a for some threshold a with confidence

(1 − a) · 100%: The probability of falsely rejecting a true null hypothesis due to

p > a is a · 100%, since the probability of measuring a p < a is
∫ a

0 1dx = a.

We will use this criterion indirectly, not by conducting multiple Welch tests with

different samples, but by comparing the p-values resulting from applying Welch’s

t-test to multiple image regions. Each image region corresponds to a different dis-

tribution. If the estimator (i.e., the renderer) is unbiased in each region, i.e., both

the reference and the tested estimator have the same expected value, each region’s

p-value is uniformly distributed, and therefore the p-values taken from the different

image regions are uniformly distributed as well. This allows us to detect a biased

estimator through a non-uniform distribution of p-values taken from different image

regions. Note that this line of reasoning does not work the other way around: A uni-

form distribution of p-values taken from different image regions does not imply that

the individual p-values are uniformly distributed for their respective image regions.

So while non-uniformly distributed p-values from different image regions imply bias,

uniformly distributed p-values are no guarantee that the estimators are unbiased.

3.3. Gaussian Approximation

For increasing degrees of freedom ν, the t-distribution converges to the Gaussian

f∞(t) := lim
ν→∞

fν(t) =
1√
2π

e−
t
2

2 .

Figure 4 illustrates that the difference between fν and f∞ vanishes quickly, even

for “smaller” values of ν (e.g., 20).
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Figure 4. The t-distribution for ν = 1, 2, 5, 10, 20 (blue) and the standard normal distribution

f∞ (µ = 0, σ = 1) (orange). As ν → ∞ the t-distribution approaches f∞.

−5 0 5
t

0

1
ν =1.0

−5 0 5
t

0

1
ν =2.0

−5 0 5
t

0

1
ν =5.0

−5 0 5
t

0

1
ν =10.0

−5 0 5
t

0

1
ν =20.0

Figure 5. The true p-value pν for ν = 1, 2, 5, 10, 20 (blue) and the approximation p∞ based

on the standard normal distribution (orange). As ν → ∞ the true p-value approaches p∞.

As the evaluation complexity of pν increases with ν, we replace fν with f∞ once

ν is above a certain threshold and instead compute

p∞(t) := 2 ·
∫ −|t|

∞
f∞(u)du = 1− erf

(

t√
2

)

. (5)

Figure 5 shows that the difference between p∞ and pν also vanishes quickly, moti-

vating this replacement. Since there exists no analytical solution for the above integral

we use an approximation by Abramowitz and Stegun [Abramowitz and Stegun 1964]

with an error ≤ 2.5 · 10−5:

erf(t) ≈ 1− (0.3480242x− 0.0958798x2 + 0.7478556x3)e−t2 , (6)

x :=
1

1 + 0.47047t
.

We did not detect any improvement when using one of their more complex ap-

proximations of erf . In our experiments (Section 5.7) approximating pν with p∞
whenever ν ≥ 20 has no noticeable impact on the test results.

4. Application to Monte Carlo Rendering

In this section we discuss how Welch’s t-test can be applied to test a new renderer

for unintended bias by comparing it to an unbiased reference implementation. We

consider Monte Carlo renderers that solve the path integral,

I =

∫

P
f(X)dX, (7)
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for each pixel numerically by sampling paths Xi from some probability distribution

p over path space P and averaging their contributions f(Xi) to the pixel I in the

estimator

FN =
1

N

∑

N

f(Xi)

p(Xi)
≈ I. (8)

As long as p = 0 ⇒ f = 0, this estimator is unbiased: The expected value of its

error E[FN − I] is zero for all N . In other words, the expected value of the estimator

E[F ] = I . In contrast, biased estimators are functions F ′
N (X1, . . . , XN ) of a number

of random samples with an expected error E[F ′
N − I] 6= 0 for some N .

Note that E[FN ] is the mean µ of the underlying distribution of
f(X)
p(X) . So given

two implementations of unbiased estimators F 1
N , F 2

N , we would like to use Welch’s

t-test to test whether the underlying means of the implementations are equal, which

would imply the implementations do indeed represent unbiased estimators (assuming

one of the implementations is a reference implementation known to be unbiased).

