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Figure 1: Comparison of the analytical (a, c, e) and dye-based (b, d, f) fluorescence model without interpolation. The cube grid layers for
B = 0.161 (a, b) and B = 0.742 (c, d) reveal artifacts in the dye-based model. e, f): Chromaticity of all colors represented in a 323 coefficient
cube with a maximum slope of 0.01, only showing colors with brightness of X +Y +Z ≥ 1.5.

Abstract
Modern photorealistic rendering simulates spectral behaviour of light. Since many assets are still created in different RGB
color spaces, spectral upsampling of the RGB colors to a spectral representation is required to use them in a spectral renderer.
Limiting the upsampled spectra to physically valid and natural, i.e. smooth, spectra results in a more realistic image, but
decreases the size of the gamut of colors that can be recreated.
In order to upsample wide gamut color spaces with colors outside the gamut of physically valid reflectance spectra, a previous
approach added fluorescence to create accurate and physically valid representations. We extend this approach to increase the
realism and accuarcy while considering memory and computation time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Considering the spectral properties of light is crucial for physically
accurate light transport simulation. Due to the physically motivated
limitations of spectral representations, the gamut of colors of in-
dividual reflectance spectra is limited. To support a wider gamut
of representable colors, while remaining physically accurate, fluo-
rescence can be included. Building on the models of [JH19] and
[JWH∗19], this work examines possible improvements regarding
the realism, accuracy and quality of spectral upsampling with fluo-
rescence.

2. Related Work

In 1935, MacAdam [Mac35] discovered that the brightest and most
saturated colors possible are represented by box-shaped reflectance
spectra. Following work aimed at reproducing the smoother be-
haviour of physically realistic spectra. We build on the approach

by [JH19] who use an analytical function space for reflectances r:

r(λ) = S(c0λ
2 + c1λ+ c2)

S(x) = 0.5+ x/2
√

(1+ x2)
(1)

with three paramters (c0,c1,c2) that are optimized to match the
resulting spectrum to a target color.

As all previous methods create physically valid reflectances
bound between 0 and 1, they can only reproduce colors inside
the gamut of solid reflectances limited by MacAdam’s box spec-
tra, but fail at more saturated colors near the border of wide-gamut
RGB spaces such as ACEScg. [JWH∗19] extend [JH19] by adding
fluorescence for such colors. They add three coefficients to ana-
lytically model fluorescent absorption and emission spectra as b-
splines with emission peak wavelength λe, stokes shift s and a pa-
rameter c ∈ [0,1] for mixing fluorescence and reflectance.

This paper extends the work of [JWH∗19]. We modify the pa-
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Figure 2: Left: Chromaticity of 8 fluorescent dyes without non-
fluorescent reflection. (Dyes 1 and 2: [AT20], others: [Sci]). Right:
absorption (blue) and emission of dye 2 and 6.

rameterization (c0,c1,c2) of the underlying function space (equa-
tion 1) for non-fluorescent reflectances to improve interpolation
(section 4.3), replace the analytical fluorescence model (λe,s,c)
with a set of real-world fluorescence measurements (section 4.2)
and analyze how the color error metric affects the optimization pro-
cess (section 4.1).

3. Background

Color Difference Metrics. When working with colors, we some-
times need to measure their difference. For colors in an RGB or
the CIE XYZ color space, a simple metric is the Euclidean dis-
tance in this space. However, such distances do not relate to the hu-
man perception of color difference. An alternative is the CIE ∆E∗

76
color distance metric defined as the Euclidean distance in the CIE
LAB color space, which was designed to reflect color differences
as perceived by the human eye. Still, the CIE ∆E∗

76 metric has non-
uniformities in some parts of the visible spectrum. The CIE ∆E∗

00
metric [SWD05] defined in the CIE LCh color space resolves this.

Fluorescence. The phenomenon of fluroescence describes light
that is absorbed and then instantaneously emitted at different wave-
lengths [Lak13]. The distribution of absorbed and emitted wave-
lengths is described by the absorption and emission spectrum a and
e, examples for which are shown in Figure 2. These spectra can
be combined with a non-fluorescent reflectance spectrum r to con-
struct the fluorescent BRDF used by [JWH∗19]. They model a and
e analytically based on b-splines, which we replace with measure-
ments of fluorescent dyes in section 4.2, while for r we use the
sigmoid function space proposed by [JH19] (equation 1).

4. Our Work

Optimizing the parameters to fit the model’s appearance to a given
RGB triple is relatively slow, so we precompute them in a lookup-
table based on a 3D regular grid inside the RGB color cube as in
[JWH∗19] using the Ceres solver [AMO].

