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Fig. 1. Equal-time renderings (50s on 64 cores). Top: We propose a new analytical approach to Markov Chain stratification that improves sample distribution
similarly to multi-stage MLT [Hoberock and Hart 2010], but at greatly reduced complexity, as it neither requires multiple rendering stages nor other pre-
accumulated information. Bottom: We construct an adaptive rendering algorithm based on purely forward path tracing that is competitive with state-of-the-art
bi-directional algorithms. Our analytic variance bounding scheme serves as a framework for the design and optimization of adaptive sampling distributions.

Markov Chain Monte Carlo (MCMC) rendering is extensively studied, yet it

remains largely unused in practice. We propose solutions to several practica-

bility issues, opening up path space MCMC to become an adaptive sampling

framework around established Monte Carlo (MC) techniques. We address

non-uniform image quality by deriving an analytic target function for image-

space sample stratification. The function is based on a novel connection

between variance and path differentials, allowing analytic variance estimates

for MC samples, with potential uses in other adaptive algorithms outside

MCMC. We simplify these estimates down to simple expressions using only

quantities known in any MC renderer. We also address the issue that most

existing MCMC renderers rely on bi-directional path tracing and reciprocal

transport, which can be too costly and/or too complex in practice. Instead,

we apply our theoretical framework to optimize an adaptive MCMC algo-

rithm that only uses forward path construction. Notably, we construct our

algorithm by adapting (with minimal changes) a full-featured path tracer

into a single-path state space Markov Chain, bridging another gap between

MCMC and existing MC techniques.
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1 INTRODUCTION
Markov Chain Monte Carlo (MCMC) light transport (MLT [Veach

and Guibas 1997]) has been extensively studied as an adaptive varia-

tion of Monte Carlo (MC) rendering for over two decades. Although

research of better mutation strategies and importance functions

is ongoing, to this day, MCMC is largely ignored by the indus-

try: The quality of results is oftentimes hard to control and non-

uniform. Moreover, noise reduction and reconstruction techniques

have become a successful and essential tool for sample-budgeted

high-quality MC rendering in practice. However, the correlated na-

ture of MCMC creates artifacts that prevent successful application

of these techniques. Lastly, the heuristics of established mutation

strategies often prove fragile in complex scenes.

Yet, recent advances in adaptive sampling and guiding show that

there is unused potential in correlated sampling techniques. A major

issue of these, however, is the reliance on information that can only
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be accumulated during the rendering process itself. Naïve MCMC

does not require such information, but fails to differentiate between

bright and difficult samples, which in turn can be fixed by stratifi-

cation requiring similar information [Hoberock and Hart 2010]. To

improve on this, we use path differentials, tracking the impact of

stochastic scattering interactions on the influence of emitter sur-

faces, to predict information that previously had to be obtained from

sample statistics in advance. We derive a novel analytic function that

conservatively estimates variance caused by a given path sample.

As a proof of concept, we apply the gained insights to both strati-

fication and optimal adaptive sampling in the context of MCMC:

• We stratify the target function of the Markov Chain (akin to

Hoberock et al. [2010]) using our analytic variance bounds.

• We optimize the shape of proposal distributions in path space

MCMC and by this push the capabilities of forward path

tracing, to compete with other bi-directional methods.

• We complement the resulting small step based on forward

path construction by embedding a full path tracer with mini-

mal changes, importing established MC variance reduction

and sample reuse, such asmultiple importance sampling (MIS),

next event estimation (NEE), and shared path prefixes.

Our MCMC renderer effectively becomes an adaptive path tracer,

with the usual benefits of reduced algorithmic complexity, avoiding

efforts to ensure reciprocity (e.g. for shading normals), and focussed

sampling efforts due to tracing from the camera.

2 BACKGROUND
The goal of MC and MCMC rendering methods is to compute the

light transported on all possible paths X = (x1, . . . , x𝑘 ) (for all vertex
counts 𝑘 ≥ 2) in a path space Ω to the individual pixels of a sensor.

For a given path X the measurement contribution 𝑓 (X) [Veach 1998]

(w.r.t. the area measure d𝐴 on all scene surfaces M) is evaluated

and the measurement for the 𝑗-th pixel with sensitivity ℎ 𝑗 (X) is
computed by a path integral in the rendering equation:

𝐼 𝑗 =

∫
Ω
ℎ 𝑗 (X) 𝑓 (X) dX, with dX =

𝑘∏
𝑖=1

d𝐴(x𝑖 ) .

Integration by Stochastic Sampling. MC approaches to solving

this rendering equation, i.e. by stochastic path sampling, leave a

lot of flexibility. While in principle, every unbiased MC estimator

converges to the correct solution, good importance sampling (IS)

is crucial in order to sample high-throughput paths frequently

and to reduce variance of the result. Multiple Importance Sam-

pling (MIS) [Veach and Guibas 1995] robustly combines several

estimators that efficiently reduce variance in different parts of path

space, and has proven an essential technique for high-quality results.

MCMC rendering algorithms, introduced as Metropolis Light

Transport (MLT) [Veach andGuibas 1997], make use of theMetropolis-

Hastings algorithm resp. the generalizing Reversible Jump (RJ) frame-

work [Geyer 2003; Green 1995, 2003] to enable correlated path sam-

pling while maintaining a controlled distribution that allows MC

integration. MCMC supports arbitrary mixed proposal distributions,

but combination using MIS also proves to reduce variance, e.g. in

bi-directional path mutations [Hachisuka et al. 2014] and incorpo-

ration of density estimation [Šik et al. 2016]. Primary Sample Space

MLT (PSSMLT) [Kelemen et al. 2002] allows adding correlated sam-

pling to existing MC estimators by moving from the state space Ω of

paths X to the spaceU of random variables U used by the estimator.

Generalizations and Mixed Proposals in MCMC. Efficient corre-

lated sampling across a mixture of sampling techniques has recently

been derived from the observation that the choice of the state space

does not matter [Bitterli et al. 2017; Otsu et al. 2017; Pantaleoni 2017]:

In the RJ framework, proposal distributions arise from self-inverse

maps that fuse arbitrary state variables with random variables, ac-

counting for measure changes with their Jacobian determinants.

We observe that despite many MCMC algorithms being fundamen-

tally based on this framework, current techniques (in single-path

state spaces) still artificially correlate the path lengths of proposal

paths. We expand on the use of RJ by amortizing the cost of path

construction across many path lengths in our large step mutation.

Multiple Proposals in MCMC. Other generalizations of MCMC

include the Multiple Try Framework [Liu et al. 2000] (MT), allowing

the generation of many proposal candidates at once in a single-path

state space, by a weighted stochastic candidate selection [Pandolfi

et al. 2010]. Bitterli [2015] applies this to the bi-directional mutation

to reuse sampling effort of emitter and sensor subpaths across mul-

tiple candidates, with different connecting segments. Martino and

Louzada [2017] note that good weights are crucial for robust candi-

date mixture, and note that MIS [Veach and Guibas 1995] is a good

option. Craiu and Lemieux [2007] apply MT to bring Quasi-Monte

Carlo methods into MCMC. MT in rendering has also been used for

improved distribution of virtual point lights [Segovia et al. 2007b]

and coherent proposal sampling using packet ray tracing [Segovia

et al. 2007a]. We observe that MT can be formulated as a special

case of RJ, enabling sampling many paths of differing length using

multiple techniques at the same time. We show compatibility with

MIS, and embed a full efficient path tracer in path space MCMC.

Stratification in MCMC. Stratification, the targeted distribution

of samples across pixels and into regions (strata) with potential

relevance to the image, is an important feature of MC estimators

to accelerate the convergence of MC estimates. In MCMC, how-

ever, (pseudo-)deterministic sample placement is harder to achieve.

While MT-based approaches have successfully applied it to individ-

ual mutations [Craiu and Lemieux 2007], in adaptive sampling the

longer-term goal is expected stratification, i.e. to ensure an expected
number of samples per stratum. For this, multi-stage MLT [Hobe-

rock and Hart 2010] alters the importance function (target function)
of the Metropolis-Hastings algorithm, which may be chosen al-

most arbitrarily without changing the MCMC result. The algorithm

renders recursively refined images, using samples accumulated in

previous images as guides. The stationary distribution of theMarkov

Chain follows the target function, which can be formed to enforce

a uniform sample distribution in the limit. In the context of density

estimation using photons, visibility-based [Hachisuka and Jensen

2011] and density-based [Gruson et al. 2016] target functions were

proposed. Our approach also alters the target function to control

sample distribution, but we remove the necessity of first aggregating

information to guide the Markov Chain.
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Stratification of Markov Chain Initiation. Besides controlling the

Markov Chain, stratification can also be enforced more directly by

breaking out of the pure MCMC framework: ERPT [Cline et al. 2005]

only starts Markov Chains for high-energy samples in a stratifiable

independent MC estimator. However, chains need to be short to

not face the same stratification issues as standard MCMC, but they

should be long to actually profit from the MCMC adaptive sampling.

Moreover, adaptivity is currently limited in the ERPT framework as

it requires equal chain lengths. Applying the ideas of previous work

and this paper for expected stratification to ERPT might become

interesting if this limitation is lifted. Recent work [Gruson et al.

2020] completely changes the flow of correlated sampling by indi-

vidual Markov Chains per pixel, relying on replica exchange and a

post-process iterative solver for information sharing between pixels.

While this is interesting to enforce pixel stratification, it also cur-

rently impacts adaptivity to difficult light transport. The algorithm

inherits a lot of complexity from gradient-domain (M)LT [Lehtinen

et al. 2013], and further study is needed as to the practical bene-

fits. We explore a different direction, towards simpler algorithms

without multiple phases, to also allow progressive rendering.

Short-term Stratification and Step Sizes. Besides the long-term sta-

tionary distribution, the distribution of samples and thus the image

quality in the short term (for low sample counts) heavily depends

on the steps proposed by MCMC mutations. To not get stuck in

subspaces, Veach and Guibas [1997] propose a mixture of large step
mutations and small step perturbations. Since then, many heuristics

have been studied [Šik and Křivánek 2018]. Zsolnai and Szirmay-

Kalos [2013] propose scene-wide automatic parameter tuning, which

by its nature has limited local adaptivity. Dedicated run-time effort

can be put into adaptivity as in the geometric analysis of local vis-

ibility [Otsu et al. 2018]. In our small step mutation strategy, we

optimize proposal distributions for minimal correlation (maximal

exploration) while targeting a certain variance. The result is closely

related to and provides a new perspective on the efficacy of previ-

ous decisions made in Manifold Exploration [Jakob and Marschner

2012] and Halfvector-Space Light Transport [Hanika et al. 2015;

Kaplanyan et al. 2014], where image-projected derivatives can be

used to control step sizes and correlation. In the context of PSSMLT,

Szirmay-Kalos and Szécsi [2017] propose an adaptive isotropic scal-

ing of steps according to the throughput of the current path. In

our comparisons, we show cases where this is sufficiently adaptive

and other cases where anisotropic distributions are crucial. Adap-

tion to anisotropic distributions has been studied in the context of

Hamiltonian MC [Li et al. 2015], deriving a multi-variate anisotropic

Gaussian from quadratic surface approximations constructed using

automatic differentiation, and optimized with Langevin MC [Luan

et al. 2020], avoiding second-order differentiation. In our algorithm,

we also use anisotropic Gaussian proposal steps, but allow a simpler

implementation without requiring differentiability in the renderer.

Path Differentials in Light Transport. Path-space derivatives and
path differentials (also known as ray differentials) are commonly

used for level-of-detail, spatial filtering [Belcour et al. 2013, 2017;

Christensen et al. 2018; Fascione et al. 2018; Suykens and Willems

2001], and real-time adaptive temporal filtering [Schied et al. 2018].

Similar derivatives can drive adaptive discrete partitionings of light

transport, described as Pencil Tracing [Shinya et al. 1987], analyti-

cally computing indirect illuminance inside pencils, i.e. path space

partitions, as radiance interpolants, constructed by adaptive line-

trees [Bala et al. 1999], in adaptive radiosity [Suykens and Willems

2001], and to optimize irradiance cache placement [Schwarzhaupt

et al. 2012]. Spectral differentials can be used for efficient approx-

imation of dispersion [Elek et al. 2014]. The derivatives of direct

visibility and higher-dimensional discontinuous transport have been

used for inverse rendering [Li et al. 2018] and smooth reconstruction

of gradient-domain Monte Carlo estimates [Lehtinen et al. 2013].

Path Guiding. Online-learning path guiding approaches [Müller

et al. 2017; Simon et al. 2018; Vorba et al. 2014] identify complex

subsets of path space from refined statistical sample representations

over time. We derive an analytic function for variance bounding that

computes similar information as density-based outlier classification

(DBOR) [DeCoro et al. 2010; Zirr et al. 2018], which can be used to

identify difficult paths [Bitterli and Jarosz 2019; Simon et al. 2018].

3 OVERVIEW OF OUR METHOD
In Sect. 4, we show ways to stratify MCMC samples by altered splat

values, and what is required to control their variance. Sect. 5 derives

a bound on this variance based on the local distribution of MC path

samples. This local distribution is characterized by the differentials

of an MC path construction strategy, i.e. the mapping from uniform

random numbers to the vertex positions of light transport paths. We

identify the spread of the emitter vertex (its marginal distribution)

as a decisive source of uncontrolled variance for unidirectional path

construction. This leads to a convenient characterization of variance

via path differentials (also commonly known as (indirect) ray differ-
entials), i.e. the spread of a path vertex due to the convolution of all

random variables (previous interactions). Sect. 6 formalizes this con-

nection with the necessary computations for variance bounding, and

shows how to incorporate pre-existing variance reduction strategies

like next event estimation (NEE), by virtually treating the penulti-

mate vertex like a light source (leaving the variance-controlled path

suffix untouched). Finally, Sect. 7 extends our variance characteriza-

tion to adaptive sampling, optimizing the distribution of proposal

paths according to local variance bounding criteria.

4 STRATIFICATION OF MCMC
In the following, we motivate the stratification improvements we

strive for, and we give a high-level view on how to achieve them. We

first take up the basic idea to get from unstratified to stratified sam-

pling in MCMC light transport by altering the Metropolis-Hastings

importance function (proportional to the targeted stationary distri-

bution) with compensating sample weights [Hoberock and Hart

2010; Veach 1998]. From there, Section 4.2 makes a new connection

to MC variance reduction techniques, which allows the construction

of a new class of analytic importance functions. Note that Table 1

provides an overview of the notation used throughout the paper.