4.1. Generating Normal Distributed Samples

In order to conduct Welch’s t-test we require two sets of normal distributed samples.

However, the underlying distribution of a Monte Carlo estimator for light transport

(i.e., the distribution of f
p

) is typically not a normal distribution, as shown in Figure 6.

The central limit theorem states that the normalized sum of an increasing number

of samples drawn from some distribution tends to be normal distributed. We employ

this theorem by adding up multiple samples generated by the Monte Carlo estimator

and using this sum as one sample for Welch’s t-test.

We use the term Monte Carlo (MC) sample to refer to one sample generated by

the renderer for one pixel. For example, considering a path tracer with next event

estimation (NEE), by ”one MC sample,” we mean the sum of MIS-weighted contri-

butions of one camera path and the NEE connections started from its inner vertices.

In order to create one Welch sample Xi that can be used as input to Welch’s t-test, we

sum up a certain number of MC samples. If that number is large enough, the sum is

roughly normal distributed.

−25 0 25
0.0

0.1

0.2
MC samples for upper left pixel

Figure 6. Histogram of individual path-traced Monte Carlo samples for the red channel of the

upper-left pixel in the image on the right. The blue line represents a fitted normal distribution.
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More specifically, we conduct Welch’s t-test separately for disjoint tiles of 32×32

pixels. One Welch sample is formed by summing up one MC sample from each pixel

within that tile. This corresponds to stratified sampling of the underlying distribution

of that pixel tile (by stratifying MC samples over pixels), and summing them up. For

most test scenes used in our evaluation, summing up 1024 MC samples to get one

Welch sample does indeed result in a normal distribution of Welch samples within

each pixel tile, as we evaluate empirically in Section 5.1. Since we always sum up the

same number of samples (1024) to get one Welch sample, we can skip the normaliza-

tion (dividing the MC sample sum by 1024). If the image resolution is not a multiple

of 32× 32, we discard incomplete tiles. If a light tracer is used, one needs to explic-

itly count the number of samples splatted into each tile per iteration and perform the

normalization accordingly.

It should be noted that the central limit theorem does not make any guarantees

about a finite sum of samples approaching a normal distribution. So for each scene

and algorithm, before applying Welch’s t-test, one should evaluate the number of

MC samples needed to (roughly) achieve a normal distribution of Welch samples. In

Section 5.1 we present one example where this is not the case.

4.2. Sample Preparation During Rendering

Since the renderer continues generating more samples per pixel, we can prepare sam-

ple statistics during rendering to use for Welch’s t-test. For computing the t-statistic

(Equation (1)) and the appropriate degrees of freedom ν (Equation (3)), we need the

sample mean and sample variance of the Welch samples. Therefore, the renderer

needs to be able to create individual Welch samples by summing up one MC sample

from each pixel within a pixel tile, in order to compute the sum of squares of Welch

samples
∑

N X2
i . We require two additional frame buffers with 1/322 the resolution

of the actual image: one for storing the sum of Welch samples for each pixel tile and

one for storing the sum of squared Welch samples. We compute and store the sum of

Welch samples and their squares for each color channel separately.

4.3. Considerations When Using Halton Points

In our implementation, when using random numbers, the renderer iterates over all

pixels, places one random sample in each, and repeats. This means that for an image

with N pixels, after placing N samples each pixel receives exactly one sample, and

therefore each pixel tile receives 322 samples. We also support rendering with Halton

points: in that case, pixel samples are not placed one for each pixel, but instead where

the first two dimensions of the Halton points fall in the image plane: (Φ2(i),Φ3(i)),

i.e., the radical inverse Φ with basis 2 and 3. We know that every 2×3 block will

have received six samples after drawing N samples; however some pixels will have

received more than one while others received none. This also means that in one

iteration a 32× 32 pixel tile may not always receive 322 samples.
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The central limit theorem works on the normalized sum of samples, which means

we would have to normalize the sum by the actual sample count, which is cumber-

some. To arrive at a well-defined sample-count per pixel, we make use of the ele-

mentary interval property of Halton points, which guarantees that after placing 3 ·N
samples, each pixel received three samples and therefore each tile received 3 · 322
samples. We can then simply sum up those samples and skip normalizing. This issue

can also be avoided by stamping repeated replications of the sample points for each

tile.

