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Uncertain Transport in Unsteady Flows
Tobias Rapp* Carsten Dachsbacher†
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(a) Backward diffusion barrier strength (DBS) (b) Transport uncertainty

Figure 1: We visualize transport under uncertainties in the Red Sea ensemble dataset. The backward DBS in (a) indicates material
surfaces that are maximally diffusive. Since the DBS assumes only small-scale stochastic deviations, we propose a complementary
visualization of the absolute scale of uncertainties in the Lagrangian frame (b).

ABSTRACT

We study uncertainty in the dynamics of time-dependent flows by
identifying barriers and enhancers to stochastic transport. This topo-
logical segmentation is closely related to the theory of Lagrangian
coherent structures and is based on a recently introduced quantity,
the diffusion barrier strength (DBS). The DBS is defined similar
to the finite-time Lyapunov exponent (FTLE), but incorporates dif-
fusion during flow integration. Height ridges of the DBS indicate
stochastic transport barriers and enhancers, i.e. material surfaces that
are minimally or maximally diffusive. To apply these concepts to
real-world data, we represent uncertainty in a flow by a stochastic
differential equation that consists of a deterministic and a stochas-
tic component modeled by a Gaussian. With this formulation we
identify barriers and enhancers to stochastic transport, without per-
forming expensive Monte Carlo simulation and with a computational
complexity comparable to FTLE. In addition, we propose a comple-
mentary visualization to convey the absolute scale of uncertainties
in the Lagrangian frame of reference. This enables us to study un-
certainty in real-world datasets, for example due to small deviations,
data reduction, or estimated from multiple ensemble runs.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Scientific visualization;
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1 INTRODUCTION

Although most experiments and simulations produce deterministic
data, uncertainty exists in all measured or simulated flows. This
uncertainty might be estimated from repeated simulation runs or
measurements, it might be introduced by data processing and re-
duction, or it can be explicitly modeled. Studying uncertainty is
especially relevant in unsteady flows, where small variations in the
initial conditions can cause dramatic changes to the flow. In this
paper, we investigate uncertainties in the Lagrangian transport, i.e.
the advection of a material by the flow.

For deterministic flows, the Lagrangian coherent structures (LCS)
identify a topological skeleton of the flow dynamics in a finite-time
interval. Recent work has extended the definitions of coherent struc-
tures to uncertain flows. The probabilistic [4] or averaged [21]
transport is estimated using a Monte Carlo approach, i.e. by advect-
ing a large amount of particles. While the LCS are theoretically well
established, this is, to our knowledge, not the case for its probabilis-
tic extension.

Based on recent work from Haller, Karrasch, and Kogelbauer [8,
9], we employ the diffusion barrier strength (DBS) to identify trans-
port barriers and enhancers to stochastic flows. These are material
surfaces that show minimal or maximal stochastic cross flux. By
assuming only small stochastic deviations, Monte Carlo integration
is avoided and only the deterministic part of the flow has to be
advected. To this end, we first define uncertain unsteady flows as
stochastic differential equations that consist of an advective com-
ponent and an added stochastic component modeled as a Gaussian.
The central limit theorem makes this assumption reasonable. In
this paper, we discuss how to model uncertainty information in this
stochastic differential equation, e.g. due to data reduction, to model
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small-scale deviations, or to model aggregated ensemble members.
To complement the visualization of stochastic transport barriers
and enhancers, which is based on the assumption of small-scale
deviations, we propose a novel visualization of the scale of uncer-
tainties encountered during advection. In several experiments, we
investigate the relationship between the stochastic transport barriers
and enhancers, Lagrangian coherent structures, and its probabilistic
extensions.
To summarize, our contributions are:

• We model stochastic flows with small deviations to Gaussian
flow fields (Sect. 5),

• We propose a novel visualization of transport uncertain-
ties (Sect. 6),

• We apply the theory of stochastic transport barriers and en-
hancers to real-world data and compare it to probabilistic ex-
tensions of the LCS (Sect. 7).