The Problem of MCMC Stratification. We are concerned with im-

proved sampling in the image plane: Standard unstratified MCMC

methods sample paths proportional to their contribution relative to
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the full image. In the worst case, this focuses all sampling on only

the brightest pixels, leaving darker pixels severely undersampled:

Proposition 1. A standardMLT importance function𝑊 (X)=𝑓 (X)
samples paths X contributing a fraction ℎ 𝑗 (X) to pixel 𝑗 with a prob-
ability mass that directly corresponds to the expected pixel value 𝐼 𝑗 :∫

Ω
ℎ 𝑗 (X)

𝑊 (X)∫
Ω𝑊 (X) dX

dX ∝
∫
Ω
ℎ 𝑗 (X) 𝑓 (X) dX = 𝐼 𝑗 . (1)

Such sampling can result in extremely non-uniform sampling and

thus perceived error across the image plane, impeding any benefits

of MLT in practice. With our stratification, we still want adaptive

sampling around paths whose contribution is actually difficult to

estimate, but elsewhere aim at an approximately uniform distribution

of samples in the image plane, independent of pixel brightnesses.

Proposition 2. A pixel-stratifying importance function𝑊 ′(X)
needs to ensure that there is a lower bound 𝜏 > 0 for the expected
mass of samples X that contribute fractions ℎ 𝑗 (X) for each pixel 𝑗 :∫

Ω
ℎ 𝑗 (X)

𝑊 ′(X)∫
Ω𝑊

′(X) dX

dX ≥ 𝜏 ∀𝑗 . (2)

Larger 𝜏 improve stratification, up to equal sampling mass for every
pixel 𝑗 , but may reduce adaptive sampling (see Sect. 4.2).

Note that this is in contrast to other uses of the term stratification

for (pseudo-)deterministic sample placement in (quasi-)MC contexts,

as we aim at a mere expected stratification. In the next section, we

recap an approach proposed by previous works, before introducing

our related general approach in Sect. 4.2.

4.1 Approximate Stratification by Integration
Stratifying importance functions𝑊 ′(X) can be constructed by using
a-priori knowledge about the pixel values 𝐼 𝑗 , e.g. obtained in a

pre-integration step [Hoberock and Hart 2010; Veach 1998]: If we

set𝑊 ′(X) = 𝑓 (X)
(∑

𝑗 ℎ 𝑗 (X)/𝐼 𝑗
)
, we find the expected sample mass

in the supports supp(·) of ℎ 𝑗 (X) to be:∫
supp(ℎ 𝑗 )

𝑊 ′(X)∫
Ω𝑊

′(X) dX

dX ∝
∫

supp(ℎ 𝑗 )
𝑓 (X)

∑
𝑘

ℎ𝑘 (X)
𝐼𝑘

dX (3)

≥
∫
Ω ℎ 𝑗 (X) 𝑓 (X) dX

𝐼 𝑗
= 1 ∀𝑗 . (4)

Therefore, stratification is ensured in the neighborhood around

each pixel 𝑗 , under the (unrealistic) assumption that we know all

pixels 𝐼 𝑗 in advance. In practice, both the residual variance in the

estimates for 𝐼 𝑗 used by𝑊 ′(X), and re-sampling artifacts due to

stratified neighborhoods being too coarse, are clearly visible inmany

cases for such constructions of𝑊 ′(X) (see also our comparison to

previous work in the results section).

4.2 Stratification by MC Strategies
We note that we can achieve perfect stratification in a much simpler

way: A suitable importance function is any PDF 𝑝 (X) that distributes
paths X such that the probability mass is the same for all pixels 𝑗 :∫

Ω
ℎ 𝑗 (X)𝑝 (X) dX = const. ∀𝑗 . (5)

The stratification condition in Eq. (2) is therefore fulfilled. We may

consider 𝑝 (X) the PDF of a MC estimator that generates sample

values 𝑆 (X) = 𝑓 (X)/𝑝 (X). Effectively, we alter the importance func-

tion to𝑊 ′′(X) = 𝑓 (X)/𝑆 (X) and compensate by splatting the MC

estimates 𝑆 (X). However, we find that the variance of 𝑆 (X) also
causes variance in the final MCMC result: For the stationary dis-

tribution 𝜋 ′′(X) = 𝑊 ′′(X) = 𝑝 (X), as for any other stationary

distribution 𝜋 (X), the variance of the 𝑀-sample MCMC result is

at least the variance of 𝑆 (X) (the series of adjacent autocovariance
sum pairs is positive and decreasing [Geyer 1992, Theorem 3.1]):

V


1

𝑀

𝑀∑
𝑖=1

𝑓𝑗 (X𝑖 )
𝜋 (X𝑖 )

 =
1

𝑀2

𝑀∑
𝑖=1

𝑀∑
𝑘=1

Cov

(
𝑆 (X𝑖 ), 𝑆 (X𝑘 )

)
(6)

≥ 1

𝑀2

𝑀∑
𝑖=1

Cov

(
𝑆 (X𝑖 ), 𝑆 (X𝑖 )

)
=

V
[
𝑆 (X)

]
𝑀

. (7)

Nevertheless, the acceptance rate of many large steps can be in-

creased significantly, where the proposal distribution resembles 𝑝 (X).
This can make the covariances vanish much faster.

4.3 Stratification by Variance-Bounded MC Estimates
Luckily, we have direct control over the splat values and result-

ing variances, without introducing bias, by altering the importance

function accordingly. For that, we need a factor that downweights

splats 𝑆 (X) inversely to variance, reliably detecting problematic

paths X and quantifying their need for adaptive sampling: A low-

ered splat weight 𝑆 (X) increases the respective altered importance

function 𝑊̃ (X), guiding the Markov Chain to allocate more time

to exploring the corresponding space. Section 5 derives an analytic

variance bounding scheme to obtain such a downweighting 𝑟 (X),
such that the variance of the resulting splats 𝑆 (X) is controlled:

𝑆 (X) := max

{
𝑆 (X)
𝑟 (X) , 𝐵

}
, 𝑟 (X) ≥ 1. 𝑊̃ (𝑋 ) :=

𝑓 (X)
𝑆 (X)

, (8)

where 𝐵 is the total image brightness. The lower bound 𝐵 seems

counterproductive at first, as in the worst case, the resulting target

distribution
1 𝜋̃ (X) ∝ 𝑊̃ (X) is as low as the unstratified𝜋 (X) ∝ 𝑓 (X)

for paths where 𝑆 (X) = 𝐵. However, this is intentional: For one, we
never reduce sampling of such paths, while the typical splatting of

expected acceptance values still directly splats low contributions

(if the proposal distribution is sufficiently stratified). More impor-

tantly, the corresponding sampling probability mass remains free

to be redistributed to the stratified sampling of all other paths: Note

that our primary concern is to not get stuck in these paths with

high contribution, using our altered target function to increase the

acceptance rate via direct bright splats. For these, we verify the

stratification condition in Eq. (2) and get 𝜋̃ (X) ≥ 𝑝 (X)𝑟 (X). In ex-

periments, we confirmed that the lower bound is crucial for good

adaptive exploration of difficult paths.

1𝑊̃ (X) = min

{
𝑝 (X)𝑟 (X), 𝑓 (X)

𝐵

}
,

𝑊̃ (X)∫
𝑊̃ (X) dX

≥ min

{
�𝐵
�𝐵

𝑓 (X)∫
𝑓 (X) dX

,
𝑝 (X)𝑟 (X)�𝐵
���∫

𝑓 (X) dX

}
.
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Table 1. Important notation used throughout the paper.

Notation Description

Ω,U Space of light paths X & of unit random vectors U

X, 𝑓 (X), 𝑓𝑗 (X) Light path, its measurement contrib., 𝑓 (X)ℎ 𝑗 (X)
U, 𝑋 (U) Random vector U, path X(U) constructed from it

𝑓 (U) “PSS” contribution, 𝑓 (U) dU ◦ X
−1 = 𝑓 (X) dX

𝑊 (X),𝑊 ′,𝑊̃ MCMC target functions, unaltered and altered

𝑆 (X) Splat
𝑓 (X)
𝑝 (X) of an MC estimate with PDF 𝑝 (X)

𝑟 (X) ≥ 1 Downweighting ratio quantifying variance of 𝑆 (X)
𝑆 (X),𝑊̃ (X) Downweighted splat and altered target funct.

𝑓 (X)
𝑆 (X)

ℎ 𝑗 (X), 𝑔𝑖 (X) Pixel filter for pixel 𝑗 , and subfilter 𝑔𝑖 (X) ≤ ℎ 𝑗 (X)

∥ 𝑓 ∥∝𝑚𝛼 𝛼-norm of 𝑓 (U) w.r.t. 𝑚̂(U) dU,

( ∫
U 𝑓 (U)

𝛼𝑚 (U) dU∫
U𝑚 (U) dU

) 1

𝛼

𝑔𝑑 (X) Selects a deterministic transport subset in 𝑔(X)
𝐹 (x⊥

𝑘
, o𝑘 ) Marginal contribution of endpoint (x⊥

𝑘
, o𝑘 ) to 𝑔(X)

[𝑑], [|𝑑] Equation holds with and without 𝑑 and |𝑑 , resp.∫
𝑎 d𝜇

!

=
∫

d𝜈 Defines the Radon-Nikodym derivative 𝑎 = d𝜈/d𝜇

5 ANALYTIC VARIANCE BOUNDING SCHEME
For the described approach to stratification, we need a factor that

quantifies the uncontrolled variance of MC weights (in Eq. 8). Our

motivating example for causes of uncontrolled variance is a simple

path tracer: There, a light source reflected in a mirror generates the

same sample values as a light source hit via diffuse scattering. The

difference causing variance is in the distribution of sample values:

Via the mirror, paths hit the emitter deterministically; via diffuse

scattering, only when rays randomly point towards the emitter.

Thus, each case results in a different expected value, i.e. pixel value.

For the deterministic configuration (via the mirror), path tracing

works well, i.e. variance is controlled. For the non-deterministic

configuration (diffuse scattering), variance is less acceptable (we

would commonly add variance reduction, e.g. by NEE). Motivated

by these observations, our variance bounding will depend on the

impact of random variables, corresponding to scattering interactions

along a path, on the caused variation of the endpoint at the emitter.

To control variance, we analyze relative pixel error (following

previous adaptive sampling [Rousselle et al. 2012]), since our strat-

ification aims to decouple sample density from pixel brightness.

We split the relative variance into sample value range (𝐿𝑝 -norms

constructed from higher-order moments) and distribution (we use

the first moment, i.e. the pixel brightness 𝐼 𝑗 ):

Proposition 3. Let 𝑓𝑗 (U) = 𝑓 (U) ℎ 𝑗 (U) be the sample values
estimating a pixel value 𝐼 𝑗 by constructing paths X(U) from random

vectors U. Let 𝐽 (𝛼)
𝑗

=
∫
U 𝑓 (U)𝛼ℎ 𝑗 (U) dU be the 𝛼 th moment of these

MC estimates for 𝛼 ≥ 2. We can bound the relative variance (and

the relative 𝛼 th moment
𝐽
(𝛼 )
𝑗

𝐼 𝑗
𝛼 ) by the (𝛼−1)-norm ∥ 𝑓 ∥∝𝑓𝑗

𝛼−1
of sample

values 𝑓 (U) w.r.t. ˆ𝑓𝑗 (U) dU (where ˆ𝑓𝑗 (U) is normalized w.r.t. dU),
divided by their first moment ∥ 𝑓𝑗 ∥1:

V[𝑓𝑗 (U)]
𝐼 𝑗

2
≤
𝐽
(2)
𝑗

𝐼 𝑗
2

≤
©­­«
𝐽
(𝛼)
𝑗

𝐼 𝑗
𝛼

ª®®¬
1

𝛼−1

=
∥ 𝑓 ∥∝𝑓𝑗

𝛼−1

∥ 𝑓𝑗 ∥1

. (9)

Proof.

𝐽
(𝛼)
𝑗

𝐼 𝑗
𝛼 =

1

𝐼 𝑗
𝛼−1

∫
U 𝑓 (U)𝛼 ℎ 𝑗 (U) dU∫
U 𝑓 (U) ℎ 𝑗 (U) dU

=
©­«
∥ 𝑓 ∥∝𝑓𝑗

𝛼−1

∥ 𝑓𝑗 ∥1

ª®®¬
𝛼−1

. (10)

∥ 𝑓 ∥∝𝑓𝑗𝛼 grows with 𝛼 [Axler 2020], the 2
nd

moment bounds variance.

□

Therefore, the relative variance is directly bounded by the ratio

of the largest sample values to the integral we want to compute. We

will now relate these quantities to what is convenient to compute.

5.1 Variance Bounding by Comparison of Configurations
Following our motivating example, a configuration where MC es-

timates become more reliable is light transport via deterministic

scattering interactions. In this case, the only random variables in a

path tracer are those of the camera. We exploit this observation for

variance bounding by virtually constructing deterministic transport

around any sampled path X (effectively disabling all random sam-

pling at inner path vertices), and by then quantifying the relative

change in variance compared to the actual transport (i.e, with all

random sampling along the path enabled).

As it is impractical to reason about transport in the entire path

space Ω, we need to enable a localized analysis. For this, we partition
the space U of random variables U, from which a sampling strat-

egy constructs paths X(U): The pixel filter is extended to U by set-

tingℎ 𝑗 (U) := ℎ 𝑗 (X(U)), and partitioned by subfilters 𝑔𝑖 (U) ≤ ℎ 𝑗 (U),
such that

∑
𝑖 𝑔𝑖 (U) = ℎ 𝑗 (U). Fig. 2 depicts (in green) a subfilter that

selects a subset of values in each dimension of U and thus a sub-

set of all paths X(U). To locally construct deterministic transport

around a sampled path X𝑖 = X(U𝑖 ), we define a convenient sub-

filter 𝑔𝑖 (U) (ultimately a Gaussian). We then swap 𝑔𝑖 (U) with a

corresponding “deterministic” filter 𝑔𝑑
𝑖
(U), which shrinks 𝑔(U) until

it is non-zero for exactly one sample U at each image-space posi-

tion p𝑥 (U), while keeping its sample value 𝑓 (U) (see also Fig. 2).