Using quasi-Monte Carlo point sets introduces correlation which may yield incon-

clusive results when comparing two renders. To avoid this, we only compare renders

with Halton points to ones with independent random points. Section 5.8 analyzes this.

4.4. Visualization

We propose two visualizations for interpreting the results. In both cases we visualize

the p-value, as it is bounded in [0, 1], as opposed to the t-statistic which can take on

arbitrary values.

The p-value color map. Since we conduct Welch’s t-test separately for many image

regions (i.e., square tiles of pixels), we can visualize the p-value obtained for each

region in a color map. This scheme allows us to localize problematic regions in the

image that have especially high bias. While this could also be achieved using dif-

ference images, Welch’s t-test is both statistically meaningful and more expressive at

low sample counts, as shown in Section 5.3. Since we get three p-values for each im-

age region (one per color channel), we try visualizing them combined and separately

in Figure 7. A color-mapping scheme maps large p-values to violet and small ones to

yellow, as indicated to the right of each image and enlarged in Figure 8.

Visualizing only the smallest p-value per square pixel tile (Figure 7(a)), while

skewing the image towards colors representing small values, seems easier to parse

visually thanks to the square shape of individual p-value color tiles and combines

all values in a single image. Visualizing all three p-values requires us to use oblong

blocks to squeeze three p-values into one square pixel tile (Figure 7(b)), or to output

three separate images (Figure 7(c)–7(e)). The former results in a cluttered image

while the latter requires us to look at three separate images to evaluate the results.

One advantage of the last visualization is that it reveals whether clusters of small p-

values just happened at random, or if they are symptomatic of some intrinsic problem,

i.e., present in all three color channels. In general, we find the visualization of the

smallest p-value easiest to use. In the example in Figure 7, it best reveals the bias

along the left corners of the scene.

For focusing a higher color resolution on small p-values corresponding to poten-

tially biased regions, Figure 9 visualizes the square root or a multiple of the p-value.
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(a) smallest (b) all values (c) red channel (d) green channel (e) blue channel

Figure 7. Color map for Welch’s t-test applied to 32×32 pixel tiles of an unbiased PT render

and a biased BDPT (as in Section 5.3) render of the corner scene (Figure 11 left) with 10 spp

(top) and 60 spp (bottom), visualizing the smallest (a), all three (b) and individual p-values

(c,d,e) per color channel.

Figure 8. Color scale for p = 0 (left) to p = 1 (right).

(a) original (b) square root (c) multiplied by 10 (d) multiplied by 20

Figure 9. Different p-value mappings (left: same as Figure 7).

Histogram of p-values. Whenever the null hypothesis (two compared unbiased ren-

derers) is true, the p-value, which is a random variable itself, is uniformly distributed

(see Section 3.2). Since we conduct only one test per color channel and image re-

gion, each corresponding to its own distribution, we cannot directly check whether

the p-value obtained for one image region is uniformly distributed. However, we can

at least check whether the p-values taken from different regions are uniformly dis-

tributed, based on a histogram of all p-values, as well as their mean. Note that a

uniform histogram is no proof that all individual p-values stem from uniform distri-

butions. However, a non-uniform histogram is a strong indicator that the individual

p-values cannot all be uniformly distributed and thus the tested renderer is likely bi-

ased. Three examples are shown in Figure 10.