2 RELATED WORK

Uncertainty visualization has been an active research topic in the
field of visualization for more than two decades [12]. Several sur-
veys [1, 16] motivate uncertainty visualization, introduce its chal-
lenges, and different sources of uncertainty. In this study, we focus
on the visualization of uncertain and unsteady flows. We recapitu-
late the theory of Lagrangian coherent structures before we discuss
uncertain Lagrangian approaches.

Lagrangian Coherent Structures LCS are attracting and re-
pelling material surfaces that separate regions of different flow behav-
ior in a finite-time interval [7]. Since these material surfaces show
minimal or maximal cross flux, they control the global transport
and mixing behavior [15, 22]. Due to differing views on coherency,
several approaches exist to characterize LCS [6], each of which
may lead to different results. The finite-time Lyapunov exponent
(FTLE) measures the separation or attraction of infinitesimally close
tracer particles and is closely related to the LCS [10], which can
be defined as height ridges of the FTLE. The extraction of LCS as
height ridges has been investigated by Sadlo and Peikert [18] and
subsequent studies [17, 20]. Although research on the identification
of LCS is still ongoing, the FTLE has been established as a powerful
visualization of the time-dependent flow dynamics. The efficient
computation of the FTLE has been an active research area since it
requires a dense integration of tracer particles [2, 14]. In general, to
compute the FTLE in an n-dimensional time-dependent flow v(x, t),
a particle at position x0 ∈ Rn at time t0 is advected to time t1 by
solving an ordinary differential equation

dx(t) = v(x(t), t)dt, x(t0) = x0. (1)

The FTLE is computed from the flow map φ(x, t0, t1), which maps a
position x at time t0 to a position at time t1. From the spatial gradient
∇φ , the right Cauchy-Green strain tensor is defined as:

C(x, t0, t1) := ∇φ(x, t0, t1)>∇φ(x, t0, t1). (2)

The FTLE is then computed using the largest eigenvalue λmax of the
strain tensor:

FTLE(x, t0, t1) :=
1

|t1− t0|
log
√

λmax(C(x, t0, t1)). (3)

The FTLE thus describes the average exponential stretching of an
infinitesimally close volume at time t0 when the flow is integrated to
t1.

Uncertain Lagrangian Transport In uncertain flows, particles
are advected stochastically. The flow map thus describes a distri-
bution of positions where particles might be advected. Schneider
et al. [21] estimate this stochastic flow map using a Monte Carlo
approach. The authors then estimate the variance in the stochastic
flow map, which defines the finite-time variance analysis (FTVA),
a FTLE-like metric. Hummel et al. [11] discuss the comparative
visual analysis of Lagrangian transport in CFD ensembles based on
the FTVA. Guo et al. [4] propose two extensions of the FTLE: by
estimating the expectation of the strain tensor and then computing
a single FTLE value (FTLE-D), or by estimating a distribution of
FTLEs (D-FTLE). Both approaches depend on Monte Carlo esti-
mation of the stochastic flow [5]. In this study, we present a new
quantity that does not require expensive Monte Carlo estimation and
is built upon a more solid theoretical foundation.

3 STOCHASTIC FLOWS

To visualize uncertainty in the transport in unsteady flows, we first
introduce a stochastic flow as a deterministic flow with small stochas-
tic deviations. More formally, we model an uncertain flow by a
stochastic differential equation (SDE), i.e. we extend the ordinary
differential equation from Equation 1 with a stochastic component

dx(t) = v(x(t), t)dt︸ ︷︷ ︸
deterministic

+
√

sB(x(t), t)dW (t)︸ ︷︷ ︸
stochastic

. (4)

Here, W (t) is an n-dimensional Wiener process with disturbance√
sB(x(t), t). The Wiener process W consists of independent stan-

dard Gaussian distributions at every time t. The notation dW (t)
represents a random variable that is distributed with respect to a
standard, multivariate Gaussian. The disturbance, which controls the
scaling and anisotropy, is separated into a scaling parameter s > 0
and a scale-independent matrix B ∈ Rn×n. In the following, we will
assume only small deviations, i.e. s is small.