We ensure that the filter contains the initial X𝑖 (i.e. 𝑔
𝑑
𝑖
(X𝑖 ) ≠ 0), and

quantify changes in relative variance, comparing the deterministic

to the actual transport:

Proposition 4. Let 𝑔𝑖 (U) be a subfilter of ℎ 𝑗 (U) and X𝑖 = 𝑋 (U𝑖 )
a contained path sample. We construct a ‘deterministic’ filter 𝑔𝑑

𝑖
(U)

that locally modifies light transport such that 𝑔𝑑
𝑖
(U) 𝑓 (U) transports

energy on only one path X for each pixel position p𝑥 (X), while con-
serving the probability volume

∫
𝑔𝑖 (p𝑥 ) dp𝑥 :

!

=
∫
𝑔𝑖 (U) dU ◦ p𝑥−1 of

the original subfilter (for any pixel positions p𝑥 ).2We use a shrinking
kernel 𝐾̂𝑑p𝑥 (U) (U − U𝑖 ), narrowing towards U𝑖 for 𝑑 → 0:

𝑔𝑑𝑖 (U) := 𝑔𝑖
(
p𝑥 (U)

)
𝐾̂𝑑p𝑥 (U)

(
U − U𝑖

)
, (11)

where 𝐾̂𝑑p𝑥 (U − U𝑖 ) is normalized for each p𝑥 such that∫
𝑔𝑖 (p𝑥 ) 𝐾̂𝑑p𝑥 (U − U𝑖 ) dU ◦ p𝑥−1 !

=

∫
𝑔𝑖 (p𝑥 ) dp𝑥 . 3 (12)

Modifying light transport locally, only within a subfilter 𝑔𝑖 (X), corre-
sponds to changing pixel filters ℎ 𝑗 (X) to:

ℎ
|𝑑𝑖
𝑗

(U) := ℎ 𝑗 (U) − 𝑔𝑖 (U) + 𝑔𝑑𝑖 (U) . (13)
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x1: camera x3: glossy

x2: mirror x4: diffuse

x𝑘

o𝑘

𝐹 (x𝑘 , o⊥
𝑘
)

𝐹𝑑 (x𝑘 , o⊥
𝑘
)

p𝑥

𝑔(p𝑥 )

∥ 𝑓 ∥∝𝑓𝑗𝛼

∥ 𝑓 ∥∝𝑔𝑓𝛼

∥ 𝑓 ∥
∝ℎ𝑑

𝑗
𝑓

𝛼

∥ 𝑓 ∥∝𝑔
𝑑 𝑓

𝛼

∥ 𝑓𝑗 ∥1

∥ℎ𝑑
𝑗
𝑓 ∥1

∥𝑔𝑑 𝑓 ∥1

∥𝑔 𝑓 ∥1

𝑆 (X)

U

·𝜌𝑔

𝑓𝑗 (U)

Fig. 2. Depiction of an exemplary subfilter 𝑔 (U) (in green), that selects subsets of values in each dimension of U and thus subsets of all paths X(U) , and of an
exemplary deterministic subfilter 𝑔𝑑 (U) (in blue), constructed for the “surrounding” subfilter 𝑔 (U) to effectively (virtually) replace all inner path vertices with
specular interactions. The marginal endpoint contribution functions 𝐹 [𝑑 ] (x⊥𝑘 , o𝑘 ) are in practice computed by convolution within local environments defined
by Gaussian subfilters, and they characterize the fraction of light transported within the subfilters for each emitter position x𝑘 and direction o𝑘 . An exemplary
distribution of sample values within one pixel is depicted on the right, with the moments (norms) used to compute variance bounds (for the actual and the
locally altered transport, based on the full-pixel transport and based on only transport within the subfilters, as used in Eq. (15) for the conservative bounding).

We will show that the full ℎ |𝑑𝑖
𝑗

(U) does not need to be known for the
following conservative variance bounding:We can compute a factor 𝜌𝑔𝑖
that bounds the increase in relative variance, moving from locally
altered, deterministic transport for paths weighted by a subfilter 𝑔𝑖 (U),
to the unaltered transport. For every 𝑑 > 0, we pick 𝛼 ≥ 2 such that

∥ 𝑓 ∥
∝𝑓 ℎ |𝑑𝑖

𝑗

𝛼−1
≥ ∥ 𝑓 ∥∝𝑓𝑗

𝛼−1
(as introduced in Prop. 3), and obtain:

𝐽
(2)
𝑗

𝐼 𝑗
2

≤
(9)

©­­«
𝐽
(𝛼)
𝑗

𝐼 𝑗
𝛼

ª®®¬
1

𝛼−1

=
(9)

∥ 𝑓 ∥∝𝑓𝑗
𝛼−1

∥ 𝑓𝑗 ∥1

≤
∥ℎ |𝑑𝑖
𝑗
𝑓 ∥1

∥ℎ 𝑗 𝑓 ∥1︸     ︷︷     ︸
=:𝜌𝑔𝑖

©­­«
𝐽
(𝛼)
𝑗 |𝑑𝑖

𝐼 𝑗 |𝑑𝑖
𝛼

ª®®¬
1

𝛼−1

. (14)

The last term in Eq. (14) characterizes the controlled relative vari-

ance of the altered deterministic transport. Computing the variance

bounding ratio 𝜌𝑔𝑖 precisely is unfeasible, as it requires knowledge

of the solution to the MC integration problem. However, we find a

conservative bound based on only local information, regardless of

the remaining light transport outside our subfilter 𝑔(U):

Proposition 5. Let 𝑔(U) be a subfilter and let 𝑔𝑑 (U) define its
locally altered deterministic transport. For any non-negative measure-
ment contribution function 𝑓 (U), we get:

𝜌𝑔 =
∥ℎ |𝑑𝑖
𝑗
𝑓 ∥1

∥ℎ 𝑗 𝑓 ∥1

(A.3)4
≤

∫
U 𝑔𝑑 (U) 𝑓 (U) dU∫
U 𝑔(U) 𝑓 (U) dU

=: 𝑟𝑔 , if 𝜌𝑔 > 1. (15)

□

Within local subfilters, bounding the variance ratio is not only

feasible, but can be simplified to amere single-point evaluation of the

respective transport path distributions for the altered deterministic

and the non-deterministic transport. In fact their marginals, which

we compute by path differentials in Sect. 5.2, evaluated at a single 4D

endpoint (x𝑘 , o𝑘 ) (comprised of an emitter position and direction),

are sufficient to obtain a conservative ratio bound:

2𝑔 (p𝑥 ) effectivelymarginalizes𝑔 (U) for allU in the preimageX
−1◦ p𝑥 −1

of p𝑥 (X(U)) ,
i.e. for all paths X with certain pixel positions p𝑥 . It is the Radon-Nikodym deriva-

tive
d𝜇

d𝜈
(p𝑥 ) of 𝜇 (𝐴) :=

∫
𝐴
𝑔 (U) dU ◦ p𝑥 −1

w.r.t. 𝜈 (A) =
∫
𝐴

dp𝑥 .
3
The normalization constant is the Radon-Nikodym derivative

d𝜇

d𝜈
(p𝑥 ) of the unnormal-

ized measure 𝜇 (𝐴) :=
∫
𝐴
𝑔 (p𝑥 )𝐾𝑑

p𝑥 (U−U𝑖 ) dU ◦ p𝑥 −1
w.r.t. 𝜈 (𝐴) :=

∫
𝐴
𝑔 (p𝑥 ) dp𝑥 .

4𝜌𝑔 is of the form
𝑎+𝑏
𝑎+𝑐 , where 𝑎,𝑏, 𝑐 ≥ 0. For 𝑏 > 𝑐 , 𝑎+𝑏

𝑎+𝑐 ≤ 𝑏
𝑐
, see also App. A.3.

Proposition 6. We denote the (marginal) contribution of all paths
with endpoints and emitter directions (x𝑘 , o𝑘 ) to a subfilter 𝑔(X) as
𝐹𝑑 (x⊥𝑘 , o𝑘 ) for locally altered deterministic, and 𝐹 (x⊥

𝑘
, o𝑘 ) for the ac-

tual transport. (Let (x𝑘 , o𝑘 ) (U)be the endpoint of 𝑋 (U), then we set∫
𝐹 [𝑑 ] (x⊥𝑘 , o𝑘 )𝐿𝑒 (x

⊥
𝑘
, o𝑘 ) d(x⊥

𝑘
, o𝑘 )

!

=
∫
𝑔 [𝑑 ] (U) 𝑓 (U) dU◦(x𝑘 , o𝑘 )−1,

where (x𝑘 , o𝑘 )−1 refers to the preimage). The ratio 𝜌𝑔 is bounded by
the ratio of endpoint distributions for the different configurations:

𝜌𝑔 ≤ max

x𝑘 ,o𝑘

𝐹𝑑 (x⊥𝑘 , o𝑘 )
𝐹 (x⊥

𝑘
, o𝑘 )

=: 𝑟𝑔 . (16)

Proof. Equations (15), (32), Appendix A. □

Densities with respect to projected vertices x⊥
𝑘
avoid numerical

singularities (⊥ denotes projection orthogonal to surface normals).

5.2 Computing the Variance Ratio 𝑟𝑔
Propositions 5 and 6 allow us to quantify relative variance caused

by non-deterministic light transport within certain subfilters 𝑔(U).
In order to compute the respective integrals, we need to know 𝑓 (U),
defined by a corresponding path sampling strategy X(U) such that

𝑓 (U) dU ◦ X
−1 = 𝑓 (X) dX. Since path tracing is simple and works

well with deterministic transport, we choose it as our X(U) and
obtain the sample values 𝑓 (U) = 𝑓 (X)/𝑝 (X), where the PDF 𝑝 (X)
applies local importance sampling to cancel out BSDF variance.

After importance sampling, variance in the resulting samples 𝑓 (U)
is primarily due to the emitted light 𝐿𝑒 (x⊥𝑘 , o𝑘 ) at the endpoint of X.

We write 𝑓 (U) = 𝐴(U)𝐿𝑒 (x⊥𝑘 , o𝑘 ) with an albedo 𝐴(U) ≤ 1 so that

solutions for the marginal functions 𝐹 [𝑑 ] (x⊥𝑘 , o𝑘 ) of a subfilter 𝑔(U)
and its locally altered, deterministic subfilter 𝑔𝑑 (U) in Prop. 6 are:

𝐹 [𝑑 ] (x⊥𝑘 , o𝑘 ):=
∫
U
𝑔 [𝑑 ] (U)𝐴(U)𝛿

(
(x⊥
𝑘
, o𝑘 ) (U) − (x⊥

𝑘
, o𝑘 )

)
dU. (17)

Given a sampled path X𝑖 , we place an isotropic multivariate Gauss-

ian around its random vector U𝑖 to define a subfilter 𝑔𝑖 (U) in U
that is easy to work with: This allows us to compute the marginal

endpoint contribution functions 𝐹 (x⊥
𝑘
, o𝑘 ) and 𝐹𝑑 (x⊥𝑘 , o𝑘 ) as con-

volutions of Gaussians at each interaction, if we assume separability

(discussed in App. A.2; we assume albedo to be uncorrelated and
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Raw Splat Weights Splats Bounded using 𝑟 Raw Splat Weights Splats Bounded using 𝑟

Fig. 3. Experiment validating that downweighting by the ratio 𝑟 reliably bounds variance: The samples of a path tracer are reweighted by 𝑟−1. The results used
the differential-free variance estimation derived in Sect. 6.5. Our supplementary materials show more scenes, also for the differential-based variant.

set 𝐴(U) = 1 for practical computations). Similar local, convolution-

based perspectives on light transport are well-established in pre-

vious work [Belcour et al. 2017]. In practice, this convolution cor-

responds to computing path differentials, i.e. the Jacobians of the

mappings from random variable perturbations at each interaction

to corresponding endpoint perturbations (Sect. 6). As the ratio 𝑟𝑔
is independent of normalization factors in 𝑔(U) (they cancel out),

for convenience we normalize 𝑔(U) w.r.t. dU in our computations.

Note that for Gaussian marginal endpoint distributions, the ratio is

maximal in the center, since the covariance of the wider Gaussian

contains that of the other, making the ratio Gaussian as well.

5.3 Applying the Variance Bound
The computed 𝑟𝑔 conservatively bounds the ratio by which large

sample values in the bounded MC estimator deviate from the final

result, compared to low-variance MC estimates of deterministic light
transport. Prop. 3 showed that this ratio directly bounds the relative

variance of a pixel. This information has several uses: We can drive

optimized adaptive sample placement (see Sect. 7.1) to match a

certain variance target. We can also use it to downweight sample

values by the ratio, as in our stratification per Eq. (8), such that the

variance of the resulting splats is bounded (see Sect. 4 and 6).

6 MCMC STRATIFICATION BY PATH DIFFERENTIALS
Practically, to implement our stratification (as per Sect. 4.3) in an

MCMC algorithm (e.g. MLT, PSSMLT, MMLT), we compute the

variance bounds derived in the previous section using path dif-
ferentials [Belcour et al. 2017; Suykens and Willems 2001]. Path

differentials (also ray differentials) are commonly computed for the

purposes of level-of-detail and filtering [Christensen et al. 2018;

Fascione et al. 2018]. We show how accurate path differentials can

be computed efficiently and we introduce a conservative approxima-

tion thereof that works without derivative information, significantly

simplifying computations and increasing numerical robustness.

6.1 Summary of Changes to MLT
To give an overview of the minimal required changes, the concrete

steps to stratifying paths sampled by a Markov Chain are:

• For current path X, compute bounded-error pixel splat val-

ues 𝑆 (X) as per Sect. 4. For this, either accurate path differ-

entials (Sect. 6.4) or a conservative approximation based on

solely solid-angle PDF values (Sect. 6.5) can be used.

• Alter the unstratified importance function 𝑓 (X) to 𝑓 (X)/𝑆 (X).
• Accordingly, splats need to be multiplied by 𝑆 (X).