In the supplemental materials, we provide code for computing the color map

(welch.c) and histogram (pvalhist.py), given two images and the relevant statistics

that need to have been computed at render time.
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0.0 0.5 1.0

(a) unbiased PT

0.0 0.5 1.0

(b) biased BDPT, 10 spp

0.0 0.5 1.0

(c) biased BDPT, 60 spp

Figure 10. Histogram of p-values for an unbiased render (a) and two biased renders (biased

BDPT as in Section 5.3 with 10 (b) and 60 (c) samples per pixel (spp), as in Figure 7) tested

against an unbiased reference implementation. At 10 spp the p-value mean (red triangle) is

indistinguishable from 0.5, but the [0, 1/30]-bin contains way more p-values than would be

expected if all p-values were uniformly distributed, indicating bias.

5. Results

We evaluate Welch’s test for two scenes, a simple scene showing the lower-left corner

of an empty Cornell box with a constant square light source (Figure 11 (left)), and

the dining scene (Figure 11 (right)). The first scene is helpful in detecting errors in

the transport algorithm itself, e.g., problems with the camera or missing cosines. The

second scene illustrates the test’s behavior under more complex conditions. We use a

path tracer with next-event estimation (PT) and a bidirectional path tracer (BDPT) of

our custom spectral renderer.

Unless stated otherwise, the renderers draw their random numbers from a pseudo-

random number generator, and Welch samples are constructed within 32 × 32 pixel

tiles by summing up one sample from each pixel within the tile.

Figure 11. Left: Corner scene. Right: Dining scene.

5.1. Welch Sample Generation

Before applying Welch’s t-test, we need to make sure that the number of MC samples

contributing to one Welch sample is sufficient for (approximating) a normal distribu-

tion of Welch samples, as described in Section 4.1. We therefore generate histograms

of the Welch samples created for individual tiles within the two images in Figure 12.
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4000 6000

Corner PT+NEE, 1 MC

4000 6000

Corner BDPT, 1 MC

0 20000

Dining first 32x32 block

0 2000

Dining last 32x32 block

(a) (b) (c) (d)

Figure 12. Histogram of Welch samples generated by summing up one MC sample per

pixel for the red channel of a 32 × 32 pixel tile. (a), (b): Upper-left pixel tile in Figure 11;

(c) upper-left pixel tile in the dining scene rendered with PT; (d) lower-right pixel tile in the

dining scene (PT). MC samples are based on Mersenne random numbers. The red and blue

markers represent the sample mean and variance, respectively; the blue line is a fitted normal

distribution using those as mean and variance.

For simple setups, such as the corner scene or the directly lit upper wall in the

dining scene, summing up 1024 MC samples per pixel tile creates normal distributed

samples for both the path tracer and the bidirectional path tracer. However, in more

difficult setups, such as the caustic on the table or the shadowed lower-right part of

the wall, Welch samples created that way are not as close to a normal distribution.

It turns out that Welch’s t-test still produces reasonable results for the dining scene

with Welch samples created that way, but in general one should be cautious about the

number of MC samples contributing to one Welch sample.

Failure case. Figure 13 shows the corner scene with a glass sphere added in the

center. The resulting caustic noise causes the Welch samples in the respective image

regions to not be normal distributed anymore, even for larger tiles such as 64 × 64

pixels as shown in Figure 18(c). Therefore Welch’s t-test should not be used with this

scene, as it produces a far from uniform histogram of p-values even when testing the

reference implementation against itself with different seeds for the random number

generator. As a side note, if a renderer produces a Welch sample distribution such

(a) scene (b) Color map

0 50000

(c) Welch samples

0.0 0.5 1.0

(d) p-values

Figure 13. The corner scene with a glass sphere no longer has normal distributed Welch

samples when rendered by a path tracer, not even when summing up 64× 64 pixel samples as

in this example (c). Thus, when testing the unbiased reference against itself (shown here for

10 spp) Welch’s t-test does not produce a uniform histogram of p-values (d) anymore.
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as this one, one might reconsider using that algorithm for the given scene, since its

convergence will be rather slow anyway.

5.2. Unbiased Path Tracer Tested Against Itself

We start with the test results for a correct path tracer with next event estimation tested

against itself in the corner scene (Figure 11 (left)) with different random seeds. This

serves as a reference for what the results should look like for unbiased renders. Fig-

ure 14 shows the color map and p-value histogram for testing 10 and 1000 spp against

10 and 1000 spp renders.

