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Figure 1: A fast moving water splash, consisting of an isosurface generated by 12M particles. High curvature detail with highly glossy
Bidirectional Scattering Distribution Function (BSDF) creates difficult, glint-like specular highlights (see details in right images). These are
even harder to sample when the objects are fast moving. Our approach alters the roughness of the microfacet BSDF specifically to account
for motion (compare the static crops to the right with the moving ones just below), introducing a temporal normal distribution function. This
distribution captures the anisotropic motion of the highlight and allows us to render such cases efficiently.

Abstract

Specular aliasing can make seemingly simple scenes notoriously hard to render efficiently: small geometric features with high
curvature and near specular reflectance result in tiny lighting features which are difficult to resolve at low sample counts
per pixel. LEAN and LEADR mapping can be used to convert geometric surface detail to anisotropic surface roughness in a
preprocess. In scenes including fluid simulation this problem is particularly apparent with fast moving elements such as spray
particles, which are typically represented as participating media in movie rendering. Both approaches, however, are only valid
in the far-field regime where the geometric detail is much smaller than a pixel, while the challenge of resolving highlights
remains in the meso-scale. Fast motion and the relatively long shutter intervals, commonly used in movie production, lead to
strong variation of the surface normals seen under a pixel over time aggravating the problem. Recent specular anti aliasing
approaches preintegrate geometric curvature under the pixel footprint for one specific ray to achieve noise free images at low
sample counts. We extend these to anisotropic surface roughness and to account for the temporal surface normal variation
due to motion blur. We use temporal derivatives to approximate the distribution of the surface normal seen under a pixel over
the course of the shutter interval. Furthermore, we discuss how this can afterwards be combined with the surface BSDF in a
practical way.

CCS Concepts
• Computing methodologies → Ray tracing; Reflectance modeling;

1. Introduction

Computing global illumination in computer generated imagery has
become an indispensable tool in movie production in the last years.
This is achieved by path tracing, a versatile method which traces
random rays of light through a virtual scene and forms an image

by collecting their contributions to the pixels. This can be more
formally described as an integration problem over the space of
light transport paths. In the search for more detail and realism, new
movie shows routinely reveal weaknesses of sampling techniques,
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however. In fact, often the most long standing and well known prob-
lems manifest themselves as noise in rendered images.

One such long standing problem is aliasing due to subsampling
of the integrand. In principle, this can be alleviated by using pre-
filtering or postfiltering [MN88]. Because of the general applica-
bility of reconstruction post filters, there is a large body of work in
this subject. However, prefiltering, if possible, can reduce aliasing
more effectively [MN88].

Consider the example in figure 1: tiny geometric features are
inside each pixel, and their specular reflectance and high curva-
ture compresses bright, glinty features to even smaller size as illus-
trated in figure 2. Fast moving geometry aggravates the problem by
spreading out the highlight in time, often requiring many thousands
of samples per pixel to converge [FHP∗18, Sec. 6.2.6]. Postfiltering
would take one sample that happens to land on such a bright glint
and spread the contribution to the framebuffer out to a few pixels by
using a reconstruction filter with large support, see e.g. [ETH∗09].
However, the assumption is that such a small feature can be sam-
pled in the first place. Also, such a reconstruction filter often knows
nothing about geometric boundaries and will blur over them unless
explicit checks [DSHL10] or heavy machinery [GLA∗19] are used.

Prefiltering on the other hand attempts to “smooth out” the ge-
ometry and reflectance of the input, but there is no general solu-
tion. In practice, it is often implemented by adaptive tessellation
in conjunction with LEAN/LEADR mapping [DHI∗13]. On top
of this, heuristics to artificially roughen the reflectance of the sur-
faces are commonly used, in the extreme cases making surfaces dif-
fuse [HD09, JG19]. Recently, specular anti aliasing has been pro-
posed to accumulate roughness of surfaces within the footprint of a
pixel [KHPL16], and also consider their curvature. We extend this
approach to anisotropic curvature, and additionally consider mo-
tion: fast moving geometry will extend the distribution of surface
normals seen under a pixel over the course of the shutter interval.
Anisotropy is important, since LEADR mapping on a coarse scale
will lead to anisotropic scattering profiles even if the base surface
is a simple isotropic smooth dielectric.

In summary, our contributions are

• the introduction of temporal normal distribution functions and
the derivation of a corresponding microfacet model,
• using a derivation of temporal normal derivatives to approximate

the temporal distribution by an anisotropic Beckmann distribu-
tion,
• the combination of the temporal distribution with the surface

BSDF to devise a fully practical method suitable for high-quality
offline rendering.

2. Background and previous work

Specular aliasing is particularly hard to reduce with highly-detailed
and unstructured geometry with specular reflectance. In general,
contributions to light transport are results of convolution of the
pixel filter, shutter interval, BSDFs, light source areas etc., and
computed by sampling the path space. Often the result remains
quite similar even when the filtering along these individual events
deviates from the actual configuration. This is, for example, ex-

Figure 2: Specular aliasing: high-curvature relative to pixel foot-
print blows up ray-space domain covered by specular bounces. A
small light source is even less likely to be intersected then. This will
introduce a lot of noise, even though the deterministic event at the
surface does not technically introduce randomness.

ploited with pixel reconstruction filters, which compensate for sub-
optimal sampling and filtering elsewhere. In our work, we also in-
vestigate filtering, but focus on altering microfacet BSDFs by con-
volving its normal distribution function to aid connection-based
Monte Carlo techniques such as next event estimation. This has
the advantage that the geometric silhouettes remain accurate.