6.2 Marginalization by Path Differentials
To arrive at the variance bounding ratio 𝑟𝑔 in Prop. 6 by comparison

of the marginal endpoint contributions 𝐹 (x⊥
𝑘
, o𝑘 ) and 𝐹𝑑 (x⊥𝑘 , o𝑘 ),

we marginalize their respective subfilters 𝑔 [𝑑 ] (U) by convolution of

Gaussian kernels at each interaction x𝑖 around a current path 𝑋 (U).
In the process, we use path differentials to effectively project each

respective covariance matrix forward onto the 4D space of end-

points (x⊥
𝑘
, o𝑘 ). The full covariance matrix Σ for 𝐹 (x⊥

𝑘
, o𝑘 ) is:

Σ
[
𝐹 (x⊥

𝑘
, o𝑘 )

]
=

𝑘−1∑
𝑖=0

©­­«
dx⊥

𝑘

du𝑖
dx⊥

𝑘

du𝑖

𝑇
dx⊥

𝑘

du𝑖
do𝑘
du𝑖

𝑇

do𝑘
du𝑖

dx⊥
𝑘

du𝑖

𝑇
do𝑘
du𝑖

do𝑘
du𝑖

𝑇

ª®®¬ . (18)

Both x⊥
𝑘
and o𝑘 are parameterized by two coordinates in the plane

orthogonal to o𝑘 of the current path X. Since isotropic scaling of

subfilters cancels out in our variance bounding, the covariance

matrices for each random variable are implicitly set to identity. To

obtain differentials efficiently, we exploit the tridiagonal structure

of a corresponding constraint matrix [Jakob and Marschner 2012],

as explained in App. B.1. Doing this per vertex results in a run-time

complexity of 𝑂 (𝑘2), but in App. B.2 we show that the convolution

can be computed iteratively in 𝑂 (𝑘) and constant storage.

6.3 Marginalization for Degenerate Distributions
In practice, we often face degenerate endpoint distributions: Path

vertices with singularities in 2D (pinhole cameras, point lights, direc-

tional lights) limit light transport to a 2-manifold within our studied

4D space of endpoint position and emitter direction. To account for

that, we always project to differentiable 2-manifoldsL, studying pro-

jected marginals 𝐹
⊥L
[𝑑 ] for charted projected endpoints 𝜋L (x𝑘 , o𝑘 )

where:

∫
𝐹
⊥L
[𝑑 ] (𝜋L) d𝜋L (x𝑘 , o𝑘 )

!

=
∫
𝐹 [𝑑 ] (x⊥𝑘 , o𝑘 ) d(x⊥

𝑘
, o𝑘 ) ◦ 𝜋L−1

.

A decisive difference to the definitions in Prop. 6 is that the full mea-

surement contribution of projected endpoints 𝜋L (x𝑘 , o𝑘 ) requires
separate light emission terms 𝐿

⊥L
𝑒 and 𝐿

⊥L
𝑒 |𝑑 that are also weighted

marginals depending on the respective distribution of light trans-

port paths
5
. In practice, the respective emission terms still cancel

out in the limit, App. A.1 shows that we can use:

𝑟𝑔 ≤ max

(x𝑘 ,o𝑘 ) ∈L

𝐹
⊥L
𝑑

(𝜋L (x𝑘 , o𝑘 ))
𝐹⊥L (𝜋L (x𝑘 , o𝑘 ))

𝐿
⊥L
𝑒 |𝑑 (𝜋L (x𝑘 , o𝑘 ))

𝐿
⊥L
𝑒 (𝜋L (x𝑘 , o𝑘 ))︸                 ︷︷                 ︸

−−→1 (𝑔→𝛿)

. (19)

5
For 𝐿

⊥L
𝑒 [|𝑑 ] , we require:

∫
𝐹
⊥L
[𝑑 ] 𝐿

⊥L
𝑒 [|𝑑 ] d𝜋L (x𝑘 , o𝑘 )

!

=
∫
𝐹 [𝑑 ]𝐿𝑒 d(x⊥

𝑘
, o𝑘 ) ◦ 𝜋L−1

.
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To facilitate computing the projected marginal Gaussian distribu-

tions 𝐹⊥L
and 𝐹

⊥L
𝑑

, we choose an axis-aligned projection𝜋L (x𝑘 , o𝑘 )
to L, allowing extraction of the respective 2×2-covariance matrices

by simple rotation and truncation of the full 4 × 4-covariance ma-

trices before projection. As to choosing the axes of projection, we

note that the best worst-case variance bounds are achieved when

projecting onto the plane of widest projected covariance, which is

obtained by PCA of the covariance for 𝐹 (x⊥
𝑘
, o𝑘 ). In our experiments,

this approach was important to ensure robustness and prevent any

uncaught outliers.

6.4 Accurate Path Differentials and Variance Ratios
Applying Prop. 6 for variance bounding, we arrive at a ratio 𝑟X
based on a sampled path X by incrementally propagating the three

2 × 2 matrix blocks that make up the (symmetric) covariance ma-

trix Σ[𝐹 (x⊥
𝑘
, o𝑘 )] in Eq. (18). For the locally altered deterministic

light transport as per 𝐹𝑑 (x⊥𝑘 , o𝑘 ), we track differentials with respect

to only the random variables of the camera. The resulting two co-

variance matrices are projected onto the plane determined by the

principal components v1, v2 of scattering in Σ[𝐹 (x⊥
𝑘
, o𝑘 )]:

𝑟X :=

��� V ∑𝑘−1

𝑖=0

[
d(x⊥

𝑘
,o𝑘 )

du𝑖
d(x⊥

𝑘
,o𝑘 )

du𝑖

𝑇 ]
V𝑇

���1/2

��� V [
d(x⊥

𝑘
,o𝑘 )

d(u0,u1)
d(x⊥

𝑘
,o𝑘 )

d(u0,u1)
𝑇 ]

V𝑇
���1/2

, V :=

(
v𝑇

1

v𝑇
2

)
. (20)

Practical Halfvector Derivatives. In current renderers, derivatives

of all BSDFs with respect to primary sample space (PSS) are not

generally available. However, our subfilters 𝑔(U) for the random
variables u𝑖 of each vertex x𝑖 are not required to be isotropic in PSS.

Thus, we replace differentials du with halfvector differentials dh
more easily obtained [Hanika et al. 2015; Jakob and Marschner 2012;

Kaplanyan et al. 2014], preserving densities (see App. B.3):

dx𝑘
du𝑖

≊
dx𝑘
dh𝑖

I√
𝑝 (h𝑖 )

=
dx𝑘
dh𝑖

����dh𝑖
di𝑖

����1/2 I√
𝑝 (i𝑖 )

(x𝑖 inner vertex),

dx𝑘
du1

≊
dx𝑘
di1

I√
𝑝 (i1)

,
dx𝑘
du0

≊
dx𝑘
dx1

I√
𝑝 (x1)

(𝑥1 camera vertex).

The PDFs 𝑝 (i𝑖 ) are those of a forward path tracer. Note that path

differentials based on halfvectors can be approximative, as they

require strong BSDF peaks to align with points in halfvector space.

6.5 Derivative-free Conservative Path Differentials
In the following, we present a simplification of our technique that

works without any derivative computations, requiring only the local

solid-angle PDFs of BSDFs and few floating-point operations. While

both approaches require little computation compared to other parts

of a renderer, this simplifies implementation in practice.

We simplify our setting by virtually replacing the actual scene

geometryM with a converging sequence (M𝑡 ) of increasingly fine

piecewise linear approximations. With increasing 𝑡 , more and more

tangent planes in curved regions of M coincide with an increasing

number of flat surfaces in M𝑡 , causing an increasing number of

overlaying redirected beams to approach the actual transport on the

original geometry. Such constructions are possible and their prop-

erties as tangent duals of surface triangulations have been studied

extensively with application to architecture [Li et al. 2014].

On the planar geometry ofM𝑡 , the transformation of sampling

densities to endpoints is greatly simplified: Reflections preserve

angles, and refractions merely change densities according to Snell’s

law. In fact, we can either cancel out or bound most of the relevant

terms for all axis-aligned 2D projections of our 4D endpoint dis-

tributions used to bound variance (please refer to App. C.1). The

remaining terms give a variance bound 𝑟X with an approximation

factor of 4 and a greatly simplified algorithm:

𝑟X := 𝑝 (i1)
©­« 1

𝑝 (x1)

�����dx⊥o2

di1

�����−1

+
𝑘−1∑
𝑖=1

1

𝑝 (i𝑖 )

���� di𝑖
di1

����−1ª®¬ . (21)

After simplification, the required PDFs 𝑝 (i𝑖 ) are simply the solid-

angle PDFs resulting from BSDF sampling, 𝑝 (i1) corresponds to
pixel sampling and 𝑝 (x1) to aperture. The term

��� di𝑖
di1

���−1

is a product

of factors

��� do𝑖
di𝑖

��� =
|i𝑖 ·h𝑖 |𝜂𝑖
|o𝑖 ·h𝑖 |𝜂𝑜 per refractive boundary, 1 for reflec-

tions.

���� dx⊥o
2

di1

����−1

is the first geometry term, excluding the cosine at x2.

6.6 Making use of Multiple Importance Sampling
We can make use of Multiple Importance Sampling (MIS) to reduce

the amount of conservative overestimation in variance ratios 𝑟X.

For example, if our renderer supports next event estimation (NEE),

the variance of direct illumination is already controlled by MIS

weights. This not only allows us to use sample weights of short

direct illumination paths without downweighting, but also allows

us to reduce variance bounds for all other paths: Variance does

not change, if the direct illumination is seen through additional

purely deterministic interactions in-between the penultimate vertex

and the camera. The degree to which variance changes for non-

deterministic path prefixes can again be measured by applying our

variance bounding scheme, but computing marginal distributions

for the penultimate vertex rather than the last vertex on the emitter.

Thus, we effectively convert the penultimate vertex into a (virtual)

light source, under the assumption that the variance of its virtual

emitted radiance is sufficiently low.

6.7 Degenerate Light Sources in Specular Light Transport
Making use of MIS already solves all cases of degenerate light

sources for our techniques, i.e. (by construction) all cases of paths

generated by path tracing with NEE. For other (e.g. bi-directional)

techniques, longer specular vertex chains connecting to a degenerate
emitter may require special treatment. There, the reduced dimen-

sionality allows analytic computation of the local deterministic

transport

∫
U 𝑔𝑑 𝑓 (U) dU (or a low-variance MC estimate thereof for

non-pinhole cameras, dividing by the aperture PDF) as a substitute

for the otherwise unbounded splat weights: This resembles pencil

tracing [Shinya et al. 1987], where pencil refers to a similar object as

the beams resulting from our subfilters. Then, derivations analogous

to the bounding in Eq. (32) (with reduced dimensionality) lead to

analogous variance bounding ratios.

ACM Trans. Graph., Vol. 39, No. 6, Article 246. Publication date: December 2020.



Path Differential-Informed Stratified MCMC and Adaptive Forward Path Sampling • 246:9

6.8 Target Function Alteration
We may change the importance function in Metropolis light trans-

port without introducing bias [Hoberock and Hart 2010]. Inserting 𝑟

into 𝑆 in Eq. (8), for the acceptance ratio 𝐴, we get:

𝐴 = min

{
1,
𝑓 (Y)/𝑆 (Y) 𝑝 (Y → X)
𝑓 (X)/𝑆 (X) 𝑝 (X → Y)

}
. (22)

To account for the changed importance function, we then have to

splat the following changed weights:

Splat for proposal Y: 𝑆 (Y) · 𝐴,
Accumulate for current X: 𝑆 (X) · (1 −𝐴).

7 ADAPTIVE MCMC FORWARD PATH SAMPLING
Our variance analyses in Sect. 5 not only apply to stratification, but

can also be leveraged to drive adaptive sampling: In Sect. 7.1, we

optimize anisotropic adaptive distributions tomaximize the explored

subsets of path space, while enforcing a controlled variance. We test

efficacy by deriving an intentionally simple, yet adaptive MCMC

small-step perturbation that only relies on forward path sampling.

Note that this constraint is realistic in many real-world applications,

where path tracing continues to be widely used due to a manageable

complexity, relatively uniform efficiency, and robustness. To obtain

a complete MCMC algorithm with an equally simple and practical

large-step mutation, Sect. 7.2 shows how to embed a fully-featured

path tracer (PT) with next event estimation (NEE) and shared path

prefixes into theMCMC context.We construct ourMCMC rendering

algorithm with only these two mutation strategies.

7.1 Adaptive Forward Path Exploration
For optimal adaptive sampling, we observe two opposing goals: Our

sampling strategy needs to carefully explore difficult-to-discover

regions in path space, i.e. propose small steps with a high sampling

density where important transport is easily missed. Implicitly, this

minimizes the variance of resulting proposal weights, i.e. the tar-

geted distribution divided by the proposal density. However, overly
small steps increase MCMC variance due to increasing covariance,

preventing the discovery of other important regions in path space

and thus reducing robustness (resp. temporal stability).

7.1.1 Optimal Anisotropic Proposal Densities. The conservative

variance analysis in Sect. 5 provides us with a tool to systemat-

ically optimize variance with respect to choice of sampled regions,

by looking at samples within an according subfilter 𝑔𝑖 (X) around
any difficult path X𝑖 . However, in contrast to subfilters within in-

dividual pixels, we now look at subfilters of the entire image plane.
Sampling in larger areas than one pixel may increase the variance

by the corresponding decrease in probability density, henceforth

denoted 𝐷𝑔𝑖 (effectively the image-plane area of 𝑔𝑖 (U) divided by

the area of one pixel). We minimize the correlation of proposal paths

by maximizing the sampled (PSS) volume of a corresponding subfil-

ter𝑔𝑖 (X), which we define as a Gaussian function around𝑔𝑖 (X𝑖 ) = 1.

A volume of 1 would correspond to (close to) perfectly independent

sampling, smaller volumes increase the potential for correlation

artifacts. The size and shape of our adaptive proposal distribution is

determined by a constrained optimization, such that the volume of

the corresponding region is maximized while the variance within

the corresponding subfilter 𝑔𝑖 (X) is constrained to an acceptable 𝑅:

max

𝑔𝑖 (X)

∫
U
𝑔𝑖 (U) dU, s.t. 𝑟𝑔𝑖𝐷𝑔𝑖

!

= 𝑅. (23)

We set 𝑅 to one over the square root of the image pixel count, such

that after one sample per pixel, the corresponding variance estimate

is compensated for by the number of samples in the image plane.

