
Eurographics Symposium on Rendering (DL-only Track) (2020)
C. Dachsbacher and M. Pharr (Editors)

Temporal Sample Reuse for Next Event Estimation and Path
Guiding for Real-Time Path Tracing

Addis Dittebrandt, Johannes Hanika and Carsten Dachsbacher

Karlsruhe Institute of Technology, Institute for Visualization and Data Analysis, Germany

Abstract

Good importance sampling is crucial for real-time path tracing where only low sample budgets are possible. We present two
efficient sampling techniques tailored for massively-parallel GPU path tracing which improve next event estimation (NEE) for
rendering with many light sources and sampling of indirect illumination. As sampling densities need to vary spatially, we use an
octree structure in world space and introduce algorithms to continuously adapt the partitioning and distribution of the sampling
budget. Both sampling techniques exploit temporal coherence by reusing samples from the previous frame: For NEE we collect
sampled, unoccluded light sources and show how to deduplicate, but also diffuse this information to efficiently sample light
sources in the subsequent frame. For sampling indirect illumination, we present a compressed directional quadtree structure
which is iteratively adapted towards high-energy directions using samples from the previous frame. The updates and rebuilding
of all data structures takes about 1ms in our test scenes, and adds about 6ms at 1080p to the path tracing time compared to
using state-of-the-art light hierarchies and BRDF sampling. We show that this additional effort reduces noise in terms of mean
squared error by at least one order of magnitude in many situations.

CCS Concepts
• Computing methodologies → Ray tracing; Visibility;

1. Introduction

Rasterization has been the standard real-time rendering algorithm
for decades since its early implementation in hardware and effi-
ciency. Current graphics processing units (GPUs) are capable of
processing hundreds of millions of primitives per frame at inter-
active rates. However, rasterization determines primary visibility
and approximating complex or global illumination is left to sec-
ondary techniques resulting in complex and deep pipelines. For ex-
ample, shadow computation although conceptually simple resulted
in myriads of techniques [ESAW11], shading with many lights re-
quires efficient culling [OBA12] and intricate shadow computa-
tion [OSK*14]. For indirect illumination, various approaches have
been adapted to rasterization [KD10; CNS*11; RDGK12].

The recent advent of hardware ray tracing enables far more flex-
ible real-time rendering algorithms. In particular, this includes the
introduction of path tracing, which has been the standard in and
exclusive to offline rendering for many years [FHH*19]. However,
path tracing (or Monte Carlo techniques in general) comes at a cost:
Noise. With real-time budgets, only few paths (or even just one)
can be computed per pixel, leading to severely noisy images. Many
recent approaches attempt to denoise these images by leveraging
temporal coherence between successive frames as well as spatial

coherence within a frame [MMBJ17; CKS*17; SKW*17]. Further-
more, denoising generally introduces artifacts like lag and blurri-
ness which stem from this temporal and spatial reuse. Instead of
only “repairing” images after rendering, it is thus essential to re-
duce the image noise by improving the sampling quality. This im-
portance sampling, however, is challenging even in offline render-
ing (see e.g. recent work [VHH*19]) as the shape of the integrand
is generally unknown.

In this paper we improve importance sampling for real-time path
tracing in dynamic scenes, where the dynamic content requires the
sampling to adapt over time. Obviously, these sampling techniques
must not require precomputation exceeding the budget within one
frame. To this end, we exploit, similar to many of the aforemen-
tioned approaches, temporal coherence by reusing the drawn sam-
ples (visibility queries) in one frame to construct improved sam-
pling densities for the subsequent one. We focus on two pressing as-
pects in current real-time path tracing: next event estimation (NEE)
with many light sources, and sampling of indirect illumination.

With many lights and complex geometry, the decision which
light to sample for NEE is nontrivial. However, often the decisive
factor is visibility, i.e. only light sources that are not blocked by
scene geometry can contribute to the shading of a surface point. To

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

Adapt Octree
Section 6.2

Construct VLC
Section 4.1

Adapt CDQ
Section 5.1

Traverse Octree
Section 6.3

Sample VLC
Section 4.2

Sample CDQ
Section 5.2

Sample Exploration
Section 4.3

Sample BRDF

. . .

. . .

. . .

. . .

Preprocessing Path Tracing
NEE

Indirect Bounce

Figure 1: Execution of components over a frame, split into a preprocessing and path tracing step. Arrows represent dependencies. Each leaf
of the octree contains a unique Visibility Light Cache (VLC) and Compressed Directional Quadtree (CDQ) to account for spatial variation.
During preprocessing, each VLC/CDQ and the octree itself is constructed/adapted based on samples of the previous frame. During path
tracing, the adapted octree is traversed to access VLC and CDQ for importance sampling of visible lights (NEE) and high-energy directions
(Indirect Bounce), respectively. Secondary techniques are used to explore new lights and to importance-sample directions according to BRDF.

this end, we store lights that had visible samples in the previous
frame in a Visibility Light Cache (VLC, section 4). Sampling then
focuses on this set of lights (but also includes previously occluded
lights). With a high-quality importance sampled selection based on
Linearly Transformed Cosines (LTCs) for area lights [HDHN16],
we achieve sampling closer to product importance sampling.

When computing indirect illumination, standard BSDF sampling
is inadequate and causes fireflies when incident light covers small
solid angles. To improve this sampling step, we introduce a Com-
pressed Directional Quadtree (CDQ, section 5) inspired by offline
path guiding [MGN17]. Our trees require only very few bits (32-
128 bits). This compact representation trades memory usage for
sampling quality, but is tractable for real-time and achieves signifi-
cant variance reduction in many cases.

Obviously visibilities and sampling densities vary over the scene
geometry. To adapt spatially, we partition the scene using an oc-
tree and provide individual estimators (VLCs and CDQs) per leaf
node (section 6). The key is that we adapt this octree structure tem-
porally based on the number of samples that fall within each leaf
node. For this, we introduce a simple split/collapse algorithm with
configurable thresholds. The advantage is that this structure auto-
matically balances the available samples among all leaves, improv-
ing robustness of our techniques (see section 4.1 for caveats due to
the fixed subdivision scheme). With a readily available octree struc-
ture before path tracing, we can also preallocate space for storing
samples, instead of rearranging them in memory afterwards.

To summarize, the key contributions of this paper are:

• a Visibility Light Cache for product importance sampling NEE,
• a Compressed Directional Quadtree for guiding sampling of in-

direct illumination,
• a temporally- and sample-adaptive octree to organize estimators.

2. Overview

The VLC, CDQ and octree are mostly independent techniques and
are discussed in the sections 4, 5 and 6, respectively. This sec-
tion serves as a high-level overview on the combined interaction

of their components as shown in figure 1. We divide execution
of each frame into the two passes preprocessing and path trac-
ing. During preprocessing, samples from the previous path tracing
are used to construct the VLC and adapt the CDQ of each octree
leaf node. For the VLC, the set of lights with unoccluded sam-
ples is computed (section 4.1) and the CDQ is adapted towards
high-energy directions (section 5.1). The observed sample counts
are used to adapt the octree with a simple threshold-based split-
collapse scheme (section 6.2).