Reconstruction filters Postfiltering is typically the least intrusive
way to address aliasing. Best results are achieved when the sam-
pling budget is steered according to properties of the reconstruction
filter, e.g. for motion blur [ETH∗09]. Zwicker et al. [ZJL∗15] pro-
vide an extensive survey on adaptive sampling and reconstruction.

Altering the BSDFs Avoiding specular aliasing by simply re-
ducing the specularity, e.g. changing the roughness or microfacet
BSDF parameters [JG19], is minimally invasive and has been done
in one form or the other in many situations where sampling be-
comes difficult. For example, roughening of the surface enables
path-perturbation and reconnection techniques (cf. “Finding good
paths” in [FHH∗19]) to become effective. However, introducing
roughness to specular surfaces does not necessarily decrease vari-
ance, as Dirac delta materials (e.g. perfect mirrors) do not cause
variance yet possibly aliasing. There is also a line of work that
includes multi modal glints under one pixel into a more complex
normal distribution function [YHJ∗14, JHY∗14]. In our work, we
are interested in geometry more similar to single water droplets, so
we do not require this sophisticated machinery for this use case.

Geometry and Textures Specular aliasing due to detailed geome-
try is often addressed by prefiltering displacement or normal maps
using techniques such as LEAN [OB10] or LEADR [DHI∗13]
mapping, where geometric detail is interpreted as statistical vari-
ation inside a microsurface in the context of microfacet theory
[CT82]. By this, geometry is simplified and analytical evaluation
of the distribution of micronormals makes, for instance, next event
estimation a lot more efficient. Motion blur on textures has been
addressed by anisotropic filtering [Lov05], which involves similar
considerations about derivatives as our approach.

These techniques are costly to apply in path space where the in-
tegration domain is high dimensional and irregular: samples from
indirect bounces usually are not spaced on regular grids and texture
footprints needs to be derived per sample. Simplifying geometry
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t = 1t = 0 t = 0.5 t ∈ [0,1]

Figure 3: A sphere plotted for three time instants t = 0,0.5,1.0. The
normal under the pixel changes over time. If we overlay the pixel
footprints for t ∈ [0,1] on the surface of the sphere, we see an elon-
gated pixel footprint, which spreads apart any sampling pattern
vertically in this example (right two boxes). The longer this foot-
print becomes, the less likely is it to intersect a small light source in
this area. Intuitively, we compensate for this spread by convolving
the BSDF with a kernel that elongates it in the direction of motion
(left of these two boxes), shrinking the gaps between the samples.

per ray accordingly would require to (re)build an acceleration struc-
ture for ray tracing and is thus done once, or cached and reused for
batches of similar rays, resulting in sub-optimal geometry for in-
dividual samples. Still, after conservatively considering geometric
simplifications, the remaining curvature fans out specular reflec-
tions under the ray footprint (figure 2). This causes high variance if
the light source is small compared to this footprint.

Ray differentials Ray footprints are obtained by ray differen-
tials [Ige99], tracking the size of a pixel through a number of in-
teractions. This concept has been extended to full paths [SW01],
the temporal domain [SSE09], the wavelength domain [EBR∗14]
for spectral rendering, as well as the adjoint case for photon map-
ping [SFES11]. Thus we assume the equations for particular deriva-
tives to be readily available in this paper. A more advanced way
of determining pixel spread in higher dimensions is, for example,
covariance tracing [BSS∗13]. Pencil tracing [STN87] is an early
work which traces 4D spread along with a path. We also track
differentials through reflection, refraction, and transfer operators.
Recently, fully general differentiable rendering has been discussed
[LADL18, LHJ19], but is overly generic and slow for our use case.

Filtering emitters Alternate approaches filter the light source,
e.g. [KVHS00], using the footprint when arriving at the light. The
extent of the differential, however, needs to be clamped to limit the
error as the resulting approximation is only valid in a local neigh-
bourhood of the main path as it does not account for changes in
visibility and high frequency geometry. While image-based light-
ing is straightforward to filter (e.g. using an elliptically weighted
average, EWA approach), geometric lights are not easily filterable
as ray casting is a point-sampling operation and does not retrieve
lights in the neighbourhood of a ray. For surface interactions that
are not perfectly specular, combining the technique with next-event
estimation is difficult: while the filtering region depends on the di-
rection being sampled, the sampled direction would depend on the
amount of filtering to be applied in order to maintain high quality
importance sampling of the filtered distribution.

We are aiming for an approach which operates on the material
level only, and thus is easy and minimally invasive to integrate, and
works well together with path-tracing algorithms. in particular the
modification of the material at the hit-point does not depend on ver-

P intersection point on surface
N surface normal
∂uP ∂P

∂u tangent vector in u direction
∂vP ∂P

∂v tangent vector in v direction
Σ covariance matrix of the Beckmann surface BSDF
α

t temporal (macro) Beckmann roughness along motion
α

µ base (micro) BSDF Beckmann roughness
α1,α2 anisotropic roughness, major and minor BSDF axes
P covariance matrix of geometric curvature in slope space
o outgoing direction from P to camera
i incident direction from P to light
h 3D half vector = i+ηo

‖i+ηo‖
hs 2D half vector in slope space
D(h) distribution of slopes of micronormals
Dt(h) distribution of slopes of normal over time
G geometric shadowing/masking term
M Jacobian from slope space hs to on-surface measure

Table 1: List of symbols used in our math notation.

tices that are constructed further towards the light and the approach
works for all light sources, not only filterable image-based lights.