7.1.2 Sampling Algorithm. Adaptively sampling proposal paths

becomes straight-forward once we have determined the size and

shape of the optimized region in path space: we construct paths

from the camera, sampling each next direction according to the

distribution obtained for each respective vertex by the optimization

problem in Eq. (23). It can be solved using either our differential-free

simplification of the variance estimation in Eq. (21), or using path

differentials. Both solutions are simple and efficient to implement.

The differential-free version has better numerical robustness due

to lack of matrix math (circumventing degenerate matrices), while

the full-differential version can lead to slightly better decorrelation

of samples in some cases, which we attribute to better capturing of

anisotropic structure in path space.

Solving for the Optimal Proposal Distribution. The constrained

optimization in Eq. (23) is a Karush–Kuhn–Tucker (KKT) system,

with the implicit inequalities that our sampled region should be a

subset of the full relevant space of paths. For brevity, we discuss the

simplified version here. Please refer to App. C.2 for more details on

the differential version. Our solution defines 𝑔𝑖 (X) as a multivariate

Gaussian exp

(
−1/2

∑𝑘−1

𝑗=0
𝑠 𝑗 ∥u𝑗 − u(𝑖)

𝑗
∥2

)
with the same dimension-

ality as the current path X𝑖 . To shape 𝑔𝑖 (X), we find optimal scaling

coefficients 𝑠 𝑗 ≤ 1 for each dimension. For comparison, we define

the area of one pixel in the space of u1 as 𝑠px, such that 𝐷𝑔𝑖 = 𝑠1/𝑠px.

Using the chain rule, we adapt Eq. (21):

𝑟𝑔𝑖𝐷𝑔𝑖 =
𝑝 (i1)
𝑠1

©­« 𝑠0

𝑝 (x1)

�����dx⊥o2

di1

�����−1

+
𝑘−1∑
𝑗=1

𝑠 𝑗

𝑝 (i𝑗 )

�����di𝑗di1

�����−1ª®¬ 𝑠1

𝑠px

. (24)

In Listing 1, lines 1–11 show pseudocode to compute the correspond-

ing factors. The subsequent lines determine optimal coefficients 𝑠𝑖
using a Lagrange multiplier (𝜆) and applying the KKT conditions.

Deriving w.r.t. 𝑠 𝑗 , we obtain the necessary condition:

𝜆

𝑠px

𝑝 (i1)
𝑝 (i𝑗 )

�����di𝑗di1

�����−1

!

=

∏𝑘
𝑙=0

𝑠𝑙

𝑠 𝑗
. (25)

(Analogous for 𝑗 = 0). We note that each 𝑠 𝑗 is reciprocal to its

coefficient in Eq. (24), which simplifies the constraint to:

(21) =
𝑘∑
𝑙=0

∏𝑘
𝑙=0

𝑠𝑙

𝜆︸   ︷︷   ︸
=:𝜆′

!

= 𝑅, 𝜆′ = 𝑅/𝑘. 𝑠 𝑗 =
𝑅

𝑘
𝑝 (i𝑗 )

�����di𝑗di1

����� 𝑠px

𝑝 (i1)
. (26)

Therefore, the optimal distributions depend mostly on the number

of optimized coefficients, but interestingly cancel out the original

scattering behavior of inner vertices. Line 13 in Listing 1 accounts

for 𝑝 (i1) in Eq. (25) and 𝑅 in Eq. (26). Line 17 accounts for 𝜆′. The
optimal proposal density in primary sample space is computed in
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Listing 1. Pseudocode for our adaptive forward path sampling. Vertices x0

and x1 refer to the same camera vertex with positional and directional
attributes, respectively. The last vertex x𝑘 refers to a point on an emitter.

in PDFs 𝑝 (x𝑖 ) of a plain path tracer for the current path X

out proposal distribution around X, i.e. N(x𝑖+1, (2𝜋 pdfs𝑖 )−1 I)

1 // projected per-vertex footprints
2 float[k] footprints
3 float angle_compression = 1
4 for i = 0 .. k-1:

5 angle_compression *=
��� di𝑖
do𝑖

��� if i > 1 else 1

6 if i >= 1:

7 pdf = 𝑝 (x𝑖+1)
��� dx𝑖+1

di𝑖

��� * angle_compression

8 else:

9 pdf = 𝑝 (x1)
���� dx⊥o

2

di1

����
10 footprints𝑖 = 1 / pdf
11

12 // constrained optimization
13 target_diff = footprints1 /

√
pixel count

14 bool [k] active = [ x𝑖 is non-specular for i = 0..k-1 ]
15 float[k] amplifiers
16 do:
17 target_footprint = target_diff / count(active)
18 retry = false
19 for i = 0 .. k-1:
20 if active𝑖:
21 amplifiers𝑖 = footprints𝑖 / target_footprint
22 if not amplifiers𝑖 > 1:
23 active𝑖 = false
24 target_diff -= footprints𝑖
25 retry = true
26 while retry
27

28 // per-vertex adaptive proposal distribution
29 float[k] pdfs
30 for i = 0 .. k-1:
31 pdfs𝑖 = 𝑝 (x𝑖+1) * (amplifiers𝑖 if active𝑖 else 1)

line 21, as per scaling coefficients 𝑠 𝑗 . So far, we neglected the inequal-

ities 𝑠 𝑗 ≤ 1, which are checked in line 22: In case a dimension does

not require increased sampling density, we remove its coefficient

from the optimization, as suggested by the complementary slack-

ness condition for KKT systems. As a result, the density of other

dimensions may be decreased. Therefore, in this case, we repeat the

optimization with the new set of constraints.

7.1.3 Path Extension and Truncation. We leverage the reversible

jump framework [Geyer 2003; Green 2003] that allows adding and

discarding of path vertices by dimension matching. Thus, we can

accept shorter proposal paths that hit emitters early, and can extend

proposals by random walks (with Russian Roulette termination) in

case they do not hit an emitter at the current path length.

7.2 Efficient Path Tracing in an MCMC mutation
With the exception of PSSMLT approaches that implicitly mutate

collections of paths according to their marginal contribution to the

image [Kelemen et al. 2002], previous MCMC algorithms in single-

path state spaces fail to compete with uncorrelated MC methods

Listing 2. Pseudocode adapting a full path tracer to a large-step mutation.

in iff computing the reverse sampling weight, the proposal
out selected proposal path & its weight in the acceptance ratio

1 float totalSplat = 0
2 Path candidate, proposal
3

4 // for reverse weights, proposal is already given
5 if proposal:
6 if rand() < proposal.mis_weight(NEE):
7 t_rev = NEE, candidate = proposal.trimmed(-1)
8 else:
9 t_rev = Hit, candidate = proposal
10 Spectrum contrib = proposal.generic_contrib_mis()
11 totalSplat += contrib.luminance()
12

13 // sample new candidates or additional candidates
14 while candidate.sample_or_keep_next_vertex():
15 for t in [NEE, Hit]:
16 // skip technique that (supposedly) sampled prop.
17 if t_rev==t and candidate.k_for(t)==proposal.k():
18 continue
19 Spectrum contrib = 0
20 if t == Hit and candidate.hit_emitter():
21 contrib = candidate.hit_contrib()
22 if t == NEE and candidate.sample_nee():
23 contrib = candidate.nee_contrib()
24 contrib *= candidate.mis_weight(t)
25

26 float intermSplat = totalSplat
27 totalSplat += contrib.luminance()
28 // sample proposal among new candidates
29 if not t_rev and contrib:
30 // proportional to their contributions
31 if rand() >= intermSplat / totalSplat:
32 proposal = candidate.full_path(t)
33

34 // in practice: for reverse weights, we omit proposal
35 return proposal, totalSplat

in terms of path discovery efficiency: Common MCMC mutation

strategies construct individual path samples, while classic MC tech-

niques commonly create many paths at once, reusing previously

sampled subpaths as shared prefixes in multiple importance sam-

pling techniques. In our new large-step mutation, we make use of

the reversible jump (RJ) framework [Geyer 2003; Green 2003] to

embed a full-featured path tracer with next event estimation into a

Markov Chain running on a single-path state space. Thus, we obtain

a complete adaptive MCMC rendering algorithm based on purely

forward path tracing. (Note that recent works [Bitterli et al. 2017;

Otsu et al. 2017; Pantaleoni 2017] show that primary sample space

and path space are in principle interchangeable, however, both state

spaces are single-path state spaces in these works).

Sampling Many Candidates. Our path sampling technique builds

on a generalized perspective on theMultiple Try (MT)method [Craiu

and Lemieux 2007; Liu et al. 2000] using the RJ framework. In our

background section, we already provided an overview of recent

advancements using both frameworks. The RJ framework provides

a way to determine valid proposal acceptance ratios for mutations
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Fig. 4. Equal-time comparisons (50s on 64 cores) of our PT large step to the bi-directional mutation and to MMLT, both in isolation and combined with the
remaining standard Veach MLT, resp. MMLT, small steps. Our large step improves the path discovery comparably to MMLT, but in contrast to MMLT allows
the full arsenal of path-space small-step perturbations. These perturbations can improve results, as shown here for the Veach MLT family of small steps.

that add or remove dimensions to the proposal path, compared to the

source path, and, as we show in App. D, even for the construction

of many candidate paths at once, by a stochastic candidate selection

similar to MT. The resulting algorithm requires few modifications

to a standard path tracer, as we show in the following. We focus on

the algorithmic part in this section, please refer to App. D for details

on the self-inverse mapping that realizes the RJ, and the derivation

of the resulting Jacobian determinant in the acceptance ratio.

7.2.1 Proposal Path Sampling. To obtain the next proposal path, we

begin by sampling candidate paths in exactly the same way as a path

tracer does: Listing 2, lines 14 – 27, recursively traces rays starting

at a random location on the screen, then samples scattering (BSDF)

and shadow rays (NEE) for every interaction. The MIS-weighted

sample value 𝑤 (X𝑖 ) of each full path X𝑖 along the way is a good

choice for its candidate sampling weight [Bitterli 2015; Martino and

Louzada 2017]. We avoid storing all candidate paths by replacing

candidate paths incrementally (line 32), i.e. using weighted reser-

voir sampling [Chao 1982]: We construct a Russian Roulette (RR)

(line 31) such that the final selected path is sampled with probabil-

ity 𝑃 (X𝑖 ) proportionally to its candidate weight, divided by the sum
of all other candidate weights: For this, in every step of the path

tracing recursion, the chance 𝑃𝑠 (X𝑖 ) of a candidate X𝑖 (replacing

the previous tentative proposal) is:

𝑃𝑠 (X𝑖 ) =
𝑤 (X𝑖 )∑𝑖
𝑗=1

𝑤 (X𝑗 )
, 𝑤 (X𝑖 ) = 𝑤MIS (X𝑖 )

𝑓 (X𝑖 )
𝑝 (X𝑖 )

, (27)

⇒ 𝑃 (X𝑖 ) = 𝑃𝑠 (X𝑖 )
∏
𝑗=𝑖+1

(
1 − 𝑃𝑠 (X𝑗 )

)
=

𝑤 (X𝑖 )∑
𝑗=1

𝑤 (X𝑗 )
. (28)

Improving Mixture. In plain Multiple-Try Metropolis, the weight

of the resulting proposal in the acceptance ratiowould be
𝑓 (X𝑖 )

𝑝 (X𝑖 ) 𝑃 (X𝑖 ) .
This is still suboptimal as it fails to apply variance reduction using

MIS to the actual proposal weight. By modification of the dimension-

matched mapping that describes our mutation in the reversible jump

framework (App. D), adding an auxiliary random encoding of the

active sampling technique (similarly to BSDF layers in previous

work [Bitterli et al. 2017]), we can instead use the MIS’ed sample

value. The resulting proposal weight becomes exactly the variance-

reduced weight of the corresponding uncorrelated MC algorithm:

𝑓 (X𝑖 )
𝑝 (X𝑖 ) 𝑃 (X𝑖 )

=
𝑤 (X𝑖 )
𝑃 (X𝑖 )

=
∑
𝑗

𝑤 (X𝑗 ), ∀𝑖 . (29)

7.2.2 Reverse Sampling Weights. In order to maintain detailed bal-

ance, both MT and RJ require that we also sample alternative candi-

dates for the source path. These candidates decide the final source

weight in the MCMC acceptance ratio. Correctly simulating the sam-

pling of the source path requires knowledge whether it was sampled

by NEE or forward BSDF sampling: If a technique constructed the

source path, it cannot provide a second alternative candidate (List-

ing 2, line 17). Our construction of the dimension-matched mutation

mapping (App. D) uses an auxiliary variable that is distributed ac-

cording to the MIS weights of the current path for each technique,

requiring the decision, which candidates to simulate, to be randomly

chosen based on exactly these MIS weights (lines 6 – 10).

8 RESULTS AND DISCUSSION
We implemented our approaches in the Mitsuba renderer [Jakob

2010], which comes with path space Veach MLT [Veach and Guibas

1997] and primary sample space MLT (PSSMLT) frameworks. We

added implementations of Multiplexed MLT (MMLT) [Hachisuka

et al. 2014], multi-stageMLT [Hoberock andHart 2010] for bothMLT

and PSS(M)MLT, and the adaptive sampling strategy by Szirmay-

Kalos and Szécsi [2017] for comparison to our adaptive forward

path tracing (APT). We also imported the public implementation

of Halfvector Space Light Transport (HSLT) [Hanika et al. 2015;

Kaplanyan et al. 2014]. The source code for all techniques is made

available on the project website. All comparisons shown in the paper

are equal time comparisons, rendered in 50s on a 64 core machine.

Our supplementary materials provide comparisons for more scenes

and techniques, with relative RMSE values.

8.1 Efficiency of the Stratification in MLT methods
We implemented our approach to stratification for both path space

MLT and primary sample space (M)MLT variants. Fig. 5 shows
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Fig. 5. Equal-time comparisons (50s on 64 cores) of our combined method APT (PT large step & adaptive forward path sampling) with and without stratification,
to VeachMLT, MMLT, and unidirectional PSSMLT with isotropic adaptive sampling [Szirmay-Kalos and Szécsi 2017]. All methods can benefit from stratification.
Multi-Stage MLT benefits particularly from the good noise reduction of Veach MLT and MMLT, and can outperform our stratification (in still images). Among
the unidirectional techniques, our anisotropic APT adapts more consistently to difficult light transport than isotropically rescaled proposal distributions.

equal-time renderings for our simplified stratification scheme (Sect.