0.0 0.5 1.0

10 spp vs 10 spp

0.0 0.5 1.0

1k spp vs 10 spp

0.0 0.5 1.0

1k spp vs 1k spp

Figure 14. Test results of an unbiased path tracer against itself for the corner scene (Fig-

ure 11 (left)). From left to right: 10 spp vs 10 spp, 10 spp vs 1000 spp, 1000 spp vs 1000 spp.

Top: Color map for smallest p-value. Bottom: Histogram (blue) and mean (red) of p-values

from all color channels and pixel tiles.

5.3. Finding Bias in a Bidirectional Path Tracer

We used Welch’s t-test to trace down a bug in our bidirectional path tracer (BDPT).

In this version, the light tracer occasionally replaced the camera normal with the con-

necting segment’s direction, leading to an incorrect cosine evaluation between the

segment’s direction and camera normal. This affected the light tracer’s contribution

as well as the MIS-weight computation. The resulting error was greater towards the

borders of the image, where the correct cosine is much smaller than the cosine that

was computed (which was always one).

Figure 15 shows the PT reference and the biased BDPT renders, both with 3-

vertex paths only, as well as the results of Welch’s t-test and difference images. The

clumped yellow regions in the color maps are strong evidence that the two renderers

do not converge to the same mean, i.e., pixel color, at least not in those image regions.

Similarly, the non-uniform histogram indicates that not all, maybe even none, of the

p-values stem from a uniform distribution, and thus one of the renderers is biased.
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0.0 0.5 1.0

0.0 0.5 1.0

0.0 0.5 1.0

(a) PT (b) BDPT (c) Difference (d) Block diff (e) Color map (f) p-values

Figure 15. Top: PT (10 spp) (a) vs biased BDPT (10 spp) (b). Differences (c, d) are absolute.

Center: PT (1k spp) vs biased BDPT (10 spp) shows that a more converged reference produces

a visually similar color map, but a more conclusive p-value histogram. Bottom: PT (1k spp)

vs biased BDPT (500 spp)—only now do we start to get a meaningful difference image (c, d),

revealing a subtle difference in brightness at the right part of the floor.

In this case, using more samples in the biased renderer results in even more sig-

nificant evidence (more low p-values, manifesting as clumped yellow regions and a

non-uniform histogram) against the hypothesis that the renderer is unbiased.

For a fair comparison to what insight can be gained from difference images, we

also include a tile-wise difference image, such that one difference value can benefit

from the same number of MC samples as one t-test.

5.4. Detecting a Biased Scene

In Figure 16 we show two renders of the box scene created by the unbiased PT with

10 spp. In Figure 16(a), the walls and floor have the diffuse color (0.2, 0.2, 0.2) while

in Figure 16(b), they have color (0.21, 0.21, 0.21). In this case, the color map and

difference image are useless, the latter being dominated by residual noise. Yet, the

p-value histogram reveals a tendency towards small values, indicating that the two

renders will not converge to the same result. With fewer bins (Figure 16(f)), this is

even more noticeable.

(a) Grey=0.2 (b) Grey=0.21 (c) Difference (d) Color map

0.0 0.5 1.0

(e) p-values

0.0 0.5 1.0

(f) p-values

Figure 16. Corner scene with gray = 0.2 (a) and gray = 0.21 (b), PT, 10 spp. The absolute

difference (c) is dominated by noise and at this sample count is indistinguishable from a

difference image of two correct renders with different seeds. In this case the histogram of

p-values with fewer bins (f) is most helpful at detecting bias.
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0.0 0.5 1.0

16 spp

0.0 0.5 1.0

256 spp

0.0 0.5 1.0

1024 spp

0.0 0.5 1.0

2048 spp

0.0 0.5 1.0

4096 spp

0.0 0.5 1.0

8192 spp

Figure 17. p-values for the path tracer with biased MIS weights. Welch’s t-test only detects

the bias reliably at several thousand samples per pixel, where it produces the non-uniform

histograms.