Precisely resolving highlights Manifold walks [HDF15,JM12] on
the surface geometry can be used to find exactly the paths that ful-
fill the specular constraint. Outside the Markov chain context, this
has so far only been demonstrated for transmissive caustics, not for
reflective highlights [WZHB09], using exhaustive search.

Specular anti aliasing The same basic underlying calculus as for
manifold walks has been used to compute an approximation of the
highlight integrated over the pixel [KHPL16,TK19] by filtering the
BSDF in the half vector domain.

Motion blur widens the integration domain further (Fig. 3), mak-
ing it even harder to sample. Similar problems arise with other dis-
tribution effects like depth-of-field. We follow along the same line
as specular anti aliasing, but are interested in accurate anisotropy,
application for indirect bounces in path space and motion blur.

Our approach is also based on the observation, that in prac-
tice, specular surfaces often have some amount of roughness due
to LEAN/LEADR mapping. This requires us to handle “temporal
roughness” on top of anisotropic microfacet BSDF roughness.

3. Filtering microfacet distributions

In this section we describe our approach by first summarising from
[KHPL16] the foundations of specular anti aliasing and derivation
of precise expressions to handle anisotropic BSDF and geometric
curvature (section 3.1). We will then proceed with our contribution
to extending this to the time domain (section 3.2). This is for the
most part a straightforward extension of the spatial domain tech-
nique, but has a different geometric shadowing/masking term since
microfacets at different time steps do not shadow each other.
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Figure 4: When spatial curvature (top) is baked into surface rough-
ness (bottom), we ignore the correlation between local and distant
shadowing (Glocal

1 and Gdist
1 ), and replace an integration over

both by the product of their respective averages.

3.1. Pixel filtering

On a high level, specular anti aliasing analytically describes geo-
metric detail under a pixel footprint and evaluates it closed-form
along with a modified BSDF. We will revise the two causes of nor-
mal variation in a pixel, first, roughness of the BSDF and then ge-
ometric curvature. We will use the notation as outlined in table 1.

BSDF roughness A Beckmann roughness of an anisotropic BSDF
is defined in the tangent frame N,∂uP,∂vP at a surface point P via
the covariance matrix

Σ =

(
σ

2
u ruvσuσv

ruvσuσv σ
2
v

)
, (1)

where σ
2
u,σ

2
v ,ruv are respectively the original roughness on the ma-

jor and minor axis and their correlation coefficient. This formula-
tion expresses the shape of a Gaussian normal distribution function
(NDF) in slope space and ruv ∈ [−1,1] is simply its rotation coeffi-
cient. The NDF is defined as [Hei14, eq (68)]:

D(h) = χ
+(h ·N)

π|Σ|h4
n

exp
(

1
2

hT
s Σ
−1hs

)
, (2)

with hs =
(
hu/hn,hv/hn

)T being the half vector in slope space.
Here, χ

+ clamps the dot product to be positive. Note that we use
a standard Gaussian covariance matrix rather than a Beckmann
roughness, because the latter factors in the 1

2 in the exponent (i.e.
Beckmann α =

√
2σ), making convolutions of Gaussians more

cumbersome to express later on.

Surface curvature We follow [KHPL16, eq. (4)] and define the
Jacobian of the change of local half vector in slope space hs with
respect to the surface position P as

M(P) = ∂hs/∂P. (3)

This expression includes surface curvature, and thus depends on the
normal derivatives with respect to the surface parameterisation u,v.
To express the half vector dependency, the partial derivatives em-
ployed here in general require knowledge of the position of the next

path vertex (closer to the light) [JM12]. Since we do not always
know the outgoing vertex beforehand, we assume perfect specular
reflection to derive the required quantities for equation (3). This is
in line with our assumption that the base roughness of the surface
is relatively specular.

Combined NDF We now approximate a combined NDF D′ as the
convolution of the microfacet NDF and the distribution caused by
spatial curvature under the pixel footprint [KHPL16, eq. (12)]:

Σ
′ = Σ+P. (4)

Let the pixel footprint be defined in screen space as a Gaussian
where σp matches the half pixel width. We compute the footprint in
half vector space by projecting the pixel to the local tangent frame
by mapping the pixel coordinates (i, j),(i+ 0.5, j),(i, j+ 0.5) for-
ward through the shot camera and intersecting the resulting rays
with the plane around P with normal N. From these three points,
P,Pi,P j, we derive the covariance matrix of an anisotropic Gaus-
sian in tangent space (∂uP,∂vP,N). This matrix is then mapped
through M(P) to obtain a covariance matrix in slope space.