During path tracing, the octree is traversed at each surface in-
teraction to access the contained VLC and CDQ (section 6.3). For
Next Event Estimation (NEE), the VLC is used to select a visible
light source (section 4.2). To discover new lights and ensure unbi-
asedness, a secondary exploration technique is used (section 4.3).
The decision on which technique (VLC/exploration) to use is made
stochastically based on a configurable fraction (typically around
10% for exploration). For the indirect bounce, the CDQ is used to
sample a high-enery direction (section 5.2). Just as with NEE, a
secondary technique is used. The BRDF is used in this instance
with a configurable fraction (typically around 50%) to bound noise
in the case of highly specular materials. All techniques are com-
bined with MIS and the balance heuristic. To achieve this, they are
specifially designed for efficient PDF computation (the VLC in par-
ticular).

3. Background and Related Work

Light transport Illumination on surfaces is computed by inte-
grating the incident radiance field multiplied by the bidirectional
scattering distribution function (BSDF), which describes the re-
flectance properties of the surface. This integration is usually per-
formed using the Monte Carlo method, i.e. by constructing esti-
mators which employ random sampling. The probability density
function (PDF) which determines the distribution of the samples
has a large impact on the error of the estimate, manifesting itself in
variance. Thus, the search for good PDF is of great importance and
central to our work. In case there are multiple candidate PDF which
perform well in some parts of the integrand, it is possible to opti-

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

(b) Deduplication (c) Neighbor Merging (d) Bucket Merging

0

1

0

1

3

3
2

4

1

0

3
2

4

1

0

2

4

0

1

0

4

2

1

0

3

1

0

3

1

0

1 3

(a) Path Tracer (e) Path Tracer

Figure 2: Overview of Visibility Light Cache (VLC). (a) Samples from previous frame are placed into a region-specific buffer location. (b)
Visible samples are deduplicated through a hash table. (c) Neighbor hash tables are merged to diffuse information (light 3 was not present
in hash table). (d) Buckets of hash table are merged to minimize bucket count (capacity: 2). (e) Path tracer in next frame uses VLC. Buckets
are selected uniformly. Lights in bucket are then importance sampled. For continued exploration, a fraction of samples is created with an
exploration strategy (sample for light 2).

mally combine these into a joint esimator by multiple importance
sampling [VG95].

Direct illumination One particularly efficient sampling strategy is
next event estimation, which connects transport path vertices to the
anticipated next event on the light sources. Intuitively it computes
the direct illumination contribution, and has been studied exten-
sively [SWZ96]. Further work has refined this to build hierarchical
acceleration structures for the emitters [WFA*05] and used these to
produce unbiased estimators [DWB*06]. This approach has been
perfected in production renderers [CK18], extended with BRDF
awareness [LXY19] and refined for special cases like directional
emission and volume scattering [FHH*19].

Another line of work to reduce the number of light sources to
consider at every path vertex sorts light sources by contribution
[War94] and more recent work considers shorter, learned lists of
lights [VHH*19, Keller’s presentation]. Similar considerations lead
to hierarchical structures [VK16; VKK18]. To gain real-time per-
formance, the contribution of light sources has been evaluated an-
alytically [HDG99; Arv95; HDHN16], and fast ways to sample a
list of lights on the GPU have been devised [KWR*17; Wal77]. We
use a combination of the above ideas, and propose to use a learned
structure for next event estimation in conjunction with a path guid-
ing method to improve indirect lighting contributions.

Path guiding These methods have been around for some time
[Jen95; HP02] but only relatively recently gained some traction be-
cause improved algorithms [VKŠ*14; MGN17; DK17] made path
guiding useful in practical applications [VHH*19]. In these ap-
proaches, guide cache records are stored throughout the scene and
are used to construct sampling densities that follow the incident
radiance field. Ideally, these distributions also include the BSDF
[HEV*16], but this comes at a performance penalty that is yet to
be overcome for real time applications. We employ path guiding
for indirect lighting, and the parts of the transport that are not han-
dled by our next event estimation technique (non-geometric light
sources such as an environment map).

Data structures Guiding caches store an approximation of a di-
rectional distribution, by means of Gaussian mixtures [VKŠ*14] or

quad trees [MGN17]. We use the quad tree approach, and use a spe-
cial compression technique suitable for the GPU [Jac89], though
there are possible alternative encodings [DIP14]. To store the cache
records themselves in an index structure, we use a sparse octree. It
has been shown that hierarchical hashed grids can be very effective
on the GPU as well [BFK19].

4. Visibility Light Cache for Next Event Estimation

Explicit sampling of light sources via NEE is a critical aspect for
path tracers, since light sources can become very small and there-
fore only cover a very small solid angle (or none when handling
point light sources) while still providing much contribution. This
makes BSDF sampling ineffective, causing fireflies. Additionally, if
light sources are many, we have to select one for sampling. This se-
lection probability becomes quite important with increasing scene
complexity. In particular, many light sources might not be visible,
so selecting them would increase noise considerably. The limited
path budget in real-time applications only aggravates this issue.

We therefore propose the Visibility Light Cache (VLC) which,
for a given region, extracts set of visible lights from light sam-
ples in the previous frame. Figure 2 gives an overview of this pro-
cess which is explained in more detail in section 4.1. From this
set we select a light using high quality importance sampling with
LTCs [HDHN16]. As we only consider visible light sources, we
get closer to product importance sampling, but only under special
circumstances; see section 4.2 for more details. As the VLC can
only select lights that are already known, a secondary strategy is
needed to explore new lights. This exploration strategy is presented
in section 4.3.

4.1. VLC Construction

The construction algorithm takes light samples from the previous
frame (figure 2 (a)) and extracts the set of visible lights to form the
VLC used for importance sampling.

Deduplication (figure 2 (b)) is the primary task of extracting vis-
ible lights. A light sample consist of an identifier for the light, as
well as a single bit that indicates whether the light was visible or

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

not. A visible light can be represented by multiple visible samples,
so we need to remove duplicates. We dispatch a compute shader
where each work group handles one region. Samples are inserted
into a hash table in shared memory with the light identifier as key.
To handle collisions, we use a hash table with buckets (not shown
in the figure). Invisible samples are discarded directly. We also tried
to improve sampling by estimating fractional visibility from these
samples, but this did not significantly improve the result in diffi-
cult situations. To bound computation time, only a fixed maximum
number of the available samples is processed per region. To ensure
representative selection, we gather samples all across the buffer.

We then merge the caches of neighbor regions (figure 2 (c)),
to counteract that samples are not divided uniformly among the
leaves. Due to our octree subdivision strategy (section 6) one leaf
might receive almost all samples, while another leaf receives almost
none. The former will just subdivide again to distribute the samples
among more leaves, but the latter cannot compensate the low sam-
ple count. This is especially problematic with surfaces that are not
exactly axis-aligned. As a result, the constructed VLC would be
of poor quality (i.e. instability, as lights compete for few samples).
Merging has the additional effect that newly discovered lights can
propagate between neighboring caches. For occasions where the
exploration strategy rarely samples an important light, this ensures
that the light needs to be sampled by only one region, instead of by
every region individually, leading to higher robustness.

Finally, the hash table is compacted (figure 2 (d)) to form the
VLC which can then be used to sample a light source in the next
frame (figure 2 (e)). This is described in more detail in section 4.2.

4.2. Importance Sampling of VLC

With the VLC, we want to perform high-quality selection of the
contained area light sources. We leverage linearly transformed
cosines (LTCs [HDHN16]) to compute sampling weights for each
light. This technique was originally proposed for approximate
shading with area light sources in closed-form. It can just as well be
used for high-quality importance sampled selection of area lights
with low variance, since the sampling weights are approximately
proportional to the light contributions. Since only visible lights are
considered, it gives almost perfect product importance sampled se-
lection, assuming uniform emitters and full visibility of all lights to
all contained surface points.