5.5. Biased MIS Weights in a Path Tracer

Figure 17 shows Welch’s t-test for a path tracer with incorrect multiple-importance-

sampling (MIS) weights, where, for paths finding the light source by accident, the

probability density function of the last scattering event is ignored in the MIS weight

computation. This results in a slightly brighter image, which is hardly noticeable by

eye (see Figure 18(a)). In this case, Welch’s t-test does not pick up on the error at

10 spp, but is able to detect it at much higher sample counts. Since the difference

image and color map look similarly unhelpful, as in Figure 16, we only show the

p-value histograms at different sample counts in Figure 17.

Since in this case Welch’s t-test requires large sample counts, we also compare

to the RMSE plot in Figure 18. We only plot the RMSE up to 8k samples, since our

reference has 131k samples and plotting for larger sample counts would result in a

curve caused by the unconverged reference. For instance, when using a 65k reference

instead, this effect is already noticeable at a few thousand samples per pixel (Figure

18(c)). With the 131k spp reference, the RMSE plot is a straight line and does not

reveal any error. Computing a reference with even more samples to eventually detect

a curving RMSE line would be possible, but highly impractical.

101 103

spp

10−2

10−1

100

R
M
S
E

inconsistent MIS weights

103 104

spp

10−2

2× 10−2

3× 10−2

R
M
S
E

inconsistent MIS weights

Reference 65k spp

Reference 131k spp

(a) PT (b) RMSE (c) RMSE (zoomed)

Figure 18. The corner scene rendered with a path tracer at 131072 (217) spp. (a) reference

PT (top) and biased PT due to inconsistent MIS weights (bottom). The RMSE plot (b) looks

like a straight line and thus does not reveal any bias. With this reference, any curve occurring

at higher sample counts might as well be caused by the unconverged reference, as is already

the case when plotting the RMSE with a 65k spp reference ((c), zoomed in).
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5.6. Influence of the Pixel Tile Size

Figures 19 and 20 show the test’s result if we use individual MC samples as Welch

samples and conduct Welch’s t-test per pixel instead of per pixel tile. Figure 19 tests

the unbiased PT reference against itself, where the test produces a false reject (a non-

uniform histogram of p-values) for the dining scene. Figure 20 tests the unbiased PT

against the biased BDPT described in Section 5.3 for the corner scene. Here, the test

does not detect bias at 60 spp, and instead outputs a uniform color map and histogram

of p-values, producing a false positive. We conclude that Welch’s t-test is unreliable

both in detecting bias and in not-rejecting unbiased renderers when using MC samples

directly as Welch samples.

0.0 0.5 1.0

0.0 0.5 1.0

Figure 19. Testing the unbiased PT against itself with different random seeds and 100 spp

each for two different scenes. Welch’s t-test is conducted per pixel, and individual MC sam-

ples are used as input samples to the test.

0.0 0.5 1.0

0.0 0.5 1.0

Figure 20. Testing the unbiased PT (left) against a biased (Section 5.3) BDPT (center left),

resulting color map for smallest p-value (center right) and respective p-value distributions

(right). Welch’s t-test is conducted per pixel, and individual MC samples are used as input

samples to the test. Top: 20 spp. Bottom: 60 spp.

5.7. Gauss Approximation

Figure 21 shows the range of appropriate degrees of freedom ν (Equation (3)) over

all image regions when comparing different sample counts for the corner and dining
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Mean ν value (ν̄) for corner scene
comparing PT+NEE [spp] vs [spp]
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50spp

70spp

90spp

20 40 60 80 100
spp
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50

100

150

200
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d
S
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)

Mean ν value (ν̄) for dining scene
comparing PT+NEE [spp] vs [spp]

10spp

30spp

50spp

70spp

90spp

Figure 21. Mean (ν̄) and standard deviation (S(ν)) of ν-values over all pixel tiles when

comparing our PT against itself for different sample counts for the corner (left) and dining

scene (right), with 1 sample per pixel per 32 × 32 tile per Welch sample. The ν-value seems

to depend mostly on the lower sample count and less on the scene.

scene. Starting from a few dozen Welch samples, we consistently get ν values such

that the normal distribution approximates the actual t-distribution quite well over the

entire image. With fewer Welch samples, this is only the case in some regions, while

other regions have low ν-values, as each region corresponds to its own distribution.