Discussion We can predict D with high accuracy by assuming a
convolution of the two causes of normal variation. This assump-
tion is reasonable, since the materials we are interested in are very
specular. When it comes to the geometric shadowing/masking of
the microsurface, we just depend on the formulation of the micro-
facet BSDF to correctly include the added roughness into the G
term. Conceptually this disregards spatial correlation between the
surface position and the micronormals even though we know they
are correlated (see figure 4 for an illustration where Glocal

1 refers to
shadowing-masking due to BSDF roughness and Gdist

1 due to cur-
vature). Intuitively we average normals from behind the horizon of
the visible surface into the result. In fact we probably overestimate
G, because the Cauchy-Schwartz inequality states that the absolute
value of the covariance (avg Glocal

1 ·Gdist
1 [Hei14, Sec. 4.1]) is

at most as high as the product of variances (avg Glocal
1 times avg

Gdist
1 ). This means there is less shadowing, and thus brightness too

high.

Increasing the roughness for the G computation results in more
shadowing, so whatever was indirect light scattering between ge-
ometry in path tracing before now becomes shadowed because the
BSDF only considers single scattering. This has the opposite ef-
fect: it tends to overshadow a little. The two effects partly cancel
each other, and become less relevant in practice if the BSDF model
contains a term to recover energy from multiple scattering within
the microsurface [HHdD16,Tur19]. Such a model is essential when
using prefiltering using LEADR maps to maintain a consistent look
in the distance.

The shadowing function normalises the distribution of visible
normals, i.e. G ·D/(4cos) is normalised. The slope induced by the
curvature also self-shadows microfacets and introduces masking.
We decorrelate the spatial location and the height by forming one
microsurface with more roughness but without curvature. This new
microsurface naturally passes the weak white furnace test for the
masking induced by the curvature, since we alter both the normal
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Figure 5: Left: Change of normals N at intersection point P de-
pending on time t. Right: Resulting map x(t) from time domain T
to reference unit sphere.

distribution and the masking term according to the new covariance
matrix.

3.2. Temporal filtering

In this section we will formulate a temporal normal distribution
function as a natural extension of spatial NDFs to the time domain
and discuss analogies and differences. We refer to [Hei14] for an
exhaustive introduction of the fundamental concepts of microfacet
theory we are building upon. We will then use this concept to com-
bine a micro-NDF (the base roughness of the BSDF and spatial
specular anti aliasing) with a macro-NDF (due to motion blur).We
propose to approximate the temporal distribution of normals in a
local neighborhoord based on the first-order approximation around
a reference normal based the derivative of the apparent normal and
discuss some sources of errors.

Temporal NDF We begin with extending the notion of a NDF to
describe the surface’s micro detail to the temporal domain. The
BRDF for a specular reflection to the perfect reflection direction
r is given by [WMLT07, eq. (15)]

f µ
r (o, i) =

F ·δr(i)
|cosθo|

=
F ·δhr (h(i))

4|cosθo| · |cosθi|
(5)

using the well known relation∣∣∣∣dh
di

∣∣∣∣= 1
4|cosθh|

=

∣∣∣∣dh
do

∣∣∣∣ . (6)

In [WMLT07, eq. (8)] the spatial transformation from micro to
macro surface requires a ratio of cosines (respectively cosθ and
cos θ̂) that takes into account this change while integrating radiance
over solid angle.

Lo(r)≈
∫

Ω+

|cosθo|
|cos θ̂o|

f µ
r (o, i)

|cosθi|
|cos θ̂i|

Li(i)di⊥ (7)

Similarly with time, we need to add the change in orientation be-
tween different time instants. For a time-dependent ray we denote
by P(t) the surface hitpoint at time t; the filtered radiance in a tem-
poral neighbourhood T = [t0, t1] around a reference geometry with
normal N (say, the normal at P( t0+t1

2 )) can be written as:

Lo(r)≈
1
|T |

∫ t1

t0

∫
Ω+

|cosθ
t
o|

|cos θ̂o|
F ·δh(P(t))(h)

4|cosθt
o| · |cosθt

i |
Lt

i(i)di⊥ dt (8)

=
1
|T |

∫ t1

t0

∫
Ω+

F ·δh(P(t))(h)
4|cos θ̂o| · |cos θ̂i|

L̂i(i)di⊥ dt (9)

using the transformation of radiance from reference space to tem-
poral micro space L̂t

i =
|cos θ

t
i |

|cos θ̂i|
L̂i. Here, the hat notation θ̂, L̂ indi-

cate that quantities are with respect to the fixed reference geometry.
This plays a similar role as the geometric frame in spatial micro-
facet theory, i.e., microscopic variation is expressed relative to a
fixed local coordinate system. The formulation is based on the ap-
parent change of the material response in the neighborhood, mov-
ing with the time dependant hitpoint. Here, we need to assume a
sufficiently small neighborhood to disregard discontinuities of the
closest-point transform and such that we can, similar to the spatial
case, assume that Li does not contain significant far-field variation.
We now define

Dt(v) :=
1
|T |

∫ t1

t0
δv(h(P(t))dt [s], (10)

which we call temporal NDF. If x : T = [t0, t1]→ Ω, t 7→ N(P(t))
defines the forward mapping from time to normal domain accord-
ing to the ray-intersection (cf. figure 5), then

µ := |T |−1
λ◦ x−1 (11)

is the push-forward measure of the Lebesgue measure λ in the time
domain to the normal domain, hence Dt is the Radon-Nikodym
derivative dµ

dω
of µ. We have

1
|T |

∫
Ω+

Dt(m)dm = 1 [s]. (12)