Numerical Integration In general, SDEs can be solved by nu-
merical integration using e.g. the Euler-Marayuma or the Runge-
Kutta methods for SDEs [13]. These Markov chain Monte Carlo
strategies involve sampling of the stochastic component. The nu-
merical integration is thus significantly more involved compared to
deterministic flows since it requires a large amount of stochastically
integrated particles. At the same time, it is non-trivial to decide how
many particles should be integrated. For these reasons, we want to
avoid the numerical integration of stochastic flows.

4 STOCHASTIC TRANSPORT BARRIERS AND ENHANCERS

In this section, we introduce stochastic transport barriers and en-
hancers. We focus on an intuitive introduction and refer to the work
of Haller, Karrasch, and Kogelbauer for the formal derivation [8, 9].
Transport barriers are inhibitors of the spread of substances in a
flow, whilst transport enhancers maximize such diffusion or mixing
processes. Remarkably, these barriers and enhancers do not depend
on the actual value of the diffusivities, i.e. the scaling parameter s.
They are also well-defined for deterministic flows when we consider
the case of s→ 0. In this case, they present an alternative to the
Lagrangian coherent structures, but do not depend on any specific
definition of coherency. The diffusion barrier strength (DBS) visual-
izes the barriers and enhancers, which can be defined as ridges of the
DBS, similar to the LCS that can be defined as ridges of the FTLE.

The DBS is computed from a deterministic flow v and a diffusion
component that describes the amount and anisotropy of diffusion at
each point in space and time. First, we introduce the tensor T from
the gradient of the flow map ∇φ and the diffusion D ∈ Rn×n as

T (x, t0, t) := [∇φ(x, t0, t)]
−1 D(x, t) [∇φ(x, t0, t)]

−T . (5)
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If the diffusion is isotropic, i.e. D≡ I, then

T (x, t0, t) = C(x, t0, t)−1. (6)

However, we have to incorporate the diffusion D(x, t) at every time
in the interval [t0, t1], in contrast to the FTLE that only considers
the deformation at the end of the time interval. Therefore, the time-
averaged, diffusivity-weighted right Cauchy-Green strain tensor C̄
is computed as

C̄(x0, t0, t1) :=
1

|t1− t0|

∫ t1

t0
det(D(x, t))T (x, t0, t)−1 dt, (7)

where x is the position during integration at time t, i.e. x= φ(x0, t0, t).
Since we need only the inverse of T , we compute

T (x, t0, t)−1 = [∇φ(x, t0, t)]
ᵀ D(x, t)−1 [∇φ(x, t0, t)] (8)

instead of Equation 5. Lastly, Haller et al. [8] define the DBS as the
trace of C̄. Since this quantity is exponential, we take the logarithm
for visualization:

DBS(x0, t0, t1) := log
(
tr(C̄(x0, t0, t1))

)
. (9)

Although the integral in Equation 7 might seem daunting at first, we
are already performing this integration when computing the flow
map φ . Thus, to compute the DBS, we integrate the deterministic
flow v and at each step evaluate T−1 to accumulate the diffusivity-
weighted and time-averaged strain tensor C̄.

5 MODELING DIFFUSION

To compute the DBS, we require a scale-independent diffusion com-
ponent D. For completely deterministic flows, we set the diffusion
to the identity matrix, i.e. D = I. For stochastic flows, with a scale-
independent disturbance B (cf. Equation 4), the diffusion is defined
as

D =
1
2

BBᵀ. (10)

For uncertain and unsteady flows modeled by Gaussians, we now
discuss how to obtain B. The scale-independent disturbance repre-
sents the anisotropy and the scaling relative to other regions of the
flow. Given a Gaussian with covariance C(x, t), we want to separate
it into a global scaling parameter s and a disturbance B(x, t).