(1)

(2)

(3)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

(4)

0.0 0.5 1.0

adaptive

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

(a) (b) (c) (d) (e) (f)

Figure 22. Welch’s t-test for the corner scene with the correct t-distribution ((1),(3)), com-

pared to the Gaussian approximation as in Equation (5) ((2),(4)). In (a) the Gauss approx-

imation is applied wherever ν ≥ 20, in (b)–(f) it is applied to all image regions and color

channels. (a), (b) PT (10 spp) vs PT (10 spp) (ν̄ ≈ 20); (c) PT (10 spp) vs PT (1k spp)

(ν̄ ≈ 2000); (d) PT (10 spp) vs biased BDPT (10 spp) (ν̄ ≈ 20); (e) PT (1k spp) vs biased

BDPT (10 spp) (ν̄ ≈ 10); (f) PT (1k spp) vs biased BDPT (500 spp) (ν̄ ≈ 1000). While

the color maps seem indistinguishable, the histogram of Gauss-approximated p-values for (b)

(ν̄ ≈ 20) falsely rejects the hypothesis of the renderers being unbiased. Selectively applying

the Gauss approximation in tiles and color channels with ν ≥ 20 fixes this (a).
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Figure 22 shows p-values pν computed from fν with the correct degrees of free-

dom ν, as well as p∞ based on the approximated (see Equations (5) and (7)) normal

distribution f∞. If the number of samples is not sufficient (e.g., N1 = 10, second col-

umn) and the appropriate ν is too small, the approximated p-values are not uniformly

distributed, leading to false negatives (Welch’s t-test ”finding” bias when comparing

two unbiased renderers). This is to be expected, as the true p-value is larger than the

Gauss-approximated p-value (see Figure 5 left), and thus the Gauss approximation

results in more p-values close to zero than a uniform distribution should have. This

also explains why the Gauss approximation only creates more false negatives, but not

more false positives than p-values based on the true fν .

Selectively applying the Gauss approximation only in image regions and color

channels where ν ≥ 20 fixes this problem, as shown in the left column in Figure 22.

Here (N1 = 10), the value of ν still varies over image regions and channels. For many

the approximation is valid, but the few where it is not, due to low ν-values, it results

in a non-uniform histogram when using the approximation.

5.8. Halton Points

In Section 4.3, we noted that to assure an equal number of MC samples are summed up

for each Welch sample, we need to sum up a multiple of three samples per pixel if us-

ing Halton random numbers to place MC samples in the pixel plane. Figure 23 shows

a histogram of Welch samples constructed this way on the right, and a histogram of

Welch samples created from on average 322 MC samples per tile on the left. At least

in this example, both approaches yield similarly distributed Welch samples.

We also show the test’s results based on such samples, compared against a ref-

erence based on random numbers from a Mersenne twister, of the unbiased PT in

Figure 24 and of the biased BDPT from Section 5.3 in Figure 25. Note that we did

not properly normalize the Welch samples according to the number of MC samples

that were actually used to create them, and we assume a constant normalization in-

stead. Yet, Welch’s t-test seems to work regardless of the Welch sample distribution

7600 7800 8000

Corner PT Halton 1MC

7800 7900

Corner PT Halton 3MC

Figure 23. 10k Welch samples for the lower right 32× 32 pixel tile in the corner scene for a

path tracer based on Halton points. Left: on average one MC sample per pixel summed up for

one Welch sample. Right: three MC samples per pixel per Welch sample.
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0.0 0.5 1.0 0.0 0.5 1.0

Figure 24. Testing the unbiased PT based on Halton points in the corner scene against a PT

based on Mersenne random numbers. Left: on average one MC sample per pixel summed up

for one Welch sample, 10 spp. Right: three MC samples per pixel per Welch sample, 30 spp.