Using Dt equation (9) simplifies to

Lo(r) =
∫

Ω+

F ·Dt(h(P(t))
4|cos θ̂o| · |cos θ̂i|︸ ︷︷ ︸

temporal BRDF

·Li(i) di⊥. (13)

Note that in comparison to spatial microfacet theory, there is no
masking term, since radiance is not influenced by the local geom-
etry at a different time. Hence, the analogue of the distribution of
visible normals [Hei14]

Dt
vis(h) :=

cosθh
cosθo

Dt(h) (14)

is not normalised but still remains physically plausible (see fig-
ure 6): The shadowing/masking terms G of the Smith surface are
composed of local and distant terms [Hei14, Sec. 4.1]. The local
term is the self shadowing of the microfacet due to backfacing nor-
mals. This part remains valid at a different time, while the distant
shadowing part does not: microfacets at different instants in time
do not shadow each other. Depending on the geometric complexity
and the temporal dependence of the incoming ray, Dt can exhibit
a very complex behaviour. Let us, for the moment, assume that
we can locally approximate Dt by a highly anisotropic Beckmann
NDF, which will be described later in more detail. This makes the
distinction between local and distant G terms very simple, since the
local shadowing part is contained in the clamped cosine in the def-
inition of D in equation (2). This means we can simply disregard
the shadowing due to the increased roughness, i.e. we evaluate G
using only the spatial roughness from base BSDF and curvature.

Handling glossy micro-NDF In practice materials are rarely per-
fectly specular, since micro detail that is no longer represented by
actual geometry during render time needs to be accounted for. If
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Figure 6: Aggregating temporal changes of the macro normal N
(top) into surface roughness (bottom) looks very similar to aggre-
gating surface curvature (figure 4). Note, while we want to average
the effect of local shadowing Glocal

1 , microfacets do not shadow
each other at different time steps. Thus, we compute the distant
shadowing term Gdist

1 from the base roughness only, i.e. without
accounting for the convolution with the temporal roughness P.

o o

o

o o

o

Figure 7: Comparison of ground truth fcomb (eq. (15)), combined
BSDF (numerically integrated) and approximation fconv (eq. (17)).
The plots show the angular BSDF response for a fixed outgoing
direction o. For all of them the macro NDF is a Beckmann distribu-
tion with α

t
1 = 0.3 along the motion direction and α

t
2 = 0.015 per-

pendicular to that. In the first row the base roughness is α
µ = 0.05

and the azimuthal angle φ between o and major axis of filter
anisotropy is 9◦. In the second row α

µ = 0.05 and φ = 45◦ and
in the last row, α

µ = 0.5 and φ = 0. In the left column the full G-
term is used for the introduced filtering roughness, which matches
fairly well with the approximation if also therein the full G2 term is
used. As shown in the right column, setting the Gconv to Gµ is able
to capture the temporal case in which the macro G is 1.

the micro-NDF belongs to a Cook-Torrance microfacet BSDF, the
combined BSDF

fcomb(o, i,N) =
∫

Ω+

|〈m,o〉|
|〈N,o〉| f µ(o, i,m)

|〈m, i〉|
|〈N, i〉|D

t
N(m)dm

=
∫

Ω+

F(o, i)Dµ
m(h(i,o))Gµ(i,o,h)

4|〈N,o〉||〈N, i〉| Dt
N(m)dm (15)

becomes an integral over all half-vectors m of the temporal macro-
NDF, (similarly to the spatial case of [WMLT07, eq. (8)]), which
makes it impractical to sample and evaluate during rendering. This
aggregation of the spatial micro and temporal macro NDFs has the
structure of a convolution [KHPL16, eq. (12)]. Beckmann NDFs
seem most amenable to this structure, since they are Gaussians in
the slope domain where the convolution of Gaussians with other
Gaussians is closed. Unfortunately, this property does not carry
over to the spherical domain, as the projection from slope space
does not result in a Gaussian but to an approximation of this con-
volution. However, as long as the micro NDF only has up to moder-
ate roughness, the addition of covariance matrices similar to equa-
tion (4), i.e.

Σconv = Σ
µ +P (16)

fortunately provides a good approximation: the combined NDF
Dcomb can be approximated well by a Beckmann distribution Dconv
that corresponds to the sum Σconv of the covariance matrices in a
common local frame. Therefore the combined BSDF has the form

fcomb(o, i,N)≈ fconv =
F(o, i)Dconv(h(i,o))Gconv(i,o,h)

4|〈N,o〉||〈N, i〉| , (17)

where Gconv denotes the combined G term, which still needs to
be chosen appropriately. The G term of the Beckmann distribution
implicitly depends on its roughness parameter, so a naive approach
would be to applying the standard shadowing/masking term, i.e.,
the one corresponding to Σconv. We cannot expect this to be an
accurate approximation, since this masking and shadowing would
also account for temporal roughness.

In figure 7 we compared fconv (dashed orange) with the ground-
truth fcomb (dashed blue) which we obtain by brute-force numerical
evaluation of equation (15). Indeed, in the left column using the
standard G term for the combined BSDF provides a good match as
long as G is used for both micro and macro NDF.