4.1. Perception Based Color Distance Metric

In order to optimize parameters (e.g. [c0,c1,c2,λe,s,c] in
[JWH∗19]) to minimize the difference between a target color and
the color represented by them, we need a meaningful metric for
this difference. The original approach uses the Euclidean distance

Euclidean ∆E∗
00

Figure 3: Part of the blue = 0.7 layer of the coefficient cube. Left:
based on the Euclidean distance in the RGB color space, 32 itera-
tions. Right: based on the ∆E∗

00 color distance metric, 4 iterations.

in RGB space, which approaches zero as the colors become more
similar, but ignores the perceived error.

We employ the ∆E∗
76 and ∆E∗

00 color difference metrics to aid the
optimization in convergence for colors that can be represented per-
fectly, and in finding better approximations for colors that cannot
be represented by the analytical model.

4.2. Fluorescent Dyes

The objective of spectral rendering is to generate a realistic image,
so fluorescence should be modeled as realistically as possible. We
therefore replace the analytical model in [JWH∗19] with measure-
ments from fluorescent substances. We chose eight fluorescent dyes
from [AT20] and [Sci] with absorption peak wavelengths ranging
from 390 to 633 nm and sort them based on their emission spec-
trum’s chromaticity as shown in Figure 2.

Our model combines two adjacent dyes with an interpolation
weight w ∈ [0,1] to achieve a greater range of colors. As before,
we need three coefficients to model fluorescence: The mixing co-
efficient c, interpolation weight w and index idx of the first dye. If
memory is an issue this model may be easier to compress as idx
can only take on eight values.

For simplicity we interpolate the absorption and emission spectra
of the two dyes. Thus the combined absorbed energy is reradiated
according to the combined emission spectra. It would be more ac-
curate to calculate absorption and emission for both dyes separately
and interpolate the result.

One drawback of this model is a more complicated optimization,
since the index idx can only take on discrete values. We use the
brute-force solution of iterating over all eight pairs of adjacent dyes
and optimize the remaining coefficients to find the best fitting pair
and coefficients.

Another challenge is interpolation between colors, as adjacent
entries in the precomputed coefficient cube can have different dye
indices. A possible solution would be a BRDF that includes all flu-
orescent dyes referenced by the coefficients of all corners of a cube
grid cell. Using this approach would allow to use only three fluores-
cence coefficients per grid point, while still being able to interpolate
them.

4.3. Alternative Interpolation

As it is infeasible to precompute coefficients for every single color
in an RGB color space, we need to interpolate the upsampling
model inbetween the precomputed grid points. It is thus impor-
tant to define coefficients in a way that allows for a meaningful
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Figure 4: Parabola features shift, width and slope.

interpolation, such that the result is as close as possible to a true
interpolation of the corresponding spectra.

This is particularly important at the border between coefficients
for spectra with and without fluorescence, where the reflectance
spectra differ more. The reflectance model (equation 1) is highly
non-linear for linearly changing coefficients c0,c1,c2. We present
a new parameterization for this function space to improve interpo-
lation in such cases (Figure 5).

We use three features of a reflectance spectrum as coefficients:
the shift (i.e. the center wavelength), the maximum slope and the
width of the parabola measured between the maximum slope and
shift as shown in Figure 4. Note that the maximum slope value is
defined as the maximum absolute slope of a parabola, but slope
itself is positive or negative to indicate a u-shaped or n-shaped
parabola respectively.

These coefficients are related to certain color features. The shift
corresponds to the chromaticity. The width and the slope simulta-
neously affect saturation and brightness, which corresponds to the
fact that physically valid reflectance spectra cannot appear arbitrar-
ily bright and saturated. The color’s brightness also depends on the
shift, as the human eye is less sensitive to wavelengths near the
border of the visible range.

To create a spectrum from the three features shift, width and
slope (z, w and s), we use algorithm 1 to transform them to co-
efficients (c0,c1,c2) before evaluating equation 1.

Algorithm 1 (shift z, width w, slope s)→ (c0,c1,c2)

t← (|s| ·w+(s2 ·w2 +1/9)1/2)/(2 · |s| ·w)
c0← s · t3/2/w
c1←−2 · c0 · z
c2← c0 · z2 + s ·w · (5 · t3/2−6 · t1/2)

Challenges. This model struggles with representing unsaturated,
gray colors. We can specify colors that are perceived as gray by
creating an almost horizontal line using a large width and small
slope. However, a given gray color can in fact be represented by
infinitely many combinations of width and inversely scaled slope
values, while varying the shi f t causes little noticeable effect. This
can cause artifacts when interpolating between these extreme val-
ues (see Figure 8).