6.5) with respective comparisons to multi-stage MLT [Hoberock

and Hart 2010]. Fig. 6 evaluates the effectiveness of stratification,

both using multi-stage MLT and our technique, in terms of effective

mutations per pixel. We chose to show the simplified, derivative-

free variants of our algorithms, as they usually give similar or bet-

ter results due to their increased numerical robustness and lower

computational overhead (around 5% faster). The alternative vari-

ants using precise path differentials (Sect. 6.4) are compared in our

supplementary materials. Particularly for renderings with higher

contrast, noise levels are drastically reduced, as for the flashlight

and the living room scene. Notably, this is orthogonal to the chosen

mutations and similar improvement can be seen for all shown vari-

ations of the MLT algorithm (Veach MLT, MMLT, rescaled PSSMLT,

and our APT). For the living room scene, Fig. 7 shows that this also

manifests in faster convergence.

The computational overhead of our stratification over unstrat-

ified rendering depends on the chosen mutation strategies: The

bi-directional mutation in Veach MLT generates many proposals

with small modifications, thus the impact is higher, reducing muta-

tion counts by about 25%. For our APT, which performs fewer larger

steps, the overhead is around 5%.

Comparison to multi-stage MLT. As is to be expected by design, we
do not generally outperform multi-stage MLT in all areas: However,

we do achieve significant variance reduction in similar cases, while

improving on the aspects of control and predictability: Relying only

on local information, our approach is less susceptible to artifacts

due to correlated outliers and high-frequency brightness changes

(see Fig. 8). This is particularly noticeable for multiple reruns in

motion (see Sect. 8.3), where it shows that comparably lower quality

improvements in still frames are compensated for by increased

robustness. Sect. 8.4 details limitations and trade-offs. Our approach

allows for standard progressive rendering with live observation of

convergence, whereas multi-stage MLT requires the budgeting and

balancing of lower-resolution ‘learning’ phases in advance.
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Fig. 6. False color visualizations of the relative distribution of mutations (samples) per pixel for unstratified, multi-stageMLT, and path differential-informed (PD-
inf.) stratified MCMC (all shown for our APT technique). Multi-Stage MLT samples the most uniformly, achieving almost perfect stratification. Our method is
a trade-off, stratifying much less strictly, for simplicity and reduced correlation. Still, it recovers samples from more trivial bright image areas.
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Fig. 7. Left: Relative RMSE over time for our RJ-based path tracing muta-
tion (50 minutes on a 128 core machine, on the complex light transport
in the torus scene) to verify convergence. The scene is explored well by
unstratified MCMC, therefore stratification incurs a small slowdown. Right:
Convergence of different MLT large steps compared with (s-*) and without
stratification in the living room scene. Stratification noticeably reduces the
error. Multi-Stage MLT cannot render progressively, we provide relative
RMSE values for still images in the supplementary materials.

8.2 Adaptive Forward Path Tracing
Fig. 5 compares our forward path sampling algorithm to challenging

competitors: The compared Veach MLT and MMLT both build on

bi-directional path construction techniques, which in many config-

urations of complex light transport work well with less informed

sampling decisions, where bi-directional sampling fits these con-

figurations more naturally. This immediately becomes apparent in

the comparison to unidirectional PSSMLT (Fig. 9), which uses the

same heuristics as the MMLT implementation, but fails to adapt

without bi-directional sampling techniques. Yet, the heuristic of

bi-directional sampling may also cause inconsistent quality: con-

nectable (directly visible) surfaces may be improved, whereas other

reflected or refracted counterparts may remain unaffected. This par-

ticularly shows in Fig. 1, where our adaptive forward path tracing

outperforms standard bi-directional techniques and approaches the

quality of HSLT, which uses a complex iterative solver, specialized to

explore paths in these specific scenarios. Like for the stratification,

we show results for the simplified adaptive algorithm (Listing 1),

as it is up to 10% faster and more robust due to its simplicity. The

supplementary materials provide results for both variants.

Optimized Proposal Distributions. To evaluate our optimization

of proposal distribution shapes (Sect. 7.1), we compare to previous

adaptive unidirectional path sampling in MLT. We show standard

PSSMLT [Kelemen et al. 2002] and importance-based isotropic scal-

ing (akin to [Szirmay-Kalos and Szécsi 2017], where an isotropic

proposal distribution in primary sample space is scaled to a standard

deviation that is inversely proportional to the throughput of the

current path). Fig. 9 demonstrates that both heuristics are useful for

some light transport configurations, but fail to consistently adapt to

more complex high-dimensional light distributions. This is expected,

as from the optimization in Sect. 7.1.2, it follows that good proposal

distributions are often anisotropic in primary sample space. It is

confirmed in that our proposal distributions adapt more consistently

to both difficult caustics and multi-bounce indirect diffuse light.

8.3 Temporal Stability
Temporal stability and filterability of unconverged MCMC results

are important open problems on the way towards practical MCMC

rendering. To this end, we compared our method with other tech-

niques by rendering multiple frames with independent random

seeding: In our supplementary materials, we provide looping ani-

mations for our adaptive path tracing, MMLT, and unidirectional

PSSMLT. In motion, for the dining room, torus, and pool scene, our

results come closer to uncorrelated noise than the other methods,

while the algorithm still adapts to complex light transport. In the

museum scene, where most light comes from caustics, results are

more correlated and temporally unstable. As a proof of concept for

filtering, we also applied standard DBOR reweighting [Zirr et al.

2018] to the animation frames: With DBOR, our results are more

stable than the competition even in the museum scene, at the cost

of DBOR applying stronger downweighting and thus bias. Our re-

sults indicate that optimizing for minimal correlation is a promising

avenue in adaptive sampling, however, more work is needed on

reliable filtering of correlated outliers. Comparing multi-stage MLT

in motion, it shows strong additional correlation artifacts in the pool
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Unstratified Multi-Stage MLT Our Stratification

Fig. 8. Stratification by multi-stage MLT struggles with high-frequency
brightness changes due to the recursive upsampling (shown for base 4). This
manifests in correlation artifacts for correlated techniques like Veach MLT
(bottom), or increased noise in our less correlated adaptive path tracer (top).

and the museum scenes, where outliers in low stages misguide the

chain in high stages. Our method does not introduce such artifacts.

8.4 Limitations and Trade-Offs of Local Information
While multi-stage MLT leverages aggregate information of many

samples throughout the recursion, our approaches can only rely

on the local information of individual paths. This limits improve-

ments in some scenarios (e.g. in the staircase and the door scenes

in the supplementary materials), particularly when discontinuous

visibility counters the locally informed predictions. In contrast, ag-

gregate information can lead to improved decisions, but also to

misguiding when confronted with variance, causing correlated ar-

tifacts (and flashing under motion). For paths with many diffuse

interactions, our variance bounds become increasingly conservative.

This complies with Ineq. (15), which may be less tight for smaller

subfilters, required for such long scattering paths, so that they can

be represented by only the local environment of one sample. Our

supplementary results provide insight into the impact of variance

bounds per path length, for differing scattering profiles.

8.5 Variance Bounding
Fig. 3 evaluates the practical reliability of our variance bounding

scheme, focussing on the splat weights that result from downweight-

ing using 𝑟X, computed for each path. These results were computed

without MLT, using a plain path tracer with next event estimation.

Suspecting that the ratios 𝑟X can be used as conservative estimates

of the ratios in density-based outlier reweighting (DBOR) [Zirr et al.

2018], we applied the same reweighting
1

𝑟X

𝑁
𝜅 (𝑁 is the sample count,

𝜅 the variance control threshold), and found that it indeed resulted

in bounded-variance images that resemble the ones obtained us-

ing DBOR (please refer to the supplementary materials for more

results). We find this interesting as an instance where our local

variance estimates indeed conservatively replace information that

is otherwise aggregated from many samples. This could be useful

Fwd. PSSMLT Iso-Scale Fwd. PSSMLT Our APT

Fig. 9. Adaptive proposal sampling with differently shaped distributions:
Unidirectional PSSMLT samples proposals from a fixed isotropic distribu-
tion in primary sample space, struggeling to follow the global radiance
distribution in all cases. Isotropic rescaling according to importance (akin
to [Szirmay-Kalos and Szécsi 2017]) can improve proposals, but does not
generalize to all cases, breaking some cases handled by PSSMLT. We opti-
mize the shape of anisotropic proposal distributions in line with our variance
bounding theory, combining the strengths of both across many cases.

for path guiding techniques, where DBOR estimates have already

been applied [Simon et al. 2018] to identify guide paths.

8.6 Path Tracing Embedded as a Large Step
Fig. 4 analyzes the effectiveness of our path tracing (PT) large step

mutation (Sect. 7.2) that implements forward PT in single-path

state space MLT. Comparing large steps in isolation, our results are

better than for the standard bi-directional mutation in many cases,

particularly where NEE works well. Even compared to MMLT as an

efficient PSSMLT method, our mutation holds up. If we add small

steps, our PT large step combined with the classic Veach MLT small

steps helps these enter important regions of path space faster. We

attribute this to our construction of many paths at once, decreasing

the chances of failing to find new candidates in a large step, and thus

wasting fewer computations while reducing correlation artifacts.

9 CONCLUSIONS
With the approaches discussed in our paper, we attempt a first step

towards simpler and more controllable MCMC algorithms. Our re-

sults indicate that targeted control over the amount of correlation in

adaptive sampling is a promising avenue for future investigation, in

order to reach robust, temporally stable methods in all kinds of corre-

lated sampling techniques. We hope that our analytical approach to

stratification and adaptive sampling in the context to MCMC proves

a useful tool of variance estimation also in techniques unrelated to

MCMC methods, as e.g. in path guiding approaches. Furthermore,

we hope that our adaptation of a stock MC path tracer to the MCMC

framework serves as an example for more general bridging of MC

and MCMC methods. A key challenge to be addressed for wider

adoption of correlated techniques in the future remains the filtering
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and reconstruction of partly converged results. Our approach to min-

imizing proposal correlation could be a stepping stone, potentially

augmented by additional means of correlation tracking.
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A DERIVATIONS OF VARIANCE BOUNDS
Based on the (marginal) contributions 𝐹 (x⊥

𝑘
, o𝑘 ) and 𝐹𝑑 (x⊥𝑘 , o𝑘 )

of endpoints to subfilters 𝑔(U) and 𝑔𝑑 (U), which exist as Radon-

Nikodym derivatives in Prop. 6, we bound 𝑟𝑔 by 𝑟𝑔 as follows:

𝑟𝑔
(15)
=

∫
M×Ω 𝐹𝑑 (x

⊥
𝑘
, o𝑘 )𝐿𝑒 (x⊥𝑘 , o𝑘 ) d(x⊥

𝑘
, o𝑘 )∫

M×Ω 𝐹 (x
⊥
𝑘
, o𝑘 )𝐿𝑒 (x⊥𝑘 , o𝑘 ) d(x⊥

𝑘
, o𝑘 )

(30)

=

∫
M×Ω

𝐹𝑑 (x⊥𝑘 ,o𝑘 )
𝐹 (x⊥

𝑘
,o𝑘 )

𝐹 (x⊥
𝑘
, o𝑘 )𝐿𝑒 (x⊥𝑘 , o𝑘 ) d(x⊥

𝑘
, o𝑘 )∫

M×Ω 𝐹 (x
⊥
𝑘
, o𝑘 )𝐿𝑒 (x⊥𝑘 , o𝑘 ) d(x⊥

𝑘
, o𝑘 )

(31)

≤

∫
𝐹 (x⊥

𝑘
, o𝑘 )𝐿𝑒 (x⊥𝑘 , o𝑘 ) d(x⊥

𝑘
, o𝑘 )∫

𝐹 (x⊥
𝑘
, o𝑘 )𝐿𝑒 (x⊥𝑘 , o𝑘 ) d(x⊥

𝑘
, o𝑘 )

max

x𝑘 ,o𝑘

𝐹𝑑 (x⊥𝑘 , o𝑘 )
𝐹 (x⊥

𝑘
, o⊥
𝑘
)
=: 𝑟𝑔 . (32)

Note that the exact size of subfilters is irrelevant to 𝜌𝑔 and 𝑟𝑔 w.r.t.

isotropic scaling, allowing an arbitrarily localized analysis (the prob-

ability volumes of the subfilters cancel out). Anisotropic scaling

matters, but since it artificially increases or decreases the amount of

(non-)determinism of compared transports, we choose isotropic sub-

filters for stratification. Sect. 7 makes use of the additional freedom

to optimize the anisotropic shape of proposal densities.

A.1 Projection Variance Bounding
The approach taken in Eq. (32) can also be applied to the projected

endpoint densities 𝐹⊥L , 𝐿
⊥L
𝑒 and 𝐹

⊥L
𝑑

, 𝐿
⊥L
𝑒 |𝑑 , which exist as Radon-

Nikodym derivatives in Sect. 6.3:

𝑟𝑔 =

∫
L 𝐹

⊥L
𝑑

(x𝑘 , o𝑘 )𝐿
⊥L
𝑒 |𝑑 (x𝑘 , o𝑘 ) d𝜋L (x𝑘 , o𝑘 )∫

L 𝐹
⊥L (x𝑘 , o𝑘 )𝐿

⊥L
𝑒 (x𝑘 , o𝑘 ) d𝜋L (x𝑘 , o𝑘 )

(33)

(32)
≤ max

(x𝑘 ,o𝑘 ) ∈L

𝐹
⊥L
𝑑

(x𝑘 , o𝑘 )𝐿
⊥L
𝑒 |𝑑 (x𝑘 , o𝑘 )

𝐹⊥L (x𝑘 , o𝑘 )𝐿
⊥L
𝑒 (x𝑘 , o𝑘 )

=: 𝑟L𝑔 . (34)

Here, the 𝐿
⊥L
𝑒 and 𝐿

⊥L
𝑒 |𝑑 effectively are “precomputed” means, such

that the product integrals give the correct contribution: Practically,

they are difficult to obtain, but choosing L such that 𝐿𝑒 (x𝑘 , o𝑘 )
is sufficiently smooth on the preimages 𝜋L−1

of points in L (as

e.g. a point light radiates in many directions, or a directional light

covers an area), we expect mean emission in deterministic and non-

deterministic subfilters to converge in the limit (for small subfilters).

