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Figure 1: Comparison of the analytical (a, c, e) and dye-based (b, d, f) fluorescence model without interpolation. The cube
grid layers for B = 0.161 (a, b) and B = 0.742 (c, d) reveal artifacts in the dye-based model. e, f): Chromaticity of all colors
represented in a 323 coefficient cube with a maximum slope of 0.01, only showing colors with brightness of X +Y +Z ≥ 1.5.

Abstract
Modern photorealistic rendering simulates spectral behaviour of light. Since many assets are still created in
different RGB color spaces, spectral upsampling of the RGB colors to a spectral representation is required to use
them in a spectral renderer. Limiting the upsampled spectra to physically valid and natural, i.e. smooth, spectra
results in a more realistic image, but decreases the size of the gamut of colors that can be recreated.
In order to upsample wide gamut color spaces with colors outside the gamut of physically valid reflectance spectra,
a previous approach added fluorescence to create accurate and physically valid representations. We extend this
approach to increase the realism and accuarcy while considering memory and computation time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Considering the spectral properties of light is crucial for
physically accurate light transport simulation. Due to the
physically motivated limitations of spectral representations,
the gamut of colors of individual reflectance spectra is lim-
ited. To support a wider gamut of representable colors, while
remaining physically accurate, fluorescence can be included.
Building on the models of [JH19] and [JWH∗19], this work
examines possible improvements regarding the realism, ac-
curacy and quality of spectral upsampling with fluorescence.

2. Related Work

In 1935, MacAdam [Mac35] discovered that the brightest
and most saturated colors possible are represented by box-
shaped reflectance spectra. Following work aimed at repro-

ducing the smoother behaviour of physically realistic spec-
tra. We build on the approach by [JH19] who use an analyt-
ical function space for reflectances r:

r(λ) = S(c0λ
2 + c1λ+ c2)

S(x) = 0.5+ x/2
√

(1+ x2)
(1)

with three paramters (c0,c1,c2) that are optimized to match
the resulting spectrum to a target color.

As all previous methods create physically valid re-
flectances bound between 0 and 1, they can only repro-
duce colors inside the gamut of solid reflectances limited
by MacAdam’s box spectra, but fail at more saturated colors
near the border of wide-gamut RGB spaces such as ACEScg.
[JWH∗19] extend [JH19] by adding fluorescence for such
colors. They add three coefficients to analytically model flu-
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Figure 2: Left: Chromaticity of 8 fluorescent dyes without
non-fluorescent reflection. (Dyes 1 and 2: [AT20], others:
[Sci]). Right: absorption (blue) and emission of dye 2 and 6.

orescent absorption and emission spectra as b-splines with
emission peak wavelength λe, stokes shift s and a parameter
c ∈ [0,1] for mixing fluorescence and reflectance.

This paper extends the work of [JWH∗19]. We modify
the parameterization (c0,c1,c2) of the underlying function
space (equation 1) for non-fluorescent reflectances to im-
prove interpolation (section 4.3), replace the analytical flu-
orescence model (λe,s,c) with a set of real-world fluores-
cence measurements (section 4.2) and analyze how the color
error metric affects the optimization process (section 4.1).

3. Background

Color Difference Metrics. When working with colors, we
sometimes need to measure their difference. For colors in
an RGB or the CIE XYZ color space, a simple metric is the
Euclidean distance in this space. However, such distances do
not relate to the human perception of color difference. An
alternative is the CIE ∆E∗

76 color distance metric defined as
the Euclidean distance in the CIE LAB color space, which
was designed to reflect color differences as perceived by the
human eye. Still, the CIE ∆E∗

76 metric has non-uniformities
in some parts of the visible spectrum. The CIE ∆E∗

00 metric
[SWD05] defined in the CIE LCh color space resolves this.

Fluorescence. The phenomenon of fluroescence describes
light that is absorbed and then instantaneously emitted at
different wavelengths [Lak13]. The distribution of absorbed
and emitted wavelengths is described by the absorption and
emission spectrum a and e, examples for which are shown
in Figure 2. These spectra can be combined with a non-
fluorescent reflectance spectrum r to construct the fluores-
cent BRDF used by [JWH∗19]. They model a and e analyt-
ically based on b-splines, which we replace with measure-
ments of fluorescent dyes in section 4.2, while for r we use
the sigmoid function space proposed by [JH19] (equation 1).

4. Our Work

Optimizing the parameters to fit the model’s appearance to a
given RGB triple is relatively slow, so we precompute them
in a lookup-table based on a 3D regular grid inside the RGB
color cube as in [JWH∗19] using the Ceres solver [AMO].