To sample a light source for a shading point, we construct a cu-
mulative distribution function (CDF). As our importance measure
incorporates information about the surface point itself, we cannot
precompute the CDF for each region, but we instead have to do
so on-demand for each surface point by linearly scanning through
the lights. This, however, is very expensive even with modest light
counts. Instead of iterating through all of them, the VLC is divided
into a variable number of buckets with fixed capacity which the
lights are distributed into. When selecting a light, a bucket can then
first be chosen with uniform probability and only the lights con-
tained in the single bucket are iterated over. For PDF computation,
we need to efficiently retrieve the bucket that a light is possibly
contained in. For that, we distribute lights deterministically among
the buckets via hashing. In our instance, we use a plain modulo

Algorithm 1: Branch-friendly VLC and Exploration sampling
Input: vlc, surface
Output: light, pdf

doExploration← rng()< fraction;
if doExploration then

light← sampleExploration(); // O(1)
bucket← light.idx mod vlc.bucketCount; // calc bucket

else // sample VLC
light← null;
bucket← brng() · vlc.bucketCountc; // sample bucket

end

// first VLC traversal to accumulate weights
acc← 0,weight← 0;
for light′ ∈ vlc.buckets[bucket] do

weight′← calcLightImportance(surface, light′);
acc← acc+weight′;
if light = light′ then // find light for explor.

weight← weight′;
end

end

if ¬doExploration then
// second VLC traversal to select light
light,weight← sampleVLC(vlc, surface, bucket, acc);

end

pdf← fraction ·pdfExploration(light); // O(1)
pdf← pdf+(1− fraction) ·weight/(acc ·bucketCount);

operation against the light identifier. Obviously, with many lights,
the sampling quality degrades considerably with this technique, but
it ensures a fixed computation budget, which is paramount for in-
teractive rendering. To keep register pressure low, we do not store
the CDF explicitly but traverse the bucket twice (once to accumu-
late all sample weights for normalization, and then to select a light
source).

The hashing method has the disadvantage that the buckets may
not be filled evenly. As such, it is not clear how many buckets are
needed given just the number of lights. We therefore construct the
VLC by taking the hash table from section 4.1 and merge buckets
bottom-up, as long as the capacity limit of each bucket is not ex-
ceeded (figure 2 (d)). Additionally, the light count may vary slightly
from frame to frame, due to almost unimportant lights being rarely
sampled. Normally, this is not problematic. But if this small varia-
tion causes a variation in the number of buckets, flickering artifacts
appear. To combat this, we use a hysteresis approach: When merg-
ing buckets to a bucket count lower than in the previous frame, the
capacity is artificially reduced to, e.g., 75%. After the final buckets
are constructed, we sort the lights inside a bucket by their identifier
to improve sampling stability.

4.3. Exploration Strategy

The VLC is only capable of selecting lights which were already se-
lected in the previous frame. As such, new or yet unknown lights
are never selected, resulting in a biased technique. A secondary

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

“exploration” technique is needed which we combine with the VLC
through MIS. The basic requirement for this technique is to be
cheap to evaluate, ideally in constant time, since we already put a
lot of computational effort into sampling the VLC with high qual-
ity. The sampling quality does not need to be especially good ei-
ther, since we combine with the VLC right away. We thus opted for
a constant-time sampling technique by precomputing a global PDF
on the CPU over all light sources using the alias method [Wal77].
This is done every frame. The major problem of this approach is
that the relationship between surface point and light source (e.g.
distance, relative angles) is completely lost. We therefore use the
following heuristic weights:

1. Energy of the light
2. Change of the light (e.g. energy and/or position)
3. Distance from light to camera

(1) gives higher weight to brighter lights. (2) gives higher weight
to dynamic and/or appearing lights for improved reactivity. (3) is
used as a cheap proxy for the distance between light and surface
point. This is obviously only reasonable for points that are close to
the camera. We compute separate PDFs for each heuristic. They are
then blended with configurable weights and normalized to form the
final PDF given as input to the alias method.

At each surface interaction, a stochastic decision is made to sam-
ple either the VLC or exploration technique through a configurable
fraction. In most instances, no more than 10% of samples should be
generated by the exploration technique, because the sampling qual-
ity is typically vastly inferior to the VLC, resulting in increased
noise.

Since we combine both techniques through MIS, we need to ef-
ficiently compute the PDF of the other technique. For the explo-
ration strategy, this requires a traversal through the bucket in which
the sampled light might reside. Modern GPUs execute groups of
threads in lockstep, but the technique is selected with a random
number. Therefore virtually all groups have to execute both tech-
niques. Thus, a naive implementation through separate code paths
for VLC and exploration sampling would effectively cause three
traversals of the VLC. But VLC traversal is the most expensive
aspect, as it is computationally linear in bucket size. We resolve
this issue by performing combined sampling of both techniques as
shown in algorithm 1. The general idea is that we hijack the first
traversal of the VLC, so that threads that have elected to use the
exploration strategy use this traversal to also find the sampled light
source in the VLC and write out the respective weight. Together
with the accumulated weights, the PDF of the VLC can be com-
puted. Just as with plain VLC sampling, two traversals are needed.

5. Compressed Directional Quadtree for Path Guiding

Guiding of indirect rays promises great variance reduction, espe-
cially if features with high contribution cover a small solid an-
gle. But most techniques are exclusive to offline rendering due
to needed precomputation and a large computational and mem-
ory overhead. We base our work on [MGN17] to achieve real-time
path guiding. Directions are mapped to 2D through cylindrical co-
ordinates. In this space, a directional quadtree structure is used for

0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0LSB MSB
12 16840

child(1,2) = 6 child(6,1) = 13

child(nodeIdx, child) := 4∗ (rank(nodeIdx) + 1) + child

Figure 3: Mapping of Sphere onto octahedron space, topology of
quadtree as represented by a bit field and traversal of quadtree for
a given direction. Quadtree is stored breadth first with a single bit
per node. Rank operations are used to locate children of nodes.

importance sampling which approximates the radiance field of a re-
gion. Regions are also embedded in the leaves of an octree structure
over all surface points.

The problems for adopting this technique into a real-time context
as-is are twofold: First, the technique does a lot of precomputa-
tion by drawing many samples just to build this quadtree structure.
In fact, this is done iteratively with geometrically growing sample
counts, such that the paths of these “learning” samples are guided
as well. This approach is not feasible in real-time. Second, the oc-
tree occupies a large and varying amount of memory. Each node
contains pointers to its immediate children as well as stochastic
weights to guide traversal to important leaves. We already have to
pay the cost of traversing the octree structure, so this can become
prohibitively expensive.

We approach the memory problem by storing the quadtree in im-
plicit form using a rank & select data structure [Jac89] with few bits
(on the order of 32 - 128 bits). We use octahedron mapping [ED08]
to map directions to 2D. Figure 3 shows an example instance. The
tree is stored in breadth first order with each node being represented
by a single bit. It denotes whether the node in question is an inner
(1) or leaf node (0). We assume the root node to always be an inner
node (a single leaf is not very useful for guiding). It is therefore
always zero and does not need to be stored explicitly. This ensures
that for bit field sizes which are a multiple of four (e.g. a 32-bit
integer), all bits can actually be used. Rank & select operations are
used to traverse the tree in both directions (see figures 3 and 5).
As for the sampling weights, we simply omit them, and each leaf
is given a uniform sampling weight instead. As such, a region is
given higher sampling weight just by refining the quadtree towards
this region. Of course, the resulting quadtree will be inferior to the
original, but it will still improve sampling in difficult situations so
that denoising can reconstruct the image without striking artifacts.
Adaptation and sampling of this data structure are described in sec-
tion 5.1 and 5.2, respectively.