Both yield fairly uniform histograms.

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure 25. Testing the biased BDPT based on Halton points in the corner scene. Left: on

average one MC sample per pixel summed up for one Welch sample, 10 spp. Center: three

MC samples per pixel per Welch sample, 30 spp. Both cases have 10 Welch samples available

per test; if we sum up on average one MC sample per pixel but use 30 spp (right), the test

achieves similar, if not slightly better, quality.

less resembling a normal distribution than when using three MC samples per pixel per

Welch sample, and the tests yield qualitatively similar results.

Figure 26 reveals another issue: Due to the correlations in the Halton dimensions,

i.e., those used to place MC samples in the pixel plane, testing two renders, both of

which are based on Halton points, yields useless results. When testing a Halton-based

unbiased BDPT against either unbiased Halton based PT or BDPT, the corner regions

look at least a bit as expected, likely due to the larger influence of the light tracer

which does not depend on an explicit sample in the pixel plane.

5.9. Run Time and Memory Consumption

It took approximately three seconds on an Intel i7-6700 to run 110 Welch tests with

N1, N2 ∈ [10, 100], half of which used the Gaussian approximation, with an image

resolution of 1024 × 576 and a tile size of 32 × 32. Therefore, we did not consider

further optimizations or faster approximations, especially, since in a typical use case,

one would conduct only one Welch test at a time.
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0.0 0.5 1.0

PT Mersenne PT Halton

0.5 1.0

PT Halton PT Halton

0.0 0.5 1.0

BDPT Mersenne BDPT Halton

0.0 0.5 1.0

BDPT Halton BDPT Halton

0.0 0.5 1.0

PT Halton BDPT Halton

Figure 26. Unbiased PT and unbiased BDPT in the corner scene. Each image has 60 MC

samples per pixel and different random seeds, the test works on 20 Welch samples with 3 MC

samples per pixel per 32×32 tile. Whenever both renders are based on Halton points, Welch’s

t-test produces misleading results.

As for memory consumption, we store two additional frame buffers during ren-

dering with 1/322 the resolution of the original frame buffer. With sample set sizes

N1,2 up to the order of 103, we found 32-bit floating point numbers to be sufficiently

precise.

6. Conclusion

We showed how to apply Welch’s t-test to test supposedly unbiased renderers for bias

compared to a reference implementation. Welch’s t-test can help locate faulty im-

age regions even at low sample counts and detects bias much earlier than RMSE or

difference-image tests. Our color visualization proved useful at identifying particu-

larly biased image regions, while at very low sample counts, the p-value histogram

revealed errors that were not yet obvious in the color map, a difference image or

RMSE plot.

Our results suggest that Welch’s t-test is more reliable if it is applied to (ap-

proximately) normal distributed samples. Therefore, before using Welch’s t-test, de-
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pending on the scene, one should make sure to use an appropriate pixel tile size and

sample-per-pixel count within tiles to ensure at least roughly normal distributed Welch

samples. When in doubt, it may help to first test the reference against itself, and if the

test fails to produce a uniform histogram, fall back on some other method.

Limitations. The Welch test only tells us whether two distributions might have the

same mean. Therefore, we can only use it to detect incorrect rendering algorithms

when compared to a reference implementation which is known to work. We cannot

use it to assess the asymptotic error behavior, i.e., we cannot use it to tell which of

two algorithms converges faster.

Large p-values are no proof that two renderers converge to the same image, neither

is a uniform histogram of p-values; we can only use a large number of pixel tiles with

small p-values (e.g., < 0.01) as strong evidence that they do not. Since we apply

Welch’s t-test to many image tiles at once, we can use all the individual results at

once and thus, at least, decrease the chance of Welch’s t-test not finding existing bias.

Although it did work in most of our test cases, due to the numerical nature of the

problem, there is no guarantee that Welch’s t-test always detects existing bias at a

low sample count. In one example of particularly small bias, the test only detected

bias at a few thousand samples per pixel, which however was still less than what was

required to detect the bias using the RMSE plot.
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