Since the disturbance should be, on average, centered around the
identity matrix I, we standardize all covariance matrices. That is,
given the set of all covariance matrices C , we subtract the mean of
all variances, i.e. the diagonal elements of each covariance matrix
C ∈ C . Then, we divide out the maximal standard deviation over all
dimensions:

B(x, t) =
C(x, t)− IµC

σmax
C

, (11)

where µC is the mean of all variances:

µC :=

 E[C0,0]
...

E[Cn−1,n−1]

 (12)

and σmax
C is the maximum of the standard deviation of all variances

in C :

σ
max
C := max

(√
E[Ci,i−µCi,i ]

)
, where i = 0 . . .n−1. (13)

Although a different scaling than σmax
C could be used since it is

canceled out in Equation 7, our definition increases the numerical
stability.

6 VISUALIZING TRANSPORT UNCERTAINTY

By design, the diffusion barrier strength ignores the absolute scale
of stochasticity, i.e. the amount of uncertainty of the transport. How-
ever, this quantity is still relevant, especially if the amount of stochas-
tic deviations varies strongly in the flow. To this end, we propose a
visualization that complements the DBS by directly conveying the
scale of stochastic deviations.

Although it is possible to directly visualize the time-dependent
variance of a Gaussian flow field, we are interested in the uncer-
tainty of the transport, which is inherently defined in a Lagrangian
frame. We propose to measure the uncertainty encountered during
the integration of a tracer particle. In other words, this visualizes
the transport of uncertainty in the flow. Moreover, this enables us to
integrate only the deterministic part of the stochastic flow and avoid
stochastic numerical integration.

First, we discuss how to measure the uncertainty of a Gaussian
flow with covariance C(x, t) at a single point in time and space. Since
we are not interested in the variance along individual dimensions,
we employ the generalized variance [23,24] defined as |det(C(x, t))|.
Intuitively, this measures the multidimensional scatter of a Gaussian.
To enable comparisons in different dimensions, we standardize this
quantity by taking the n-th root in n-dimensional space. Lastly, we
average this measure over time during the material transport:

σT (x0, t0, t1) :=
1

|t1− t0|

∫ t1

t0
|det(C(x, t))|

1
n dt, (14)

where x = φ(x0, t0, t).

7 RESULTS

In this section, we visualize the uncertain transport in a synthetic
and a real-world dataset. Additional results, datasets, as well as
exemplary source code can be found in the supplementary material.

7.1 Double Gyre
This two-dimensional synthetic and time-dependent vector field de-
scribes two counter-rotating gyres. It is commonly used for the
validation of FTLE and LCS. In the supplementary material, we de-
scribe the definition of the Double Gyre flow and perform additional
experiments. In the following, we study the time interval [0,10] and
integrate forward in time.

In Fig. 2, we employ a Gaussian error model estimated during
data reduction to a space-time grid of size [256× 128× 10]. In
(a), we have stochastically advected a large amount of randomly
distributed particles to visualize separating manifolds in the flow.
The DBS shown in (b) clearly corresponds to these structures. The
uncertainty of the transport is visualized in (c) and indicates a high
uncertainty in the midst of both gyres. The DBS is low in these
regions. For reference, we illustrate the FTLE of the mean flow in
(d), which does not consider the stochastic component of the flow.
The FTLE indicates the presence of several smaller features around
the two gyres that are not depicted in the density visualization in (a)
or the DBS (b) and are located in regions of high uncertainty (c).

The mean D-FTLE from Guo et al. [4] shown in (e) indicates a
larger amount of structures. The center of the left gyre even shows
additional structures that are not present in the FTLE or the advected
particles (a). The transport uncertainty indicates a high uncertainty
in this area (c). However, the variance of the D-FTLE (f) is only high
near the central barrier of the flow. At the same time, the presence
of this barrier is far from uncertain. A high variance in the D-FTLE
thus does not necessarily imply uncertainty of the transport barriers.

7.2 Red Sea
This dataset from the SciVis contest 2020 is an ensemble simulation
of the circulation dynamics in the Red Sea [19]. Eddies in the ocean
play a major role in the transport of energy and particles. Uncertainty
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Figure 2: The Double Gyre dataset with uncertainty estimated during data reduction to a grid of size [256×128×10].