5.1. CDQ Adaptation

We leverage temporal coherence to adapt a given quadtree with
samples from the previous frame. We assume a fixed allocation
of nodes (the maximum number of nodes that fit in the bit field).
Adaptation happens by collapsing a selected inner node with only

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0LSB MSB

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0LSB MSB

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0LSB MSB

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0LSB MSB
12 16840

0 0 0 0

Figure 4: CDQ adaption by leaf migration and implementation on
bit field. First, children of selected nodes are computed. Then, bits
of selected nodes are flipped. Deletion of old and insertion of new
leaves is done by shifting all following bits. Finally, inserted leaves
are zeroed.

leaves as children and splitting a selected leaf node, i.e. the leaves
are migrated between the selected nodes. As such the number of
nodes always stays the same. We implement this adaptation directly
on the bit field as depicted in figure 4, so that no uncompressed in-
termediate representation of the tree is needed. Essentially, we use
two partial bit shifts to remove the old and to insert the new leaves
in their respective location.

The nodes are selected based on the samples of the last frame.
The samples are composed of their contribution and the direction
(mapped into 2D by the octahedron map). To avoid adaptation to-
wards light sources (they are already handled by NEE), we ignore
light samples entirely. We run a compute shader with work groups
consisting of a single subgroup (the collection of threads that exe-
cute in lockstep on the GPU). Each work group is responsible for
one region. The samples are distributed among the leaves based on
their respective direction and the squared contributions are accu-
mulated in shared memory. We aggregate leaf contributions of the
currently processed samples in the subgroup first. One thread per
leaf is selected to accumulate the value in shared memory to avoid
costly atomic float operations. We use squared contributions to have
the CDQ adapt towards high-variance as well as high-energy re-
gions (see [VKK18] eq. 5). We then run a min-max search: We
select the leaf node with maximum contribution and the inner node
with minimum combined contribution of its leaf children. Leaf mi-
gration is done only if the contribution of the leaf is higher than
the combined contribution of the inner node. For stability, a config-
urable factor (i.e. 0.1) on the leaf contribution is used such that the
leaf contribution must be significantly higher in order to warrant
migration.

5.2. Importance Sampling of CDQ

We do not explicitly store any additional weights for stochastic
CDQ traversal. But traversing all children with uniform probability

0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0LSB MSB
12 16840

parent(7) = 1 parent(13) = 7

parent(nodeIdx) := select(bnodeIdx/4c− 1)

Figure 5: Reconstruction of bounding box for a selected leaf. Suc-
cessive select operations are used to rescale the bounding box into
the parent frame until the root node is encountered.

would result in overall uniform sampling. We instead approach this
problem in a bottom-up fashion: We select a leaf node with uniform
probability and then reconstruct its bounds by traversing its parents.
Thus, a region in the quadtree that is more refined will be sampled
more often, simply because more leaves are present in that region.
The number of leaves is constant and the bit of leaf i can be com-
puted through select(i) on the inverted bit field. Reconstruction is
depicted in figure 5. With each traversed parent, the bounding box
of the leaf is rescaled into the parent frame, until we arrive at the
root node. The PDF is given as:

PDF =
1

Aleaf|leaves|
‖q‖3

2
4

The first term is the probability of sampling a point on the octa-
hedron map. Aleaf is the area of the containing leaf node and |leaves|
is the total number of leaves. The second term is the correction fac-
tor which maps our PDF from the octahedron map to solid angle.
q is a 3D vector obtained by mapping the sampled direction vec-
tor d onto the octahedron (q = d/(|dx|+ |dy|+ |dz|). To compute
the PDF for a given direction (e.g. for MIS), we only need to ac-
cess the bit field to compute Aleaf of the containing leaf node. This
is achieved through a top-down traversal with which the bounding
box is computed.

6. Temporal Sample-adaptive Octree

Visibility of lights as well as the direction of incoming contribution
greatly depend on which surface point is considered. This makes
the VLC and CDQ greatly depend on local information. We there-
fore cannot construct one global estimator for each technique, but
instead have to do so for many regions in the scene. We need to
organize these regions in a data structure with the following con-
siderations: First, there must be enough samples available per re-
gion in order to construct stable estimators. Second, regions must
be adapted under dynamic conditions in order to uphold the first
consideration. Third, it must be accessible for both direct and indi-
rect surface hits, so that the latter also benefits from the estimators.

We opted for an octree structure situated in world-space, where
each leaf node defines a region for our estimators. The layout of this
data structure in memory and the design decision leading to it are

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

vlc_offset
vlc_bucket_count

cdq

vlc_sample_offset
vlc_sample_capacity

vlc_sample_counter

cdq_sample_offset
cdq_sample_capacity

cdq_sample_counter

VLC Buffer

VLC Sample Buffer

CDQ Sample Buffer

10011010

Inner Node Buffer

Leaf Node Buffer

nodeIdx offset+ bitCount(∼mask & (1� childIdx)− 1)

8 · nodeIdx+ childIdx

48 bytes

4 bytes

0 3 4 6

1 2 5 7

maskoffset

Figure 6: Octree memory layout. We use two separate buffers for
inner and leaf nodes. Inner nodes are composed of a 24-bit offset
for the inner children and an 8-bit mask to encode leaves. Leaves
are indexed implicitly instead of storing another offset per node.
Inner children are stored compacted at the offset. Additional buffers
(parent, neighbor and correspondence information) are not shown.

given in section 6.1. Based on the collected per-leaf sample counts
from the previous frame, the current octree is adapted through a
simple split/collapse scheme as presented in section 6.2. Given a
surface point, the octree is traversed top-down in order to access
the corresponding estimators. Details are given in section 6.3.

6.1. Memory Layout

We optimized the memory layout such that most of the traversal
only touches a small memory region (figure 6). We use two sepa-
rate buffers for storing inner and leaf nodes. During traversal, only
the first buffer needs to be considered until a leaf node is encoun-
tered. An inner node is composed of an 8-bit mask to encode which
children are leaves (children are implicitly mapped to bits) and a
24-bit offset for the location of inner children. The inner children
are stored at this location in a compacted way, i.e. there are no gaps
if the current node also contains leaf children. To avoid storing
another offset, leaves are indexed implicitly with the parent node
index. While the node buffer remains small this way, this creates
holes in the leaf buffer where the corresponding node is actually an
inner node, ultimately leading to wasted space. But for a full tree
with N children (each node has either zero or N children), given the
number of inner nodes I, the total number of nodes is N · I+1. The
wasted space, which is the ratio of inner nodes to the total num-
ber of nodes, is I/(N · I +1). It converges to 1/N in the limit. As
such, at most 1/8 of storage is wasted in the leaf buffer. But overall,
this waste is not the prime factor: Since the octree organizes sur-
face samples, around half of all leaf nodes are empty anyways. We
therefore focused on reducing the size of the inner node buffer, as
it is accessed many times per traversal, while the leaf node buffer is
accessed only once at the very end, thus giving the biggest potential
in cache utilization.