Another problem is the distinction between u-shaped and n-
shaped spectra, which are caused by positive and negative slope
values respectively, as spectra with slope values near 0 behave

Figure 5: Linear interpolation of the parabola coefficients (top),
the color spectrum itself (center) and the feature based coefficients
(bottom) with weights 0, 0.25, 0.5, 0.75, 1.

differently depending on the sign. For typical widths, small posi-
tive slopes produce bright colors, while small negative slopes pro-
duces dark colors. This causes artifacts when interpolating from a
u-shaped to an n-shaped parabola.

We avoid this issue with a hybrid interpolation approach, where
we transform our feature based coefficients to the original ones
(c0,c1,c2) before interpolating such cases.

5. Evaluation

In this chapter we visualize layers of an optimized 323-coefficient
grid in the ACEScg color space, based on the technique proposed
by [JWH∗19]. We use the ACES primaries #1 (AP1) for optimiza-
tion and analysis, but interpret the resulting triples as sRGB for vi-
sualization. Reflectance spectra are limited to smooth spectra with
a maximum slope of 0.01. Ultraviolet light is included for the op-
timization of the fluorescent coefficients. The cube grid layer vi-
sualizations represent a layer of the cube grid for a fixed value of
the blue component. We use the CIE D65 illuminant as light source
and the CIE 1931 2 degree standard observer functions. For visu-
alization purposes we plot fluorescent emission spectra (Figure 2,
orange) scaled to 1.

5.1. Perception-Based Color Distance Metric

Using the ∆E∗
76 color distance metric leads to a significantly

smoother color transition through the coefficient cube as shown in
Figures 3 and 6, but also introduces artifacts in the red/green part of
the coefficient cube when used with too few iterations. Using the
computation heavier ∆E∗

00 color distance metric or increasing the
number of iterations which propagate the coefficients to adjacent
grid points in the coefficient cube removes the artifacts as shown in
Figure 7.

Although both ∆E∗ metrics require an additional step to convert
the color from the initial RGB color space to the CIE L*a*b* color
space, overall convergence of the optimization was faster, decreas-
ing from 5h 59m (Euclidean distance in RGB) to 3h 18m (∆E∗

76)
for otherwise equal parameters and 4 iterations. Figure 7 shows
that remaining artifacts are removed best by switching to the ∆E∗

00
metric with 4 iterations in 3h 20min, though they also disappear in
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Figure 6: Cube layers 31 (B = 1; a, b) and 8 (B = 0.258; c, d) for
the Euclidean distance in RGB (a, c) and the ∆E∗

76 metric (b, d),
both with 4 iterations.
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Figure 7: Cube layer 0 (B = 0) for the ∆E∗
76 metric and 4 iterations

(a) has artifacts in the red/green region, which mostly disappear
with 8 iterations (b) or the ∆E∗

00 metric (c).

5h 36min when increasing iterations for the ∆E∗
76 metric from 4 to

8.

5.2. Fluorescent Dyes

Using real-world measurements improves the realism of the fluo-
rescence model, although some approximations are still required in
order to limit memory and computation resources. Figure 1 shows
that with our eight dyes from Figure 2 we achieve a similar gamut
as the analytical model by [JWH∗19]. Note that the gamut could be
of a different shape or size for a different set of fluorescent dyes.

Including this fluorescence model in the coefficient cube op-
timizer proposed by [JWH∗19] shows promising results, though
some artifacts remain and computation time is higher due to the
brute force optimization over dye pairs. Figure 1 compares our re-
sult to the analytical fluorescence model.

5.3. Alternative Interpolation

Figure 5 shows that interpolating the feature based coefficients
(shift, width and slope) produces more perceptually meaningful re-
sults than interpolating the original coefficients (c0,c1,c2). Our ap-
proach works well with bright, saturated colors, as long as all col-
ors have the same sign of the slope value, but produces artifacts for
flipping slope signs.

Figure 8 visualizes a slice of an optimized coefficient cube.
As discussed in section 4.3, interpolating our coefficients leads to
heavy artifacts, which can be avoided by the presented hybrid in-
terpolation approach. Note that the discontinuities in the left image
without interpolation are at the same position as the distortions in
the right image.

6. Conclusion

We proposed several modifications to the approach of [JWH∗19].
The ∆E∗ color distance metrics improved the overall quality and

a) b) c) d)

Figure 8: Cube layer for B = 0.7 and feature based coefficients
with no (a), feature based (b), hybrid for different slope signs (c)
and old (c0,c1,c2) (d) interpolation. Interpolating slopes with dif-
ferent signs leads to distortions.

convergence speed and were easy to implement. Using real-world
measurements from fluorescent substances produced artifacts in the
optimization process, but provides a more realistic model for simu-
lating fluorescence in a spectral renderer. Our feature based coeffi-
cients for reflectance spectra interpolate colors more meaningfully,
but require additional work to arrive at a stable solution.
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