The right column indicates a different behaviour of the ground
truth at grazing angles if we omit the G term for the temporal NDF.
Setting Gconv := Gµ recovers this behaviour well also at grazing
angles and significant differences only start to exhibit at a high base
roughness (bottom row, α

µ = 0.5).

Approximating Dt There is in no hope to describe Dt accurately
in the full shutter range. Due to the complex interplay of the
time-dependent intersection point, potentially high geometric detail
moving with high velocity, the behaviour of N in a neighbourhood
of a reference point is highly non-linear. Since the apparent nor-
mal variation depends on ray direction, and because of changes in
visibility it would be infeasible to precompute and store this data.

To make use of the temporal NDF in practice, we approximate
Dt only in a small neighbourhood in time, thereby limiting these

© 2020 The Author(s)
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Figure 8: Linearisation error: a) sphere moving from back to front.
b) the highlight moves along a curved trajectory due to change of
view angle (reference). c) applying anisotropic temporal roughness
based on ∂tN. d) ours ∆t weighted down by cosine with viewing di-
rection. e) motion blurred version of c). f) motion blurred version of
d). g) classic motion blurred render without temporal roughening,
all rendered at 16 samples. h) collected normals over time deter-
mined by ray tracing (exact) and the first-oder approximation using
just the first derivative (linearise). [TK19] perform a similar cosine
downweighting effectively, since they use the projected solid angle
half vector instead of the slope space half vector.

higher-order errors. The apparent temporal variation of the Gauss
map as a seen by the ray, i.e., N(t,P(t)) (in short N(t)) is the cen-
tral quantity that remains to estimate. We use the normal deriva-
tive ∂tN(t) as a first-order approximation to extrapolate the normal
away from the center, which provides a representative slope m that
is then mapped onto the roughness parameter of a Beckmann dis-
tribution.

Since ∂tN(t)⊥N, the derivative can also be used to define the
major principal tangent direction. The temporal variation is one-
dimensional so we set the roughness in the minor axis to 0, or to a
small value in case the base NDF is perfectly specular.

More precisely, after choosing
∆t to only a subset of the shutter,
∆t∂tN(t) directly corresponds to
the plane-parallel slope relating
to the opening angle α between
N and Ñ parallel to N+∆t∂tN(t),
or in other words, the slope is

Figure 9: Close up of moving spray particles from Fig. 1 without
(left) and with temporal filtering (right).

m = tanα = ‖∆t · ∂tN(t)‖. We
map this value directly to the roughness value of the Beckmann
distribution.

The next section describes how to compute this derivative. As
the apparent normal depends both on the motion of the intersected
object as well as the motion of the incoming ray, it naturally adapts
the relative motion. In particular, a camera movement tracked with
an object will cancel each other out and therefore avoid overblur-
ring. This approach therefore depends on temporal ray differen-
tials, which are a rather straightforward adaptation from classic ray
differentials [Ige99]. The main difference is that the derivative of
the intersection distance s(t) is now also dependent on time. As
all methods that utilise ray differentials, this limits the approach to
unidirectional path tracing.

Added roughness helps reducing variance in conjunction with
next-event estimation which is effective for sampling to small,
bright light sources and high-frequency IBLs.

Figure 8 shows how the low-order approximation of the normal
variation can lead to undesired shapes of the highlight. In order for
the blurred version of the highlight to align perfectly with the cor-
rect trajectory (8b), the distribution would need to be curved on the
sphere (green line in 8h). Due to linearisation we map to a geodesic
trajectory (blue line in 8h), which results in the overly curved high-
light in 8c and 8e. To account for this, we would require more infor-
mation such as higher-order derivatives, which might be impracti-
cal to achieve. To avoid this effect, we observe that these errors
usually happen at grazing angles where the directional changes are
most significant and apply a simple weighting term, by scaling ∆t
with the cosine of the normal and incident direction (8c and 8f).

As shown in figure 9, the temporal NDF cannot handle occlusion
boundaries. The highlight trajectories are broken up by occlusion of
other particles. When temporal filtering is enabled these highlights
can cause some overblurring when the velocity is large.

Indirect rays Since we only modify the roughness of the BSDF,
we can easily apply our technique to indirect bounces as well. The
ray footprint has to be derived by propagating the ray differential
through all previous bounces. This can widen the footprint beyond
the range in which a local approximation of the NDF is valid, so it

© 2020 The Author(s)
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has to be clamped. The local environment around a transport path in
path space contributes the result of the convolution of all events to
the framebuffer. In particular, the temporal integration is only per-
formed once per path, so all BSDF events along a path have to share
the extra roughness introduced by the temporal NDF. Applying the
full convolution to every vertex would introduce overblur. Since a
convolution equates to summing variances, this means the temporal
Beckmann roughness α

t should be distributed among path vertices
i such that ∑i(α

t
i)

2 = (αt)2.

4. Computing derivatives

This section discusses how to compute the derivatives ∂ts(t) and
∂tN(t) that are required to compute the temporal ray-differentials.

4.1. Implicit surfaces

We focus our discussion on implicit surfaces (cf. [OF03]), because
they are ubiquitous in FX elements for movie production in the
form of grid-based level set functions, blobbies, and ellipsoids. El-
ements such as water splashes and spray particles often feature
high velocities and complex geometry which are good candidates
to apply our approach. Furthermore, implicits provide a convenient
mathematical toolset to compute the derivatives that we need as
main ingredient to estimate the temporal normal variation.