Leaves store all necessary information for importance sampling

Sample Buffers

(a) Previous Tree

(d) Augment (e) Populate(c) Rebuild

(b) Mark

C
orrespondene

Parents

Neighbors

V
LC

+
C

D
Q

Figure 7: Octree construction steps (visualized as binary tree)
based on (a) previous tree. (b) Nodes are marked if they need to
be split or collapsed based on the observed sample count. (c) The
topology is rebuilt to account for marked nodes. (d) An augmen-
tation pass adds parents to each node as well as neighbors and
correspondence (equivalent node in previous tree) to each leaf. (e)
This information is later used to populate the leaf structures (copy
VLC pointers and CDQ, allocate space in sample buffers).

and sample placement, namely offset and bucket count for the VLC
buffer, the CDQ itself and offset, capacity and size triplets for
the VLC and CDQ sample buffers. This amounts to a size of 48
bytes. We store leaves in an Array of Structures (AoS) format. We
strongly recommend moving to a Structure of Arrays (SoA) for-
mat, as often only a single member (i.e. the CDQ) is needed for a
particular purpose. Due to time constraints, we did not perform this
rearrangement in our implementation.

6.2. Octree Adaptation

The octree needs to be continuously adapted in dynamic situations
in order to ensure that each leaf node receives an adequate amount
of samples (i.e. not too few and not too many). By observing the
number of samples that each leaf received in the last frame, an
adapted octree is constructed by splitting and/or collapsing nodes.
The rough process is depicted in figure 7. It consists of four passes:
Mark, rebuild, augment and populate. Mark decides which nodes
need to be split and/or collapsed, rebuild constructs the new topol-
ogy, augment adds additional information to nodes and leaves. Fi-
nally, the leaf structures are populated.

The mark step (figure 7 (b)) is responsible to decide for whether
a node needs to be toggled, i.e. split or collapsed. Only leaf nodes
can be split and only inner nodes with only leaves as children can be
collapsed. A leaf node is marked for splitting if the observed sample
count goes above a configurable upper threshold (i.e. 2048). An
inner node is marked for collapsing if the combined sample count
over all leaves goes below a configurable lower threshold.

The rebuild step (figure 7 (c)) creates the adapted topology based
on the results of the mark step. A breadth first construction scheme
is used, so we only construct one level in parallel at a time. This
would require many dispatches, so we leverage shared memory in

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

compute shaders to construct entire subtrees per work group. This
is the reason why we defer augmentation of the tree and population
of leaves to later passes: These would need to be stored in shared
memory as well, decreasing the effective size of the tree that can
be constructed in one work group. Also, once the topology is set,
these steps can be done in parallel over all nodes, instead of just in
parallel over each level.

The augmentation step (figure 7 (d)) adds additional information
to the nodes and leaves of the octree. The first dispatch augments
nodes by adding parent pointers to each child in a secondary buffer.
The second dispatch augments leaves. This includes neighbor infor-
mation as well as corresponding nodes in the previous tree. Parent
pointers are used to reconstruct the position of a leaf in the tree.
This position is used to traverse the previous tree for correspon-
dence as well as to traverse an offset position in the new tree for
the six neighbors with a common face. If one side has a finer subdi-
vision, then a potentially unbounded number of neighbors exist on
that side. We currently ignore this case for simplicity.

Leaves are populated (figure 7 (e)) by copying the CDQ and
pointers to the VLC from the previous tree (using correspondence
information) and by allocating space for samples based on the ob-
served sample count. The copy operation is needed because other-
wise two trees would need to be traversed: The previous tree for
sampling the VLC and CDQ and the current tree for placing sam-
ples. But these two trees are almost identical (they only possibly
differ in some split or collapsed nodes). The copy operation is triv-
ial for unchanged and split nodes, because they uniquely map to a
single node in the previous tree. A collapsed node has eight poten-
tial leaves from which the VLC and CDQ may be copied from. We
simply copy from the node which had the biggest observed sample
count. Another possibility is to have VLC and CDQ construction
be aware of collapsed nodes, but this adds further complexity.

6.3. Reprojection & Combined Traversal

Given a surface point, the octree is traversed top-down in order to
access the containing leaf node and the corresponding estimator as
well as pointers to the sample storage. If the surface point is dy-
namic, however, the leaf in which it is currently contained might be
empty, i.e. the VLC is empty and the CDQ is in its initial configura-
tion. This would result in visible artifacts. We thus have to traverse
the octree twice: For sampling, we use the previous position. For
placing samples, the current position is used. The previous posi-
tion is typically readily available, as correct motion vectors for, e.g.
TAA, need to know the exact location of surfaces in the previous
frame. However, we do not want to pay the cost of two traversals
(at least not every time). If these two positions are identical, or even
almost identical, most of the traversal is redundant. We therefore
perform a combined traversal until the paths diverge.

7. Evaluation

We use a modified version of Quake 2 RTX as our evaluation
framework. A standard path tracer with NEE is used. We trace two
indirect rays, but only do NEE for the primary and secondary hit.
From the tertiary hit we only collect direct emission (e.g. for envi-
ronment maps). In total, five rays per path are traced. After the pri-

mary hit, we perform two simplifications: First, all lights are treated
as uniform emitters. As we focus on just the selection of lights and
not sampling of lights themselves, we do not want the additional
noise that comes from sampling textured emitters. Lights are sam-
pled with plain area sampling. Second, all surfaces are assumed
to be fully diffuse after the primary hit. Otherwise, our reference
renders were left with fireflies even after many thousands of sam-
ples. Unless otherwise noted, the octree is configured with a lower
threshold of 2048 and an upper threshold of 4096, the VLC with a
bucket size of 32 and an exploration fraction of 10% and the CDQ
with a bit count of 128 and a brdf fraction of 50%. All images are
rendered with one sample per pixel.

We compare the VLC against two other techniques. The first,
we refer to it as Static Light Lists (SLL), is the NEE implemen-
tation that shipped with Quake 2 RTX. It uses potentially visible
sets (PVS) [Tel92] derived from the BSP structure [FvDFH90] to
collect potentially visible lights for each BSP leaf. Based on the
leaf in which a light is contained, the light is distributed among
the leaves that are in the PVS of the leaf. BSP and PVS construc-
tion are inherently static due to expensive computation. As such,
only static scene elements can affect visibility. However, dynamic
moving lights are possible, as finding the containing leaf and corre-
sponding PVS is very fast. Just as with the VLC, this sampling pro-
cedure is linear in the number of lights. To bound the computation
time, the lights are traversed with a variable stride and uniformly
random initial offset such that only a maximum number of lights
are considered. We configured this maximum to be 32, in line with
the VLC bucket size. We augmented this technique with our LTC-
based importance measure, so that the techniques mainly differ in
how precisely they capture the set of visible lights.

The other technique is the Light Hierarchy (LH) as proposed by
[CK18] and [MC19] but without splitting. A Bounding Volume Hi-
erarchy (BVH) is constructed over all lights with each leaf contain-
ing a subset of the lights. This hierarchy is then traversed stochas-
tically by evaluating an importance measure per child node which
is used as a probabilistic weight to descend this child. We com-
pressed and widened the structure in the spirit of [YKL17] to im-
prove traversal speed and sampling quality (flattening the hierarchy
can be seen as brute-force splitting, albeit not considering the sur-
face point). Construction of the hierarchy is done each frame using
standard binary binning [Wal07] and a final top-down traversal to
collapse nodes. Thus, dynamic lights are handled transparently. We
configured the width to be 8 children per node and the number of
lights in each leaf node to be 2.

We compare the CDQ against plain BRDF sampling. To the best
of our knowledge, there currently exists no other guiding technique
capable to execute at interactive rates.