(a) Temperature t0 (b) Temperature t1

Figure 3: The mean temperature distribution in t0 (a) and t1 (b)
illustrates the diffusion of temperature in the Red Sea and is closely
aligned with the stochastic enhancers and barriers characterized by
the DBS.

is estimated from 50 ensemble members created from perturbed ini-
tial conditions. Here, we estimate the mean and covariance from
the individual members and analyze the resulting uncertain flow.
Since the depth of the dataset is irregularly spaced, we have resam-
pled it to a grid of size 500×500×150 with 60 time steps. To aid
the understanding of the dataset, we have added topography and
bathymetry [3] to our visualizations.

In Fig. 1 (a) the backward DBS over a time interval of 182 hours
is shown and indicates enhancers to stochastic transport. In Fig. 3 (a)
and (b) we visualize the diffusion of the temperature over time near
the surface. Note that this diffusion corresponds to the enhancers
indicated by the DBS. The transport uncertainty shown in Fig. 1 (b)
indicates a high uncertainty in the gulf of Aden, the lower right part
of the dataset. This suggests that we should investigate this region in
more detail, for example by looking at individual ensemble members.
Note that the DBS visualizes only the transport of the aggregated
stochastic flow, but does not consider individual ensemble members.

7.3 Performance
All of our evaluations were performed using GPU acceleration on an
NVIDIA Quadro RTX 8000 with CUDA. To integrate deterministic
flows, a fourth-order Runge-Kutta scheme is used. Stochastic flows
are integrated using the Euler-Maruyama method with a constant
number of 100 Monte Carlo runs.

Performance measurements for different datasets are shown in

Table 1: Performance measurements of our datasets.

Dataset Resolution FTLE DBS FTLE-D

Double Gyre 1024×512 4.1ms 7.4ms 2173ms
Red Sea 15002×150 2739ms 5193ms 2,129,030ms
Heated Cylinder 600×1800 258.7ms 680.0ms 143,243ms
Flow Around Corners 2250×750 110.8ms 456.2ms 220,309ms

Table 1. The DBS requires evaluating Equation 8 during each inte-
gration step. Computing the DBS thus takes two to four times longer
than the FTLE. In comparison, methods that depend on stochastic
integration increase the runtime by several orders of magnitude.

7.4 Discussion
Our results show that the DBS is significantly faster to compute than
probabilistic extensions of the FTLE since no stochastic integration
is performed. In our experiments, the DBS closely aligns with the
density of stochastically advected particles, whilst many features
from the FTLE and its probabilistic extensions are not visible. In fact,
probabilistic extensions of the FTLE show features of possible real-
izations of an uncertain flow. In contrast, the DBS indicates features
that exist in an inherently stochastic flow. Although both approaches
have merit, it makes the probabilistic D-FTLE hard to interpret. At
first glance, the variance of the D-FTLE might suggest uncertain-
ties of the transport barriers and enhancers, however, this is not the
case. Indeed, none of the approaches convey the actual amount of
uncertainty encountered during integration. Our visualization of the
transport uncertainties efficiently illustrates this uncertainty in the
Lagrangian frame, thus providing additional insights.

8 CONCLUSION

In this study, we introduce the theory of stochastic transport barri-
ers and enhancers to the visualization community and discuss its
application to Gaussian flow fields. The diffusion barrier strength,
a quantity similar to the FTLE, visualizes the transport behavior in
uncertain and unsteady flows. Compared to probabilistic extensions
of the FTLE, the computation is significantly more efficient since
no stochastic integration is performed. Moreover, the visualization
is considerably simplified since the results are not probabilistic or
averaged. By design, the DBS does not consider the absolute scale
of deviations, which would require stochastic integration. This as-
sumption is problematic if regions of strong uncertainties exists in
the flow. To this end, we propose a complementary visualization of
the transport uncertainties that measures generalized variance in the
Lagrangian frame of reference.
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