For a level set function φ : R×Ω→ R (where Ω ⊆ Rd) we set
Mt,c[φ] := {φ(t, ·) = c}. By convention we often use the zero level
setM(t) :=Mt,0 and denote by Nφ(t,x) its normal, i.e.,

Nφ(t,x) :=
∇xφ(t,x)
‖∇xφ(t,x)‖ . (18)

Temporal derivative of intersection For a time-dependent ray
r(t) = (o(t),d(t)) the intersection distance s is implicitly defined
by

f (t,s) := φ(t,o(t)+ sd(t)) = 0. (19)

By the implicit function theorem there exists a function s : U → R
in a neighbourhood U around t0 such that f (t,s(t)) = 0 and

∂ts(t) =−
∂t f (t,s(t))
∂s f (t,s(t))

=−∂tφ+ 〈∇xφ,∂to+ s∂td〉
〈∇xφ,d〉 . (20)

Note, that in the implicit form this is a simpler and more general
derivation of (12) in [Ige99].

Normal derivative on ray intersection Using equations (20), (27)
and (28) (see Appendix A), the normal derivative at the ray inter-
section is

∂tN(t) =
d
dt

Nφ(t,o(t)+ s(t)d(t))

= ∂tNφ +∇xNφ · (∂to+∂tsd+ s∂td). (21)

4.2. Parametric surfaces

For parametric surfaces x : R×V → R3 with V ⊂ R2 the analogue
of the derivative in equation (21) is more complicated to obtain. In
particular going through local coordinates to obtain ∂ts(t) becomes

unwieldy. We note that with regard to motion blur the rigid motion
component in particular translation and rotation by far dominate
higher-order changes such as deformation and bending. Therefore,
we confine ourselves to expressing rigid motion of the local ge-
ometry. Since we only need to compute derivatives of normals, the
second fundamental form is a sufficient description [dC76].

In the parametric form of x(u,v) and the Gauss map N(u,v) the
principal curvatures κ1 and κ2 at a surface point P and their corre-
sponding principal curvature directions e1 and e2 can be computed.
The quadric approximation to the surface is then given by:

x(u,v) = 1
2

u2
κ1e1 +

1
2

v2
κ2e2 +P (22)

and can be expressed in implicit form as

φ̂(x) =
1
2

κ1〈x−P,e1〉2 +
1
2

κ2〈x−P,e2〉2 + 〈x−P,N〉 !
= 0.

(23)

Finally, we compose φ̂ with a motion transformation M : R×Rd→
Rd which accounts for translation and rotation, i.e.,

φ(t,x) := φ̂(M(t,x)), (24)

which allows us to apply the computations for implicits fom the
previous section and Appendix A.

5. Results

Figure 1 shows a production FX asset with an implicit surface de-
fined by particles. This illustrates the practical applicability and
scalability of the approach. We always compare equal sample
images, because there is virtually no performance impact of the
method (i.e. a little bit of compute is added and can be hidden be-
tween memory fetches).

Comparison to Specular Anti Aliasing We implemented pre-
vious work for spatial specular anti aliasing of high curvature
[KHPL16, TK19] in a GPU path tracer. To facilitate comparisons,
we implemented our technique in this framework, too, and use pub-
licly available implicit ray tracing scenes: the Gears scene (fig-
ure 10, https://www.shadertoy.com/view/tt2XzG),
the Chain scene (figure 11, https://www.shadertoy.com/
view/wlXSD7) and the Splash scene (figure 12, https://
www.shadertoy.com/view/4lSSRW). The lighting setup is
a relatively distant spherical light behind the camera and the BSDF
is a reflective dielectric microfacet model with isotropic roughness
of 0.02. Anisotropy is only introduced from curvature and motion,
to be fair towards all methods ( [TK19] only supports the isotropic
case). Along with the images showing only the highlights, we pro-
vide a false color image (roughness AOV) where the red and green
channels map the final roughness along the tangent and bitangent
respectively.

Gears Figure 10 shows a ball made of rotating gears and proves to
be a good test for motion vectors going in all directions. The fast
changing normals around the gears makes it hard to resolve effi-
ciently. KHPL16 increase the roughness around edges, which does
not help with fast motion, but keeps the highlight sharp (orange
insets); TK19 on the other hand, being isotropic in nature, blurs
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movingmoving 100spp100spp vanillavanilla 100spp100spp [KHPL16][KHPL16] 100spp100spp [TK19][TK19] 100spp100spp OursOurs 100spp100spp referencereference 10k spp10k spp

stillstill 100spp100spp vanillavanilla [KHPL16][KHPL16] [TK19][TK19] OursOurs

Figure 10: A ball made of rotating gears, moving in different directions. Above: showing only highlights for comparisons. Below: roughness
mapped to red and green channel for tangent and bitangent respectively. Notice the hightlight (orange inset) and the side of the gear (blue
inset).

not only around the moving axis but also on its side, resulting in a
blurred highlight and a rougher side of the gear (blue insets). This
can be easily seen in the roughness AOV. Our method increases the
roughness only along the motion vector, resulting in a sharper and
more converged image.

Chain Figure 11 shows a chain moving upwards, a simple scene
with many smooth and round edges, in an axis aligned motion. As
expected, no method has particular issues in converging to the right
image, but does not add much roughness either. In our case we in-
crease it along the moving direction, obtaining a faster convergence
compared to the others.