7.1. Quality Comparison

We compare the image quality (quantified with MSE) of our pre-
sented techniques against the SLL, LH and plain BRDF sampling.
For that we instantiate all combinations of NEE and indirect sam-
pling techniques (6 in total). We use scenes from Quake 2 RTX as
well as scenes with more complex geometry as shown in figure 8.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

Scenario Reference VLC SLL LH VLC SLL LH

100% BRDF 50% CDQ + 50% BRDFBounce

NEE

(a
)W

ar
eh

ou
se

2.89e-07

7.38e-08

1.43e-06

1.35e-07

7.98e-06

2.45e-07

2.81e-07

7.34e-08

1.60e-06

1.36e-07

9.35e-06

2.40e-07

(b
)M

in
e

2.79e-02

1.68e+00

2.79e-02

1.68e+00

2.79e-02

1.68e+00

9.62e-05

2.48e-02

1.04e-04

1.49e-02

1.39e-04

1.10e-02

(c
)D

ra
go

n
[M

cG
17

]

1.66e-01

1.89e-01

3.79e-01

4.45e-01

3.78e-01

4.56e-01

1.46e-01

1.72e-01

3.91e-01

4.26e-01

3.43e-01

4.58e-01

Figure 8: Comparison of techniques with 1ssp frames in test scenes. Scenes (a) and (b) taken from Quake 2 RTX, © id Software, Inc. VLC
consistently outperforms the other techniques in (a). Due to uniform illumination, CDQ provides no real benefit. CDQ is most useful with
high contribution from a specific direction as with the sun in (b), improving both direct and indirect illumination. With very complex direct
illumination as in (c) (area lights behind a cover), both techniques still improve sampling, but not by that much.

Scene (a) shows a warehouse with relatively many light sources
and mostly uniform illumination. The full scene is considerably
larger, containing even more lights. By focusing only on relevant
lights, the VLC excels here, achieving almost on order of magni-
tude lower error compared to the SLL and LH. The LH is worst in
this instance. We assume that due to missing visibility information,
lights outside of the room also receive a nonzero sampling weight.
The CDQ does not provide any meaningful advantage here. But
this is to be expected due to overall uniform illumination.

Scene (b) shows a mine which is open towards the sky. It is il-
luminated mostly by the environment map and the contained sun.
Especially indirect illumination is affected by the spot which the
sun directly illuminates. Our NEE implementation does not account
for environment maps at all, rendering the VLC useless. With plain
BRDF sampling, both directly and indirectly illuminated surfaces
by the sun are severely undersampled. By refining towards the sun
and the directly illuminated spot, the CDQ improves sampling by
two to three orders of magnitude for these regions.

Scene (c) shows the Stanford dragon model illuminated by ten area
lights behind a cover. This is a relatively complex situation as light-
ing is blocked by other geometry and the receiver is relatively com-
plex. All techniques produce noisy results, but the VLC with the
CDQ is still slightly better.

7.2. VLC & Octree Adaptation

In this section, we examine the temporal behavior of the VLC and
octree. We are particularly interested in how long it takes for these
techniques to fully adapt to a given situation from an uninitialized
state (the worst case). We go over the frame sequence that is de-
picted in figure 9.

In the initial state, the octree is subdivided only once (because
we cannot represent a single leaf node) and the VLC of each of the
eight leaves is empty. As such, exploration sampling is used exclu-
sively here. This leads to a very noisy image that lacks any detail
of the scene. In the second frame, we directly see the VLC tak-

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

Frame 1 Frame 2 Frame 3

. . .

Frame 8 Frame 9 Frame 10 Frame 11

Frame 1 Frame 2 Frame 8 Frame 9 Frame 1 Frame 2 Frame 9 Frame 10

Figure 9: VLC and octree adaptation over a frame sequence. Initially, only exploration sampling is used due to an empty VLC. Sampling is
already improved after a single frame, but octree adaptation creates specialized VLCs with even better sampling in the subsequent frames.

ing effect. If the octree were not to subdivide any further, the VLC
would already be in a converged state. But this subdivision is still
very rough with all the samples being deposited in a single leaf,
leading to an imprecise VLC. This explains why there are still so
many samples with zero contribution. There is no change in sam-
pling until frame eight. The problem is that the octree has quite a
large extent as it needs to cover the entire scene. The shown room
is only a small part of it. As such, the octree needs multiple frames
in order to subdivide towards this region. At frame eight, subdi-
vision is refined enough so that we see first improvements at the
floor, which continue with frame 9. The number of samples with
zero contribution is now closer to the 10% exploration fraction. Up
until frame 11, refinement continues with the pillar.

7.3. CDQ Adaptation

The main parameter of the CDQ is the number of bits with which
the tree is encoded. We examine adaptation of the CDQ with dif-
ferent bit counts and rates of change. For this, we construct a scene
which consists of a floor, a circular wall surrounding this floor and
a rotatable light below the floor. The floor is illuminated indirectly
by the light via the wall. The camera is pointed directly at the floor.
We let the CDQ adapt to an initial position of the light. Then we
perform a sudden, defined, rotational change of the light over one
frame. We observe how long it takes for the CDQ to readapt to this
new situation and how much worse the sampling quality initially is
after the change compared to the readapted state.

In figure 10, we compare bit counts of 32, 64, 96 and 128 bits
with rotational changes of 9 and 36 degrees. We also provide visu-
alizations of the optimal sampling densities of the radiance fields
(in the 2D octahedron map) and CDQ sampling densities adapted
to the initial configuration. The plots show MSE of the CDQ over
a sequence of frames. At frame zero, the change is performed. All
variations exhibit fast convergence, but overall adaptation greatly
depends on both parameters. At nine degrees, the change is not all
that big. Neither the peak error nor time to readapt are very large
for all bit counts. The 128 bit variant still takes longest at around 10
frames. Both aspects deteriorate at an increasing angle. At 36 de-
grees, the CDQ is initially worse than plain BRDF sampling. Since
we still use the BRDF 50% of the time, it effectively bounds the
error of the CDQ. This is crucial in this instance, as the previous

adaptation no longer has any meaningful relation to the new situa-
tion. While the readapted CDQ still provides much improvement,
the error is higher than in the initial configuration. We assume that
the rigid subdivision scheme of the quadtree cannot adapt to the
new configuration as well as to the initial configuration. Adapta-
tion time has increased to 20 frames for the 128 bit variant.

Another observation is that adding more than 64 bits does not
improve variance any significantly. We assume that this is mostly
due to the radiance field being very smooth (along the wall). It is
thus approximated relatively well already by the 64 bit instance.
More bits can still be advantageous for, e.g. multi-modal irradiance,
but we did not explicitly evaluate this aspect.

7.4. Performance

For our performance evaluation, we use an Nvidia RTX 2080 Ti at
a resolution of 1920×1080. A walk around the Quake 2 RTX scene
“base1” is used as the reference scenario. A video of this scenario
is attached in the supplemental material (frames 100 to 300). We
consider both the required preprocessing and impact on the path
tracer for the presented techniques.

Figure 11 shows the averaged timings of all preprocessing over
200 runs. In total, around 1.2 ms are needed. The entirety of all oc-
tree operations (mark, adapt, augment and allocate) take around 0.2
ms. While this timing is relatively fast, the octree is not large to be-
gin with. This probably means that the GPU is not saturated during
this time. Deduplication of the VLC takes 0.2 ms, while neighbor
and bucket merging take around 0.2 ms. The CDQ accumulation
and adaption takes around 0.5 ms. Both CDQ accumulation and
VLC deduplication iterate over their respective sample sets, but the
latter takes longer due to more complex processing: For each sam-
ple, the given quadtree leaf needs to computed, while for the VLC
only a few hash table accesses are needed.