To find directions of projections that result in the tightest variance

bounds, we find the projection giving the lowest upper bound for

the light transport within a subfilter 𝑔(U), and thus the highest

variance for any large sample value:∫
L𝜀
𝐹⊥L (x𝑘 , o𝑘 )𝐿

⊥L
𝑒 (x𝑘 , o𝑘 ) d𝜋L (x𝑘 , o𝑘 ) (35)

5
, Sect. 6.3

≤ max

(x𝑘 ,o𝑘 )
𝐹⊥L (x𝑘 , o𝑘 ) max

(x𝑘 ,o𝑘 )
𝐿𝑒 (x⊥𝑘 , o𝑘 )

∫
L𝜀

d𝜋L (x𝑘 , o𝑘 ) . (36)

Thus, the lowest worst-case bound (in environmentsL𝜀 on emitters)

is found in the projection plane where 𝐹⊥L
spreads the widest.

A.2 Separability of Involved Terms
For convolution, the effects of individual scattering interactions

on the endpoint distribution need to be (locally) separable. In our

implementation, to avoid relying on differentiable rendering ar-

chitecture, we compute all Jacobians w.r.t. halfvectors instead (see

Sect. 6). These fit common peaky BSDFs well, i.e. keeping halfvectors

constant is close to keeping respective u𝑖 constant. For halfvector
representations, Kaplanyan et al. [2014] indeed show a separation

of BSDF interactions in their results.

The albedo factor 𝐴(U) and its correlations in high-dimensional

subfilters 𝑔(U) are generally unknown. We assume these factors

to be either sufficiently smooth or independently distributed. Ef-

fectively, we neglect the change in average albedo 𝐴 from 𝐴𝑑 to 𝐴,

going from deterministic to actual light transport within a local sub-

filter 𝑔(U) with marginal endpoint contribution functions 𝐹 and 𝐹𝑑 :

𝐹𝑑 (x⊥𝑘 , o𝑘 ) |𝐴(X)=1

𝐹 (x⊥
𝑘
, o𝑘 ) |𝐴(X)=1

=
𝐹𝑑 (x⊥𝑘 , o𝑘 )
𝐹 (x⊥

𝑘
, o𝑘 )

:=𝐴(x⊥
𝑘
,o𝑘 )︷            ︸︸            ︷

𝐹 (x⊥
𝑘
, o𝑘 )

𝐹 (x⊥
𝑘
, o𝑘 ) |𝐴=1

:=𝐴𝑑 (x⊥𝑘 ,o𝑘 )
−1︷              ︸︸              ︷

𝐹𝑑 (x⊥𝑘 , o𝑘 ) |𝐴=1

𝐹𝑑 (x⊥𝑘 , o𝑘 )
.

(37)

A.3 Bounding the ratio 𝜌𝑔
We can verify the inequality (15) as follows:

𝜌𝑔 =
∥ℎ |𝑑𝑖
𝑗
𝑓 ∥1

∥ℎ 𝑗 𝑓 ∥1

=

∫
U (ℎ 𝑗 (U) − 𝑔(U)) 𝑓 (U) dU +

∫
U 𝑔𝑑 (U) 𝑓 (U) dU∫

U (ℎ 𝑗 (U) − 𝑔(U)) 𝑓 (U) dU +
∫
U 𝑔(U) 𝑓 (U) dU

(38)

=:

𝐴 + 𝐵𝑑
𝐴 + 𝐵 =: 𝑙 (𝐴). (39)

The maximal ratio 𝜌𝑔 > 1, i.e. when 𝐵𝑑 ≥ 𝐵 is reached for 𝐴 = 0:

max 𝑙 (𝐴) = max

𝐴 + 𝐵𝑑
𝐴 + 𝐵 , (40)

𝑙 ′(𝐴) = 1

𝐴 + 𝐵 − 𝐴 + 𝐵𝑑
(𝐴 + 𝐵)2

=
𝐵 − 𝐵𝑑
(𝐴 + 𝐵)2

≤ 0, (41)

𝑙 ′(𝐴) ≤ 0 ∧𝐴 ≥ 0 ⇒ 𝐴 = 0. (42)

B FULL DERIVATION OF PATH DIFFERENTIALS
In our experiments with precise differentials, we use a linear-time

algorithm (w.r.t. path length) with constant storage to compute end-

point distributions. The following derivations work for a forward

path sampling strategy X(U) constructing paths X from random

variables U, i.e. by sampling each next vertex x𝑖 using random vari-

ables u𝑖−1. In practice, we approximate all derivatives w.r.t. U using

halfvector space, so to not require differentiability in renderers.

B.1 Positional and Directional Path Derivatives
We use the ideas of Manifold Exploration [Jakob and Marschner

2012]: The endpoint distribution of our locally deterministic light

transport is defined by keeping the random variables for all inner

vertices fixed, thus they become constraints for a mapping from pix-

els to the endpoint, characterized by the Implicit Function Theorem.

To allow this in the general case, we first have to ensure invertibility

of the constraint Jacobian by dimension matching: For example, if

the strategy X(U) uses auxiliary random variables, such as for layer

selection, the respective derivatives w.r.t. U will not be meaningful.

However, there is a pushforward measure 𝜇 (𝐴) :=
∫
𝐴

dU ◦ X
−1

for

each path space measure 𝜈 (𝐴) :=
∫
𝐴

dX that effectively marginalizes
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out all auxiliary random variables that ultimately result in the same

path X(U). Like Otsu et al. [2017], we can construct a space A very

similar toU by inversion of a CDF corresponding to 𝜇 (𝐴), resulting
in a dimension-matched mapping X(𝐴). This mapping effectively

compresses auxiliary dimensions into other dimensions (e.g. by al-

locating a subset of values to each discrete decision for encoding).

We thus assume X(U) or an analogous X(𝐴) to be invertible w.l.o.g.,
and write the Jacobi matrix of X

−1 (X) as the tridiagonal matrix:

𝜕 (u
0...𝑘−1

)
𝜕 (x

1...𝑘 )
=

©­­­­­­«

𝜕u0

𝜕x1

0 · · ·
𝜕u1

𝜕x1

𝜕u1

𝜕x2

0 · · ·
. . .

. . .
. . . 0

.. 0
𝜕u𝑘−1

𝜕x𝑘−2

𝜕u𝑘−1

𝜕x𝑘−1

𝜕u𝑘−1

𝜕x𝑘

ª®®®®®®¬
. (43)

We follow the convention of labeling the entries of each rowwithC𝑖 ,
B𝑖 , A𝑖 from the camera (x1) to the emitter (x𝑘 ), i.e. A𝑖 = 𝜕u𝑖/𝜕x𝑖+1

(w.r.t. vertex of incident light), B𝑖 = 𝜕u𝑖/𝜕x𝑖 , and C𝑖 = 𝜕u𝑖/𝜕x𝑖−1

(w.r.t. vertex of exitant light). By the Inverse Function Theorem,

we obtain the partial derivatives of 𝑋 (U) solving the linear system

of constraints corresponding to the tridiagonal block matrix. Ef-

fectively, we propagate perturbations of random variables through

subsequent interactions to the endpoint by the recurrence:

dx𝑗+1

du𝑖
= −A−1

𝑗

(
C𝑗

dx𝑗−1

du𝑖
+ B𝑗

dx𝑗
du𝑖

)
,

dx𝑖+1

du𝑖
= A−1

𝑖 ,
dx𝑖
du𝑖

= 0. (44)

Note that aperture sampling appears as A0 = 𝜕x1/𝜕u0. The posi-

tional derivatives of the last two vertices allow us to directly com-

pute the change of outgoing directions at vertex x𝑘 :

do𝑘
du𝑗

=
do𝑘

dx𝑘−1

dx𝑘−1

du𝑗
+ do𝑘

dx𝑘

dx𝑘
du𝑗

. (45)

B.2 Incremental Path Differentials
Computing the recurrent Eq. (44) for every vertex individually has

cost 𝑂 (𝑘2) for path length 𝑘 . Instead, we can unroll the path differ-

ential Σ[𝐹 (x𝑘 , o𝑘 )] in Eq. (18) to solve all recurrences in parallel.

Incremental construction from the camera requires storing three

2 × 2-matrices [Φ2

𝑖
], [Φ2

𝑖−1
], and [Φ𝑖Φ𝑇𝑖−1

]:

[Φ𝑖+1Φ
𝑇
𝑖 ] = −A−1

𝑖

(
C𝑖 [Φ𝑖Φ𝑇𝑖−1

]𝑇 + B𝑖 [Φ2

𝑖 ]
)
,

[Φ2

𝑖+1
] =

(
A−1

𝑖

(
C𝑖 [Φ2

𝑖−1
] + B𝑖 [Φ𝑖Φ𝑇𝑖−1

]
)
C𝑇𝑖 − [Φ𝑖+1Φ

𝑇
𝑖 ]B

𝑇
𝑖

)
A−𝑇
𝑖 .

For the emitter directions, we can directly re-use our computations:

[Θ2

𝑘
] = do𝑘

dx𝑘−1

[Φ2

𝑘−1
] do𝑘

dx𝑘−1

𝑇

+ do𝑘
dx𝑘−1

[Φ𝑘Φ𝑇𝑘−1
]𝑇 do𝑘

dx𝑘

𝑇

+do𝑘
dx𝑘

[Φ𝑘Φ𝑇𝑘−1
] do𝑘

dx𝑘−1

𝑇

+ do𝑘
dx𝑘

[Φ2

𝑘
] do𝑘

dx𝑘

𝑇

.

The path differential Σ[𝐹 (x𝑘 , o𝑘 )] is fully defined by the block triple:(
[Φ2

𝑘
], [Θ2

𝑘
], [Φ𝑘Φ𝑇𝑘−1

] do𝑘
dx𝑘−1

𝑇

+ [Φ2

𝑘
] do𝑘

dx𝑘

𝑇
)
.

B.3 PSS Differential Approximation using Halfvectors
To avoid requiring differentiability in the renderer, in Sect. 6.4, we

use the Natural Constraint Space Representation [Hanika et al. 2015;

Jakob and Marschner 2012; Kaplanyan et al. 2014] to obtain a good

approximation of BSDF differentials at inner vertices, which is easily

computed. In the halfvector parameterization, fixed points fit the

constraints of microfacet BSDFs well. We preserve density:����dx𝑘
du𝑖

���� = ����dx𝑘
di𝑖

���� ���� di𝑖
du𝑖

���� = ����dx𝑘
di𝑖

����/ 𝑝 (i𝑖 ) = ����dx𝑘
dh𝑖

����/ (
𝑝 (i𝑖 )

���� di𝑖
dh𝑖

����) .
C DERIVATIONS BASED ON PATH DIFFERENTIALS
In the following, we provide our derivations that allow us to skip

the computation of actual path differentials, and we derive the opti-

mal shape of adaptive proposal distributions. For this, let P𝑖 be the
change of sampled directions i𝑖 (resp. vertex position x1 for aperture

sampling, 𝑖 = 0) w.r.t. random variables u𝑖 . The determinants of P𝑖
are equal to the path tracing PDFs 𝑝 (i𝑖 ) (resp. 𝑝 (x1)). We do not

need to know the full matrix P𝑖 in our final expressions, removing

requirement of differentiability in the renderer’s sampling proce-

dures. Let T𝑖 be transformations from the respective spaces of P𝑖
to a planar 2-manifold in the 4D space of endpoints. E.g., for the

projection V in Sect. 6.4, we have T𝑖P𝑖 = V
d(x⊥

𝑘
,o𝑘 )

du𝑖
and write 𝑟X as:

𝑟X
(20)
=

�����𝑘−1∑
𝑖=0

(
T𝑖P𝑖

)
2

�����1/2

��� (T1P1

)
2

���1/2

=

������𝑘−1∑
𝑖=0

(
P−1

1
T−1

1
T𝑖P𝑖

)
2

������
1/2

, (46)

assuming that u1 is responsible for pixel sampling.

C.1 Path Differentials on Linearized Geometry
We can skip computing path differentials at the cost of slightly

approximate estimates: We perform our simplifications using a

Rayleigh quotient representation of 𝑟X aswritten in Eq. (46). Let v1, v2

be eigenvectors of

𝑘−1∑
𝑖=0

(
P−1

1
T−1

1
T𝑖P𝑖

)
2

, then we can write the deter-

minant as 𝑟X =
√
𝑟X (v1)𝑟X (v2) in terms of the quotient 𝑟X (v):

𝑟X (v)=
v𝑇

( 𝑘−1∑
𝑖=0

(
P−1

1
T−1

1
T𝑖P𝑖

)
2

)
v

v𝑇 v
≤
𝑘−1∑
𝑖=0

max

u

u𝑇 (P𝑖 )2 u

u𝑇
(
T−1

𝑖
T1 P1

)
2

u
. (47)

The approximation factor comes from the fact that we bound our

simplified ratios 𝑟X for axis-aligned projections V only, as the pri-

mary goal of the projection is to reduce the dimensionality while

handling cases of degenerate emitters, which we mostly expect in

either the positional or directional domain, or an orthogonal com-

bination thereof. To evaluate robustness in arbitrary cases, we ran

global optimizations on positive symmetric 4× 4-matrices, choosing

projection vectors v1, v2 only from two fixed orthogonal subspaces,

and experimentally found the peak approximation factor to be 4.

We simplify Eq. (47) for transformations 𝑇𝑖 to endpoint posi-

tions (𝜕x⊥
𝑘
/𝜕u𝑖 ) and directions (𝜕o𝑘/𝜕u𝑖 ) separately. For directions,
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noting o𝑖 = −i𝑖−1, and by the chain rule
di𝑖

di𝑖−1

=
di𝑖
do𝑖

do𝑖
di𝑖−1

, we find:

For T𝑖 =
do𝑘
di𝑖

=
do𝑘

di𝑘−1

(
di𝑘−1

di𝑘−2

· · · di𝑖+1

di𝑖

)
:

T−1

𝑖 T1 =

(
di𝑖

di𝑖−1

· · · di2
di1

)
=

di𝑖
di1

.

(48)

On the linearized geometry introduced in Sect. 6.5, the resulting

term merely has to account for angle compressions along the path

due to Snell’s law. Reflections do not apply any scaling to the ratio.