Euclidean ∆E∗
00

Figure 3: Part of the blue = 0.7 layer of the coefficient
cube. Left: based on the Euclidean distance in the RGB color
space, 32 iterations. Right: based on the ∆E∗

00 color distance
metric, 4 iterations.

4.1. Perception Based Color Distance Metric

In order to optimize parameters (e.g. [c0,c1,c2,λe,s,c] in
[JWH∗19]) to minimize the difference between a target color
and the color represented by them, we need a meaningful
metric for this difference. The original approach uses the Eu-
clidean distance in RGB space, which approaches zero as the
colors become more similar, but ignores the perceived error.

We employ the ∆E∗
76 and ∆E∗

00 color difference metrics
to aid the optimization in convergence for colors that can be
represented perfectly, and in finding better approximations
for colors that cannot be represented by the analytical model.

4.2. Fluorescent Dyes

The objective of spectral rendering is to generate a realis-
tic image, so fluorescence should be modeled as realistically
as possible. We therefore replace the analytical model in
[JWH∗19] with measurements from fluorescent substances.
We chose eight fluorescent dyes from [AT20] and [Sci] with
absorption peak wavelengths ranging from 390 to 633 nm
and sort them based on their emission spectrum’s chromatic-
ity as shown in Figure 2.

Our model combines two adjacent dyes with an interpo-
lation weight w ∈ [0,1] to achieve a greater range of colors.
As before, we need three coefficients to model fluorescence:
The mixing coefficient c, interpolation weight w and index
idx of the first dye. If memory is an issue this model may be
easier to compress as idx can only take on eight values.

For simplicity we interpolate the absorption and emission
spectra of the two dyes. Thus the combined absorbed energy
is reradiated according to the combined emission spectra. It
would be more accurate to calculate absorption and emission
for both dyes separately and interpolate the result.

One drawback of this model is a more complicated opti-
mization, since the index idx can only take on discrete val-
ues. We use the brute-force solution of iterating over all eight
pairs of adjacent dyes and optimize the remaining coeffi-
cients to find the best fitting pair and coefficients.

Another challenge is interpolation between colors, as ad-
jacent entries in the precomputed coefficient cube can have
different dye indices. A possible solution would be a BRDF
that includes all fluorescent dyes referenced by the coeffi-
cients of all corners of a cube grid cell. Using this approach
would allow to use only three fluorescence coefficients per
grid point, while still being able to interpolate them.
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Figure 4: Parabola features shift, width and slope.

4.3. Alternative Interpolation

As it is infeasible to precompute coefficients for every single
color in an RGB color space, we need to interpolate the up-
sampling model inbetween the precomputed grid points. It is
thus important to define coefficients in a way that allows for
a meaningful interpolation, such that the result is as close as
possible to a true interpolation of the corresponding spectra.

This is particularly important at the border between coef-
ficients for spectra with and without fluorescence, where the
reflectance spectra differ more. The reflectance model (equa-
tion 1) is highly non-linear for linearly changing coefficients
c0,c1,c2. We present a new parameterization for this func-
tion space to improve interpolation in such cases (Figure 5).

We use three features of a reflectance spectrum as coef-
ficients: the shift (i.e. the center wavelength), the maximum
slope and the width of the parabola measured between the
maximum slope and shift as shown in Figure 4. Note that the
maximum slope value is defined as the maximum absolute
slope of a parabola, but slope itself is positive or negative to
indicate a u-shaped or n-shaped parabola respectively.

These coefficients are related to certain color features.
The shift corresponds to the chromaticity. The width and the
slope simultaneously affect saturation and brightness, which
corresponds to the fact that physically valid reflectance spec-
tra cannot appear arbitrarily bright and saturated. The color’s
brightness also depends on the shift, as the human eye is less
sensitive to wavelengths near the border of the visible range.

To create a spectrum from the three features shift, width
and slope (z, w and s), we use algorithm 1 to transform them
to coefficients (c0,c1,c2) before evaluating equation 1.

Algorithm 1 (shift z, width w, slope s)→ (c0,c1,c2)

t← (|s| ·w+(s2 ·w2 +1/9)1/2)/(2 · |s| ·w)
c0← s · t3/2/w
c1←−2 · c0 · z
c2← c0 · z2 + s ·w · (5 · t3/2−6 · t1/2)

Challenges. This model struggles with representing unsat-
urated, gray colors. We can specify colors that are perceived
as gray by creating an almost horizontal line using a large
width and small slope. However, a given gray color can in

Figure 5: Linear interpolation of the parabola coefficients
(top), the color spectrum itself (center) and the feature based
coefficients (bottom) with weights 0, 0.25, 0.5, 0.75, 1.

fact be represented by infinitely many combinations of width
and inversely scaled slope values, while varying the shi f t
causes little noticeable effect. This can cause artifacts when
interpolating between these extreme values (see Figure 8).