The impact on the path tracer is shown in figure 12. We compare
the impact against LH and SLL, taking around 11.2 ms and 15.1
ms, respectively. VLC is almost identical to SLL with 15.1 ms.
Since both SLL and VLC are configured with the same bucket size
of 32, this indicates that light selection is the limiting factor in this
instance, and not octree traversal. Adding CDQ to VLC increases
path tracing time to 17.1 ms.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

Reference

In
iti

al

32 bits (25 leaves) 64 bits (49 leaves) 96 bits (73 leaves) 128 bits (97 leaves)

9◦

10−8

10−7

36
◦

0 20 40 0 20 40 0 20 40 0 20 40

10−8

10−7

≤ 1.9e-02 1.9e+02

≤
1.

9e
-0

2
1.

9e
+0

2

Frame Index

M
S

E

CDQ BRDF

Figure 10: CDQ static and dynamic adaptation through a rotatable light indirectly illuminating a surface via a circular wall. The left column
visualizes the optimal sampling densities for the radiance field. The top row visualizes the CDQ sampling densities adapted to the initial
configuration at different bit counts. The following rows show adaptation over frames quantified via MSE after a sudden rotation of the light
source at different angles. A logarithmic viridis color mapping with the same range across all images is used.

100 150 200 250 300
Frame Index

0.0

0.5

1.0

Ti
m

e
(m

s)

OCT Augment + Allocate

OCT Adapt

OCT Mark

CDQ Accumulate + Adapt

VLC Neighbor + Bucket Merge

VLC Deduplicate

Figure 11: Execution time of preprocessing operations over multi-
ple frames (average of 200 runs). On average, around 1.2 ms are
needed.

100 150 200 250 300
Frame Index

10

12

14

16

18

Ti
m

e
(m

s)

LH SLL VLC VLC + CDQ

Figure 12: Execution time of path tracer over multiple frames with
different importance sampling strategies. On average, LH is fastest
(11.2 ms) and VLC + CDQ is slowest (17.1 ms).

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

(a) Variance EdgeZoom (b) Motion

Close (c) Distance

(d) Locality (e) Specular

CDQ

BSDF

VLC CDQ

Figure 13: Various artifacts encountered with the VLC and CDQ.
(a) Variance edge due to varying number of lights in adjacent
VLCs. (b) Fast moving shadows caused by lights traveling in front
of a slit. (c) Heavily increased noise with larger distance from scene
caused by rough octree subdivision (exaggerated by reducing VLC
bucket size to 8 instead of 32). (d) Increased noise at the edge of
a spot directly illuminated by the sun due to positionally depen-
dent occlusion inside of octree leaf. (e) Increased noise when using
CDQ on specular surfaces.

8. Limitations & Future Work

While we have shown that both the VLC and CDQ are promising
techniques for real-time path tracing, many technical and imple-
mentation problems remain that need to be addressed in the future.

The most fundamental problem is that there is an inherent delay
of one frame when using samples from the previous frame. This
can become problematic with very dynamic scenarios (e.g. strob-
ing or fast-moving lights, see figure 13 (b)). A possible solution
would be to use samples from the current frame as well, e.g., by
running the path tracer in two phases (one for exploration and one
for sampling).

Limitations associated to the temporal sample-adaptive octree
are: (1) Oftentimes, the resolution is not enough to minimize vari-
ation within a leaf node (figure 13 (d)), e.g., due to positionally
changing occlusion of lights and highlights. As resolution primar-
ily depends on camera distance, this is especially problematic with
distant geometry (figure 13 (c)). (2) We do not perform any inter-
polation between octree leaves. For the VLC, this is mostly not
needed, as the point-specific knowledge introduced with the im-
portance measure automatically smoothens the transition between
regions. However, variations in contained lights and bucket count
can be seen as variance edges (figure 13 (a)). This problem is even
more pronounced with the CDQ, as it represents just a single CDF
per leaf. (3) Large buffers are needed to store intermediate samples
for VLC construction and CDQ adaptation. By directly deduplicat-
ing visible lights for the VLC and accumulating leaf contributions
of the CDQ, memory consumption could be reduced significantly.

Limitations associated to the VLC are: (1) Scalability is lim-
ited, as it handles individual triangular area lights. This is an in-
herent disadvantage compared to, e.g., light hierarchies. While the
bucket strategy always ensures a bounded computation time even
with many lights, sampling quality deteriorates significantly. Selec-
tion on entire aggregates of lights (e.g. mesh lights) and/or a more
informed distribution of lights among buckets might resolve this
issue. (2) Lights with rare visible samples (e.g. due to partial occlu-
sion) potentially need far more than a thousand samples per leaf to
be stably part of the VLC. Persisting the VLC over multiple frames
could be an option to increase the effective sample count. (3) The
current global exploration strategy reverts to questionable heuris-
tics to account for the missing relationship between surface point
and light. Local exploration strategies per leaf, e.g. through well-
known clustering techniques [OBA12], could resolve this issue. (4)
Both the VLC and exploration strategy are sampled at a fixed frac-
tion. Exploring approaches to dynamically determine them seems
worthwhile. In particular, if no new lights can be discovered, solely
the VLC could be sampled.

Limitations associated to the CDQ are: (1) It does not account
for the BRDF, giving higher noise to specular surfaces at the 50%
default BRDF/CDQ split (figure 13 (e)). (2) It is not stratified (one
random number for sampling a leaf plus two for the area contained
by the leaf), making blue noise sampling much less effective. A top-
down traversal with sample-warping of two random numbers would
be needed. (3) Adaptation speed is relatively slow because only a
single leaf migration is performed per frame. Obviously, migrating
multiple leafs at a time could drastically improve adaptation speed.

9. Conclusion

In this paper we have presented importance sampling techniques
for next event estimation (VLC) and path guiding (CDQ) which
construct improved sampling densities through sample reuse. With
implicit consideration of visibility and high-quality importance
sampling, the VLC is an important step towards full product im-
portance sampling of direct illumination with many lights. By com-
pressing a directional quadtree structure down to a few bits, the
CDQ is a path guiding scheme that is tractable for real-time use.
Both techniques are embedded in a temporally adapted octree struc-

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

A. Dittebrandt, J. Hanika and C. Dachsbacher / Temporal Sample Reuse for NEE and Path Guiding for Real-Time Path Tracing

ture situated in world-space which balances the available samples
among leaves.

We have shown that both techniques provide significant variance
reduction in various test scenes (section 7.1), while also adapting
to entirely new situations in few frames (section 7.2 and 7.3). Per-
formance for both techniques is within close reach for practical use
(section 7.4). Still, we further wish to explore this field in order to
free the techniques from the remaining artifacts (section 8).

Acknowledgements

We thank Christoph Peters for deriving the correction factor of the
CDQ and insightful discussions on the presented techniques. Addi-
tionally, we thank the anonymous reviewers for their remarks which
considerably helped to improve the paper.

References
[Arv95] ARVO, JAMES. “Applications of Irradiance Tensors to the Sim-

ulation of Non-Lambertian Phenomena”. Proc. ACM SIGGRAPH.
1995, 335–342 3.

[BFK19] BINDER, NIKOLAUS et al. Massively Parallel Path Space Filter-
ing. 2019. arXiv: 1902.05942 [cs.GR] 3.