Splash Figure 12 shows a pool of blobs, rotating and twisting in
a vortex of turbulent motion. This scene is particularly hard for
all techniques: it presents both circular motion (orange inset) and
straight fast movement (blue inset). In the first case, the revolu-
tion smooths well with TK19 but it also create very blurry high-
lights; KHPL16 instead, being anisotropic, captures better the spa-
tial change of the normal but lacks in convergence. Adding rough-
ness along the motion keeps the highlights sharp with minimal blur.

6. Conclusion and Future Work

We introduced temporal normal distribution functions for prefilter-
ing microfacet BSDF for fast moving near specular surfaces. This
is especially useful for cinematic movie production where often
long shutter intervals meet high speed content, such as curved metal
surfaces or FX elements for fluids. Analytically handling the con-
volution of the signal with the shutter interval, by pushing it into

a microfacet normal distribution, enables us to render such cases
more efficiently. This integrates well into existing path tracers and
handles edge cases more robustly, such as static geometry seen in a
moving mirror or a camera tracking a fast moving object.

A few open questions and possible variations of this approach
remain. We briefly touched upon indirect bounces. Filtering sec-
ondary interactions requires path differentials and potentially also
temporal ray differentials to determine the indirect pixel footprint.
Such footprints can easily become very large and then have to be
clamped to be useful. How to do this in a rigorous way is still an
open topic. Temporal ray differentials themselves have unsolved
problems, for example when a bounce and a consecutive bounce
both move in the same frame of reference: naive application will
account for the same movement twice and lead to overblur.

This filtering idea can very likely be employed for depth-of-field
as well. The motivation and problem statement are equivalent. It
requires a mapping of the circle of confusion to roughness via the
shape operator. Such an extension would be in line with the fur-
ther development a sheared postfiltering approach received in the
past [MYRD14].

An extension to micro NDFs other than Beckmann’s is another
open question with practical relevance, as for instance the GGX
NDF is very popular. In a different setting, the convolution of GGX
lobes has been approximated by Gaussian convolution and a cor-
rection factor [WHD17]. We also approximate the local neighbour-
hood in time with a Gaussian, which may profit from a better match
to the actual shutter envelope function.
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movingmoving 100spp100spp vanillavanilla 10spp10spp [KHPL16][KHPL16] 10spp10spp [TK19][TK19] 10spp10spp OursOurs 10spp10spp referencereference 10k spp10k spp

stillstill 100spp100spp vanillavanilla [KHPL16][KHPL16] [TK19][TK19] OursOurs

Figure 11: A chain moving upwards. Above: showing only highlights for comparisons. Below: roughness mapped to red and green channel
for tangent and bitangent respectively. Adding more roughness along the moving axis results in faster convergence.

movingmoving 100spp100spp vanillavanilla 100spp100spp [KHPL16][KHPL16] 100spp100spp [TK19][TK19] 100spp100spp OursOurs 100spp100spp referencereference 10k spp10k spp

stillstill 100spp100spp vanillavanilla [KHPL16][KHPL16] [TK19][TK19] OursOurs

Figure 12: A vortex of blobs rotates and twists around itself, with many small particles in turbulent motion. Above: showing only highlights
for comparisons. Below: roughness mapped to red and green channel for tangent and bitangent respectively. We can see some concentric
(and thus more isotropic) movement (orange inset) and fast straight motion (blue inset).
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Appendix A: Normal derivatives on implicit surfaces

We provide a small toolbox for computing normal derivatives that
are needed for temporal and spatial ray differentials and as well as
to obtain ∂tN(t) in Eq. (21).

Definition 1 (Projection) For a function v : Ω→ Rn, we define

P[v] :=
(
1− v
‖v‖ ⊗

v
‖v‖

)
with a⊗b := abT . (25)

Remark 1

(a) We have

∂t

(
v(t)
‖v(t)‖

)
=

1
‖v(t)‖

(
1− v(t)
‖v(t)‖ ⊗

v(t)
‖v(t)‖

)
·∂tv(t)

(b) More general, for a differential operator D,

D
(

v
‖v‖

)
=

1
‖v‖ P[v]Dv. (26)

(c) Therefore, temporal derivative of the normal is

∂tNφ(t,x) = ∂t

(
∇xφ(t,x)
‖∇xφ(t,x)‖

)
=

1
‖∇xφ‖ P[∇xφ]∂t∇xφ(t,x).

(27)

(d) Similarly, the gradient of the normal is given by

∇xNφ(t,x) =
1

‖∇xφ‖ P[∇xφ]D2
φ(t,x). (28)

See also [SS11] where similar equations are used to estimate tan-
gential velocities from a time-dependent level set function.

Definition 2 (Tangential gradient) The tangential gradient of a
function u ∈ C1(Ω) is given by∇Mu := P[M]∇xu.

Remark 2 (Shape Operator) The matrix representation of the
Weingarten map on the tangent space ofMc[φ] is given by

S :=
1

‖∇xφ‖ P[∇xφ]D2
φP[∇xφ] = DNφP. (29)

This is used to compute the derivative of the normal for classic ray-
differentials, i.e.,

∂N
∂u

= S ∂x
∂u

. (30)
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