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1 3D Gaussian Ray Integration

As motivated in the paper, we integrate a trivariate Gaussian distribution along a ray o+ xd starting
at o ∈ R3 in normalized direction d ∈ R3 with x ∈ R. The Gaussian is given by its mean µ ∈ R3

and covariance Σ ∈ R3×3. To derive a general solution, we integrate over [a, b] by substituting the ray
equation into the trivariate Gaussian distribution:

I(a, b) :=

∫ b

a

1√
|2πΣ|

exp

(
−(o+ xd− µ)TΣ−1(o+ xd− µ)

2

)
dx. (1)

Note that |2πΣ| = (2π)3|Σ| for trivariate Gaussians, which we prefer due to its compactness. We start
by simplifying the equation:

I(a, b) =

∫ b

a

1√
|2πΣ|

exp

(
−((o− µ) + xd)TΣ−1((o− µ) + xd)

2

)
dx

=

∫ b

a

1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

)
exp

−2x
1

2
(o− µ)TΣ−1d︸ ︷︷ ︸

co,d

 exp

−x2 1

2
dTΣ−1d︸ ︷︷ ︸
cd,d

 dx

=
1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

)∫ b

a
exp

(
−2xco,d − x2cd,d

)
dx.

(2)

We substitute r := x+
co,d
cd,d

and thus rewrite and simplify the integrand as follows:

I(a, b) =
1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

)∫ b+
co,d
cd,d

a+
co,d
cd,d

exp

(
−2

(
r −

co,d
cd,d

)
co,d −

(
r −

co,d
cd,d

)2

cd,d

)
dr

=
1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

)∫ b+
co,d
cd,d

a+
co,d
cd,d

exp

(
−2rco,d + 2

c2o,d
cd,d
− r2cd,d + 2rco,d −

c2o,d
cd,d

)
dr

=
1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

)
exp

(
c2o,d
cd,d

)
︸ ︷︷ ︸

c

∫ b+
co,d
cd,d

a+
co,d
cd,d

exp
(
−r2cd,d

)
dr.

(3)

Now, we perform another substitution using p := r
√
cd,d:

I(a, b) = c
1
√
cd,d

∫ √cd,d(b+
co,d
cd,d

)
√
cd,d

(
a+

co,d
cd,d

) exp(−p2) dp. (4)
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The integrand can now be expressed by its antiderivative, which leads us to the following solution:

I(a, b) = c
1
√
cd,d

[√
π

2
erf(p)

]√cd,d(b+
co,d
cd,d

)
√
cd,d

(
a+

co,d
cd,d

) . (5)

Although no closed-form solution exists for the error function, fast and accurate numerical approxi-
mations of this well known function are available. Lastly, when integrating over (−∞,∞), the error
function disappears: [√

π

2
erf(p)

]∞
−∞

=
√
π,

which leads to

I(−∞,∞) = c

√
π

√
cd,d

. (6)

2 Fast Selection of GMM Components

In the main paper, we propose a fast selection of GMM components by formulating lower und upper
bounds and using subsampling. In Figure 1, we illustrate the impact of this approximation on the
Spray Nozzle (a) and the Hurricane Isabel (b) dataset compared to a brute-force selection of GMM
components. Using only the bounds does not introduce a measurable error. However, the subsampling
leads to a slightly increased error. Note that for subsampling we always take a fixed amount of 200
samples from each cluster. By increasing this fixed number of samples, we lower this error, at the cost
of additional computational effort.

3 Additional Results

In this section, we show additional results for the datasets presented in the paper.

3.1 Synthetic Dataset

Figure 2 compares our data summaries to high-dimensional Gaussian mixture models. In (a), the
mean Wasserstein distance of all 1D dimensions is shown. Although the error is comparable, the high-
dimensional GMMs lead to a higher error for the more complex dimensions, such as the exponentially
distributed dimension shown in (b) and (c).

3.2 Spray Nozzle

In Figure 3, we compare our data summaries to those of high-dimensional GMMs. In (a), the error of
our and the high-dimensional data model is shown. The error is comparable between both approaches
and low in absolute size. The table in (b) shows that the high-dimensional data model is smaller in
size. However, the high-dimensional model requires extremely expensive preprocessing and the large
amount of used GMM components affects the performance of all visualizations.
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(a) Spray Nozzle (k=2000)
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(b) Hurricane Isabel (k=1000)

Figure 1: Comparison of our fast selection of GMM components with the brute-force approach on the
Spray Nozzle (a) and the Hurricane Isabel (b) dataset.
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(a) Error of 1D dimensions
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Figure 2: For the synthetic dataset, we compare our data summaries to high-dimensional GMMs (a).
In (b), the exponentially distributed dimension from the high-dimensional GMMs is shown.
The corresponding CDF in (c) indicates a high error.
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(a) Error of 1D dimensions

Model # Clusters Size GMM comp. Wasserstein dist.

Our 2,000 6.7 MB 1.7± 1.19 5.54× 10−5

HD 2,000 3.7 MB 21.6± 3.8 5.50× 10−5

Our 8,000 19.9 MB 1.4± 0.85 1.57× 10−5

HD 8,000 9.2 MB 13.5± 3.5 1.59× 10−5

Our 32,000 47.5 MB 1.2± 0.61 4.64× 10−6

HD 32,000 13.6 MB 4.9± 2.86 6.24× 10−6

(b) Overview of the data models

Figure 3: We compare our data summaries to modeling high-dimensional GMMs.
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