Another problem is the distinction between u-shaped and
n-shaped spectra, which are caused by positive and negative
slope values respectively, as spectra with slope values near 0
behave differently depending on the sign. For typical widths,
small positive slopes produce bright colors, while small neg-
ative slopes produces dark colors. This causes artifacts when
interpolating from a u-shaped to an n-shaped parabola.

We avoid this issue with a hybrid interpolation approach,
where we transform our feature based coefficients to the
original ones (c0,c1,c2) before interpolating such cases.

5. Evaluation

In this chapter we visualize layers of an optimized 323-
coefficient grid in the ACEScg color space, based on the
technique proposed by [JWH∗19]. We use the ACES pri-
maries #1 (AP1) for optimization and analysis, but interpret
the resulting triples as sRGB for visualization. Reflectance
spectra are limited to smooth spectra with a maximum slope
of 0.01. Ultraviolet light is included for the optimization of
the fluorescent coefficients. The cube grid layer visualiza-
tions represent a layer of the cube grid for a fixed value of
the blue component. We use the CIE D65 illuminant as light
source and the CIE 1931 2 degree standard observer func-
tions. For visualization purposes we plot fluorescent emis-
sion spectra (Figure 2, orange) scaled to 1.

5.1. Perception-Based Color Distance Metric

Using the ∆E∗
76 color distance metric leads to a significantly

smoother color transition through the coefficient cube as
shown in Figures 3 and 6, but also introduces artifacts in
the red/green part of the coefficient cube when used with
too few iterations. Using the computation heavier ∆E∗

00 color
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Figure 6: Cube layers 31 (B = 1; a, b) and 8 (B = 0.258;
c, d) for the Euclidean distance in RGB (a, c) and the ∆E∗

76
metric (b, d), both with 4 iterations.
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Figure 7: Cube layer 0 (B = 0) for the ∆E∗
76 metric and

4 iterations (a) has artifacts in the red/green region, which
mostly disappear with 8 iterations (b) or the ∆E∗

00 metric (c).

distance metric or increasing the number of iterations which
propagate the coefficients to adjacent grid points in the coef-
ficient cube removes the artifacts as shown in Figure 7.

Although both ∆E∗ metrics require an additional step to
convert the color from the initial RGB color space to the CIE
L*a*b* color space, overall convergence of the optimization
was faster, decreasing from 5h 59m (Euclidean distance in
RGB) to 3h 18m (∆E∗

76) for otherwise equal parameters and
4 iterations. Figure 7 shows that remaining artifacts are re-
moved best by switching to the ∆E∗

00 metric with 4 iterations
in 3h 20min, though they also disappear in 5h 36min when
increasing iterations for the ∆E∗

76 metric from 4 to 8.

5.2. Fluorescent Dyes

Using real-world measurements improves the realism of
the fluorescence model, although some approximations are
still required in order to limit memory and computation re-
sources. Figure 1 shows that with our eight dyes from Fig-
ure 2 we achieve a similar gamut as the analytical model
by [JWH∗19]. Note that the gamut could be of a different
shape or size for a different set of fluorescent dyes.

Including this fluorescence model in the coefficient cube
optimizer proposed by [JWH∗19] shows promising results,
though some artifacts remain and computation time is higher
due to the brute force optimization over dye pairs. Figure 1
compares our result to the analytical fluorescence model.

5.3. Alternative Interpolation

Figure 5 shows that interpolating the feature based coef-
ficients (shift, width and slope) produces more perceptu-
ally meaningful results than interpolating the original coeffi-
cients (c0,c1,c2). Our approach works well with bright, sat-

a) b) c) d)

Figure 8: Cube layer for B = 0.7 and feature based coef-
ficients with no (a), feature based (b), hybrid for different
slope signs (c) and old (c0,c1,c2) (d) interpolation. Interpo-
lating slopes with different signs leads to distortions.

urated colors, as long as all colors have the same sign of the
slope value, but produces artifacts for flipping slope signs.

Figure 8 visualizes a slice of an optimized coefficient
cube. As discussed in section 4.3, interpolating our coeffi-
cients leads to heavy artifacts, which can be avoided by the
presented hybrid interpolation approach. Note that the dis-
continuities in the left image without interpolation are at the
same position as the distortions in the right image.

6. Conclusion

We proposed several modifications to the approach of
[JWH∗19]. The ∆E∗ color distance metrics improved the
overall quality and convergence speed and were easy to im-
plement. Using real-world measurements from fluorescent
substances produced artifacts in the optimization process,
but provides a more realistic model for simulating fluores-
cence in a spectral renderer. Our feature based coefficients
for reflectance spectra interpolate colors more meaningfully,
but require additional work to arrive at a stable solution.
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