For transformations T𝑖 to endpoint positions, we look at 2D pro-

jections of vertex positions to surfaces: Let x⊥o
𝑖

be the vertex x𝑘 pro-

jected orthogonally to the outgoing edge o𝑘 . We recall o𝑘 = −i𝑘−1
,

apply the chain rule to

dx⊥o
𝑘

dx⊥o
𝑘−1

=
dx⊥o

𝑘

dx⊥i
𝑘−1

dx⊥i
𝑘−1

dx⊥o
𝑘−1

, and find:

For T𝑖 =
dx⊥o
𝑘

di𝑖
=

dx⊥o
𝑘

di𝑘−1

di𝑘−1

di𝑖
+

dx⊥o
𝑘

dx⊥o
𝑘−1

(
dx⊥o
𝑘−1

di𝑘−2

di𝑘−2

di𝑖
+ · · ·

)
:

u𝑇
(
T−1

𝑖 T1︸︷︷︸
T1=

(
dx⊥o
𝑘

di𝑖
di𝑖
di

1

+
dx⊥o
𝑘

dx⊥i
𝑖

dx⊥i
𝑖

dx⊥o
𝑖

dx⊥o
𝑖

di
1

)
=

(
T𝑖

di𝑖
di

1

+···
)P1

)
2

u ≥ u𝑇
(

di𝑖
di1

P1

)
2

u. (49)

The inequality requires that the discarded mixed terms of our T2

1
-

decomposition are positive semi-definite, so that the corresponding

inner products are non-negative. Due to our linearized geometry, we

do indeed expect that i1 moves i𝑖 and x⊥i𝑖 in the same directions, and

that this property is preserved after transformation to x⊥o
𝑘

and o𝑘 .
Thus, we find that so far the terms in our projected ratios can

be bounded in the same way for endpoint positions and directions.

A special consideration is required for camera movement/aperture

sampling, as on our linerized geometry it only affects endpoint

positions. We exploit that 𝑇1 and 𝑇0 share many chained terms:

For T0 =
dx⊥o
𝑘

dx⊥i
1

=
©­«

dx⊥o
𝑘

dx⊥i
𝑘−1

dx⊥i
𝑘−1

dx⊥o
𝑘−1

· · · ª®¬
dx⊥o

2

dx⊥i
1

:

u𝑇
(
T−1

0
T1 P1

)
2

u = u𝑇
[
T−1

0

(
T0

(
dx⊥o

2

dx⊥i
1

)−1

dx⊥o
2

di1
+ · · ·

)
P1

]
2

u,

(50)

leaving

dx⊥o
2

di1
as the only non-identity term in an inequality anal-

ogous to Eq. (49). All the terms remaining in Eqs. (48,49,50) end

up in the final bounding Eq. (21) in Sect. 6.5. Dropping the maxu
inherited from Eq. (47), we effectively reshape subfilters such that

the simplified terms corresponding to each u𝑖 become isotropic in

the respective projection.

C.2 Precise Optimal Proposal Distributions
Additional degrees of freedom are added to the optimization prob-

lem in Eq. (23) if we solve it for the ratio bound 𝑟X in Eq. (20)

using precise path differentials: Not only can the proposal sampling

density be chosen individually for each interaction, but also the

(anisotropic) shape of the Gaussian for each u𝑖 becomes a variable

in the optimization. For this purpose, we adapt Eq. (46) by setting T𝑖
to the full transformation from u𝑖 to projected endpoints, directly.

Our optimization then finds new P𝑖 in Eq. (46) that fulfill the con-

straint 𝑟X𝐷𝑔𝑖
!

= 𝑅: Let v1, v2 be the eigenvectors from Sect. 6.4, and

Listing 3. Pseudocode for our small step with differentials. Assignment
with ‘:’ indicates tuple distribution across multiple variables. Vertices x0

and x1 refer to the same camera vertex with positional and directional
characteristics, respectively. The last vertex x𝑘 refers to a point on an emitter.

in Differentials
du𝑖
dx𝑗

of a plain path tracer for a current X(U)
out proposal distribution around U, i.e. N(u𝑖 , covariances𝑖 )

1 // emitter and last interaction differentials
2 TridiagDifferential Demitter(I), Dconnect(0)
3 // per-vertex impact on endpoint distribution
4 Matrix2x2[k] Δ, Θ
5 Matrix2x2 ΣΔ2, ΣΘ2, ΣΔΘ𝑇 := (0, 0, 0)
6 // for current path X of length k in MCMC
7 for i = k-1 .. 0:

8 Matrix2x2 A, B, C :=
(

du𝑖
dx𝑗

�� 𝑗 = i+1 .. i-1
)

9 Δ𝑖 , Θ𝑖 := proj_area_and_arc(A−1, Dconnect, Demitter)
10 ΣΔ2, ΣΘ2, ΣΔΘ𝑇 :+= (Δ𝑖Δ

𝑇
𝑖
, Θ𝑖Θ

𝑇
𝑖
, Δ𝑖Θ

𝑇
𝑖
)

11 Demitter.chain_interaction(C, B, A−1)
12 Dconnect.chain_or_init_interaction(C, B, A−1)
13

14 // principal components of convolution

15 Vector4[2] projV = eigenbase_asc

(
ΣΔ2 ΣΔΘ𝑇

(ΣΔΘ𝑇 )𝑇 ΣΘ2

)
[2:4]

16 // projected per-vertex footprints
17 Matrix2x2[k] Φ
18 float [k] footprints
19 for i = 0 .. k-1:

20 Φ𝑖 =
(
projV

0
projV

1

)𝑇 (
Δ𝑖

Θ𝑖

)
21 footprints𝑖 = | Φ𝑖 |
22

23 // constrained optimization
24 target_diff = footprintspixel-𝑖 /

√
pixel count

25 bool [k] active = [ x𝑖 is non-specular for i = 0..k-1 ]
26 float[k] amplifiers
27 do:
28 target_footprint = target_diff / count(active)
29 retry = false
30 for i = 0 .. k-1:
31 if active𝑖:
32 amplifiers𝑖 = footprints𝑖 / target_footprint
33 if not amplifiers𝑖 > 1:
34 active𝑖 = false
35 target_diff -= footprints𝑖
36 retry = true
37 while retry
38

39 // per-vertex adaptive proposal distribution
40 Matrix2x2[k] covariances
41 for i = 0 .. k-1:
42 // note: inverse eigen-sqrt more robust, see impl.
43 covariances𝑖 = Φ−1

𝑖
Φ−𝑇
𝑖

/ amplifiers𝑖 if active𝑖 else I

let 𝑇𝑖 = V
d(x⊥

𝑘
,o𝑘 )

du𝑖
. We intend to maximize the probability volume

covered by the proposal subfilter 𝑔(U). To understand the influ-

ence of its anisotropic shape, we apply the Minkowski determinant

inequality to Eq.(46):

𝑟X =

������𝑘−1∑
𝑖=0

(
P−1

1
T−1

1
T𝑖P𝑖

)
2

������
1/2

≥
𝑘−1∑
𝑖=0

��� (P−1

1
T−1

1
T𝑖P𝑖

)
2

���1/2

. (51)

If all matrix terms are isotropic, i.e.

(
P−1

1
T−1

1
T𝑖P𝑖

)
2

= I
��P−1

1
T−1

1
T𝑖P𝑖

��
,

the inequality becomes an equality. The result does not change if
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the same anisotropic rescaling is applied to all endpoint projections

on both sides, i.e. as long as all projections keep their anisotropies

aligned. If we change the anisotropy of individual P𝑖 , however,
bigger 𝑟X have to be expected, requiring more contraction in some

of the P𝑖 . This in turn would decrease the probability volume of𝑔(U),
leading to less optimal exploration.

Following these observations, we choose the anisotropy of each P𝑖
such that the resulting endpoint projections T𝑖P𝑖 are isotropic. This
allows the resulting algorithm in Listing 3 to optimize the distribu-

tion solely based on the determinants of each projection (see line 20).

Note that the proposal distributions for each interaction may still

be anisotropic, as they have to counter any anisotropic rescaling

applied by the geometry of the subpath connecting to the endpoint.

Compared to the algorithm in Listing 1, the respective anisotropic

covariance matrices (line 43) potentially allow faster path space

exploration in some directions while respecting the variance bound.

In order to compute path differentials and subsequently projec-

tions T𝑖P𝑖 for each interaction, the algorithm computes the required

derivatives in parallel: Starting at the emitter, the chain rule is ap-

plied successively in lines 7-12, effectively keeping track of dx𝑘/dx𝑖
(line 11) and dx𝑘−1

/dx𝑖 (line 12) by solving the tridiagonal con-

straint system backwards (please refer to the implementation for

details). Line 9 computes the projections on endpoint positions and

directions, for the former we apply dx⊥
𝑘
/dx𝑘 , for the latter we com-

pute Eq. (45). Line 15 determines the planar projection from four to

two dimensions by an eigendecomposition of the path differential.

D CANDIDATES AND MIS IN THE RJ FRAMEWORK
In the RJ framework [Geyer 2003; Green 1995, 2003], proposal con-

struction must conform with a self-inverse mapping 𝑔(X,U) from
current states (paths) X and auxiliary random variables U to proposal

states Y and matching auxiliary variables. Then, the acceptance ratio

is determined by the Jacobian determinant of 𝑔 and the ratio of the

target function evaluated for the proposal path and source path.

𝑔 can only be self-inverse if input and output dimensions match:

RJ relies on dimension matching, such that for each current path

length 𝑘 , auxiliary random variables augment the corresponding

space of dimensionality 𝑘 to a fixed combined dimensionality 𝐾 ,

i.e. each path of length 𝑘 is complemented by 𝐾 − 𝑘 random input

variables. Note that this is still very flexible, as we can choose any

sufficiently large 𝐾 to accommodate the required random variables

for all proposals given any bounded path length.

For our large step mutation based on path tracing, we first append

all random variables UY that are potentially required by our path

tracer to independently sample any collection of proposal paths Y

(constructing candidates using BSDF sampling and NEE at every

interaction). We then emulate Multiple Try Metropolis sampling by

adding another random variable 𝐶 for candidate selection: Depend-

ing on this value, our mapping 𝑔 will output different candidates

from the collection. Finally, we need to ensure a correct self-inverse

mapping for candidates of the same length, but sampled using dif-

ferent techniques (i.e. BSDF sampling or NEE). For disambiguation,

we add another auxiliary variable 𝑇 that will encode the technique.

So far, we have only concatenated a fixed (albeit arbitrarily large)

number of random variables. We yet have to perform the dimension

matching, which we do by complementing each current path X

with yet to be determined auxiliary variables U
+
X
such that the

dimensionality of X and U
+
X
add up to the dimensionality of UY.

Now, to define our mapping, let X(U,𝐶) be our path tracing strategy

that samples candidate paths using the random variables U, to then

select and output one candidate depending on the auxiliary random

variable 𝐶 . For self-invertibility, we require that:

𝑔(X,U+
X
,UY,𝐶,𝑇 ) =

(
Y = X(UY,𝐶),U+

Y
,UX,𝐶

′,𝑇 ′
)
, (52)

s. t. 𝑔(Y,U+
Y
,UX,𝐶

′,𝑇 ′) !

=

(
X = X(UX,𝐶

′),U+
X
,UY,𝐶,𝑇

)
. (53)

The RJ framework does not require us to actually compute all auxil-

iary outputs of themapping𝑔, as long as it fulfills these requirements

and we can compute its Jacobian determinant. In order to reduce

variance using MIS (as also recommended for MT [Martino and

Louzada 2017]), our goal is to incorporate the MIS weights𝑤𝑡 (X)
of a path tracer with BSDF sampling (𝑡 = 0) and NEE (𝑡 = 1).

We therefore select candidates proportionally to their MIS’ed con-

tribution𝑊𝑡 (X) = 𝑤𝑡 (X) 𝑓 (X)/𝑝𝑡 (X). The tricky part is the self-

invertibility: 𝑔 needs to deconstruct the current path X into random

variables UX,𝐶
′
that reconstruct X on reverse application. Recon-

structing UX uniquely is possible if we know the technique 𝑡 that is

supposed to sample X, because we can store additional information

in U
+
X
, as e.g. for layer selection in previous work [Bitterli et al.

2017]. To encode and know 𝑡 for each Y, we map 𝑇 ′
to [0,𝑤0 (Y)]

for 𝑡 = 0 and [𝑤1 (Y), 1], otherwise. However, we also need to se-

lect X again among all candidates constructed by UX on reversal:

For this, we encode the candidate selection by mapping𝐶 to𝐶 ′
such

that 𝐶 ′
always lies in the interval of a CDF corresponding to the

PMF 𝑝𝑡 (X|UX) = 𝑊𝑡 (X)/(
∑

X
′∈X(UX, [0,1])

∑
1

𝑡 ′=0
𝑊𝑡 ′ (X′)), which

chooses among all candidates constructed from UX proportionally

to their respective MIS’ed contributions𝑊𝑗 (X). Now, the only thing
left to make 𝑔 self-inverse, is to reverse both encodings on the re-

spective input variables. This results in the ratios:

d𝑇 ′

d𝑇
=
𝑤𝑡 (Y)
𝑤𝑡 (X)

,
d𝐶 ′

d𝐶
=
𝑝𝑡 (X|UX)
𝑝𝑡 (Y|UY)

. (54)

We can reduce the Jacobian of 𝑔 to a block matrix such that: The

determinant of dY/dUY is the reciprocal path tracing PDF 𝑝−1

𝑡 (Y).
The auxiliary variables used for other hidden decisions such as layer

selection and the construction of unselected candidate paths are

simply passed on to U
+
Y
with a determinant of 1. The deconstruction

of X,U+
X
into UX has the determinant 𝑝𝑡 (X) (applying an inverse

mapping as in [Bitterli et al. 2017]). The derived ratios in Eq. (54)

make up the last two diagonal entries. Thus, the determinant is

exactly the ratio of MIS’ed sample values multiplied by the candidate

selection weight, analogously to standard Multiple Try Metropolis.

In practice, the RJ framework neither requires us to store or know the

auxiliary random variables, but to sample them as needed (as in lazy
sampling for PSSMLT [Kelemen et al. 2002]). Yet, our construction

of the mapping 𝑔 explains why we sample 𝑡 proportionally to the

MIS weights𝑤𝑡 (X) for the reverse candidates, as we have to reverse
the encoding of the technique in 𝑇 ′

by our chosen MIS weights.

Fig. 7 shows that the approach exhibits the expected convergence

behavior of an unbiased independent MC estimator.
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