[CK18] CONTY ESTEVEZ, ALEJANDRO et al. “Importance Sampling of
Many Lights with Adaptive Tree Splitting”. ACM Comput. Graph. Inter-
act. Tech. 1.2 (2018) 3, 8.

[CKS*17] CHAITANYA, CHAKRAVARTY R. ALLA et al. “Interactive Re-
construction of Monte Carlo Image Sequences Using a Recurrent De-
noising Autoencoder”. ACM Trans. Graph. 36.4 (2017) 1.

[CNS*11] CRASSIN, CYRIL et al. “Interactive Indirect Illumination Using
Voxel Cone Tracing: A Preview”. Proc. ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games. 2011, 207 1.

[DIP14] DUPUY, JONATHAN et al. “Quadtrees on the GPU”. GPU Pro 5.
2014 3.

[DK17] DAHM, KEN et al. “Learning Light Transport the Reinforced
Way”. Talks. Proc. ACM SIGGRAPH. 2017 3.

[DWB*06] DONIKIAN, MICHAEL et al. “Accurate Direct Illumination Us-
ing Iterative Adaptive Sampling”. IEEE Trans. on Visualization and
Comput. Graph. 12.3 (2006), 353–364 3.

[ED08] ENGELHARDT, THOMAS et al. “Octahedron Environment Maps”.
Vision Modeling and Visualization. 2008 5.

[ESAW11] EISEMANN, ELMAR et al. Real-Time Shadows. 1st. 2011 1.

[FHH*19] FASCIONE, LUCA et al. “Path Tracing in Production”. Courses.
Proc. ACM SIGGRAPH. 2019 1, 3.

[FvDFH90] FOLEY, JAMES D. et al. Computer Graphics: Principles and
Practice. 2nd. 1990 8.

[HDG99] HART, DAVID et al. “Direct Illumination with Lazy Visibility
Evaluation”. Proc. ACM SIGGRAPH. 1999, 147–154 3.

[HDHN16] HEITZ, ERIC et al. “Real-Time Polygonal-Light Shading with
Linearly Transformed Cosines”. ACM Trans. Graph. 35.4 (2016) 2–4.

[HEV*16] HERHOLZ, SEBASTIAN et al. “Product Importance Sam-
pling for Light Transport Path Guiding”. Comput. Graph. Forum 35.4
(2016), 67–77 3.

[HP02] HEY, HEINRICH et al. “Importance Sampling with Hemispheri-
cal Particle Footprints”. Proc. Spring Conference on Comput. Graph.
2002, 107–114 3.

[Jac89] JACOBSON, G. “Space-Efficient Static Trees and Graphs”. Proc.
Symposium on Foundations of Comput. Science. 1989, 549–554 3, 5.

[Jen95] JENSEN, HENRIK WANN. “Importance Driven Path Tracing using
the Photon Map”. Rendering Techniques. 1995, 326–335 3.

[KD10] KAPLANYAN, ANTON et al. “Cascaded Light Propagation Vol-
umes for Real-Time Indirect Illumination”. Proc. ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games. 2010, 99–107 1.

[KWR*17] KELLER, ALEXANDER et al. The Iray Light Transport Simu-
lation and Rendering System. 2017. arXiv: 1705.01263 [cs.GR] 3.

[LXY19] LIU, YIFAN et al. “Adaptive BRDF-Oriented Multiple Impor-
tance Sampling of Many Lights”. Computer Graphics Forum 38.4
(2019), 123–133 3.

[MC19] MOREAU, PIERRE et al. “Importance Sampling of Many Lights
on the GPU”. Ray Tracing Gems. 2019, 255–283 8.

[McG17] MCGUIRE, MORGAN. Computer Graphics Archive. https://
casual-effects.com/data. 2017 9.

[MGN17] MÜLLER, THOMAS et al. “Practical Path Guiding for Efficient
Light-Transport Simulation”. Comput. Graph. Forum 36.4 (2017), 91–
100 2, 3, 5.

[MMBJ17] MARA, MICHAEL et al. “An Efficient Denoising Algorithm
for Global Illumination”. Proc. of ACM SIGGRAPH / Eurographics con-
ference on High Performance Graphics. 2017 1.

[OBA12] OLSSON, OLA et al. “Clustered Deferred and Forward Shading”.
Proc. of ACM SIGGRAPH / Eurographics conference on High Perfor-
mance Graphics. 2012, 87–96 1, 12.

[OSK*14] OLSSON, OLA et al. “Efficient Virtual Shadow Maps for Many
Lights”. Proc. ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games. 2014, 87–96 1.

[RDGK12] RITSCHEL, TOBIAS et al. “The State of the Art in Interactive
Global Illumination”. Comput. Graph. Forum 31.1 (2012), 160–188 1.

[SKW*17] SCHIED, CHRISTOPH et al. “Spatiotemporal Variance-Guided
Filtering: Real-Time Reconstruction for Path-Traced Global Illumina-
tion”. Proc. of ACM SIGGRAPH / Eurographics conference on High
Performance Graphics. 2017 1.

[SWZ96] SHIRLEY, PETER et al. “Monte Carlo Techniques for Direct
Lighting Calculations”. ACM Trans. Graph. 15.1 (1996), 1–36 3.

[Tel92] TELLER, SETH JARED. “Visibility Computations in Densely Oc-
cluded Polyhedral Environments”. PhD thesis. University of California,
Berkeley, 1992 8.

[VG95] VEACH, ERIC et al. “Optimally Combining Sampling Techniques
for Monte Carlo Rendering”. Proc. ACM SIGGRAPH. 1995, 419–428 3.

[VHH*19] VORBA, JIŘÍ et al. “Path Guiding in Production”. Courses.
Proc. ACM SIGGRAPH. 2019, 18:1–18:77 1, 3.

[VK16] VÉVODA, PETR et al. “Adaptive Direct Illumination Sampling”.
Posters. Proc. ACM SIGGRAPH ASIA. 2016, 43:1–43:2 3.

[VKK18] VÉVODA, PETR et al. “Bayesian Online Regression for Adaptive
Direct Illumination Sampling”. ACM Trans. Graph. 37.4 (2018), 125:1–
125:12 3, 6.

[VKŠ*14] VORBA, JIŘÍ et al. “On-line Learning of Parametric Mix-
ture Models for Light Transport Simulation”. ACM Trans. Graph. 33.4
(2014) 3.

[Wal07] WALD, INGO. “On Fast Construction of SAH-Based Bounding
Volume Hierarchies”. Proc. IEEE Symposium on Interactive Ray Trac-
ing. 2007, 33–40 8.

[Wal77] WALKER, ALASTAIR J. “An Efficient Method for Generating
Discrete Random Variables with General Distributions”. ACM Trans.
Math. Softw. 3.3 (1977), 253–256 3, 5.

[War94] WARD, GREGORY J. “Adaptive Shadow Testing for Ray Trac-
ing”. Photorealistic Rendering in Computer Graphics. 1994, 11–20 3.

[WFA*05] WALTER, BRUCE et al. “Lightcuts: A Scalable Approach to
Illumination”. Proc. ACM SIGGRAPH. 2005, 1098–1107 3.

[YKL17] YLITIE, HENRI et al. “Efficient Incoherent Ray Traversal on
GPUs through Compressed Wide BVHs”. Proc. of ACM SIGGRAPH
/ Eurographics conference on High Performance Graphics. 2017 8.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

https://arxiv.org/abs/1902.05942
https://arxiv.org/abs/1705.01263
https://casual-effects.com/data
https://casual-effects.com/data

