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Visual Analysis of Large Multivariate Scattered Data using
Clustering and Probabilistic Summaries

Tobias Rapp, Christoph Peters, and Carsten Dachsbacher
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Fig. 1: Our probabilistic summary of a cosmological dataset represents 2.6 billion particles partitioned into 5.3 million clusters.
We model each cluster using combinations of low-dimensional Gaussian mixture models. This allows us to interactively visualize
the position of particles by splatting 3D Gaussians (a) and to create density-based 1D and 2D plots, depicted in (b) and (c). A
density-based parallel coordinate plot is shown in (d). All of those views support interactive navigation and exploration by brushing
(red) and linking. We render this massive dataset in 28 ms on an NVIDIA GTX 1080 Ti at a resolution of 1920 x 1080.

Abstract— Rapidly growing data sizes of scientific simulations pose significant challenges for interactive visualization and analysis
techniques. In this work, we propose a compact probabilistic representation to interactively visualize large scattered datasets. In
contrast to previous approaches that represent blocks of volumetric data using probability distributions, we model clusters of arbitrarily
structured multivariate data. In detail, we discuss how to efficiently represent and store a high-dimensional distribution for each
cluster. We observe that it suffices to consider low-dimensional marginal distributions for two or three data dimensions at a time to
employ common visual analysis techniques. Based on this observation, we represent high-dimensional distributions by combinations
of low-dimensional Gaussian mixture models. We discuss the application of common interactive visual analysis techniques to this
representation. In particular, we investigate several frequency-based views, such as density plots in 1D and 2D, density-based parallel
coordinates, and a time histogram. We visualize the uncertainty introduced by the representation, discuss a level-of-detail mechanism,
and explicitly visualize outliers. Furthermore, we propose a spatial visualization by splatting anisotropic 3D Gaussians for which we
derive a closed-form solution. Lastly, we describe the application of brushing and linking to this clustered representation. Our evaluation
on several large, real-world datasets demonstrates the scaling of our approach.

Index Terms—interactive visual analysis, probabilistic data summaries, multivariate data, scattered data, Gaussian mixture models,
Gaussian rendering
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INTRODUCTION

The field of scientific visualization is confronted with rapidly grow-
ing amounts of data, including multivariate and time-dependent data.
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Interactive visual analysis [46] approaches have been established as
a powerful approach to facilitate knowledge discovery in complex
datasets. However, growing data sizes make the interactive exploration
increasingly difficult or even impossible for some datasets.

To deal with large amounts of data, recent approaches employ prob-
abilistic data summaries [7, 8, 12, 45] to represent blocks of data as
probability distributions. These approaches have been mostly limited to
univariate, volumetric data. In this work, we propose a representation
that supports arbitrarily structured, time-dependent, and multivariate
data defined in a two- or three-dimensional spatial domain. To this end,
the data needs to be partitioned, i.e. clustered into spatially coherent
regions. In each cluster, we make use of Gaussian mixture models
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(GMMs) to compactly represent a probability distribution of the data
using a weighted combination of Gaussian components. However,
multivariate data requires modeling high-dimensional distributions,
which suffer from the curse of dimensionality. Our approach is based
on the observation that representations of low-dimensional marginal
distributions suffice to analyze and visualize the data. All common
visualizations, such as scatter plots, histograms, and parallel coordinate
plots, require only 1D or 2D distributions. The exception is the spatial
domain of scattered data in 3D for which we employ a 3D distribution.
Thus, we model the marginal distributions of all individual dimensions
and pairs of dimensions as well as the spatial 3D distribution.

For large data, common item-based visualizations, such as scatter
and parallel coordinate plots, are challenged by overdraw and clut-
tering. Frequency-based visualizations are a viable alternative in this
case [25,34]. Density estimation [40] is a frequency-based approach
commonly used in statistics. However, its usage in interactive visualiza-
tion has been limited due to performance considerations. Although our
approach supports all common visualization techniques, it is especially
well suited to density-based techniques since our modeled distributions
are already an estimate of density. We discuss the efficient visual-
ization and interaction with density-based plots using our compact
representation. Additionally, we consider time-dependent histograms
that would otherwise be infeasible to produce for large datasets. In this
view, we can interactively brush over different time steps. To visualize
the uncertainty introduced by our data representation, we propose an
error metric based on the cumulative distribution function, similar to
statistical goodness of fit tests. A level-of-detail mechanism allows
scientists to drill down on interesting or uncertain regions in the data.
Additionally, we discuss the explicit visualization of outliers, which are
not handled well by density-based visualizations.

Our last contribution is the visualization of spatial density distribu-
tions. Since drawing and rendering samples from the GMMs would be
infeasible for large, scattered datasets, we directly render 3D Gaussians.
We derive a closed-form solution to integrate anisotropic Gaussians
using a splatting approach. Back-to-front splatting has the disadvan-
tage that it assumes non-overlapping Gaussians. Therefore, we employ
moment-based order-independent transparency [31] for datasets where
this is not an acceptable assumption.

To summarize, our main contributions are:

* We define compact data representations based on probabilistic
models of low-dimensional marginal distributions for scattered,
multivariate data,

¢ We describe interactive visual analysis techniques based on our
probabilistic data summaries,

* We efficiently visualize scattered, overlapping, anisotropic 3D
Gaussians.

2 RELATED WORK

In this section, we discuss previous work on probabilistic data modeling,
density-based visualizations, and the rendering of 3D Gaussians.

2.1 Probabilistic Modeling of Large Data

Several probabilistic approaches to represent large volumetric, univari-
ate datasets have been proposed. Thompson et al. [42] describe hixels,
a data representation that stores a histogram per block of voxels. Liu
et al. [27] discuss volume rendering using per voxel Gaussian mixture
models. Sicat et al. [39] construct a multi-resolution volume from
sparse probability density functions defined in the 4D domain com-
prised of the spatial and data range. To visualize and analyze large
volumetric data, Wang et al. [45] employ a spatial GMM in addition
to a value distribution in each data block. For in-situ feature analysis
of time-varying data, Dutta et al. [7] perform incremental GMM es-
timation instead of expectation maximization, which is traditionally
used to estimate the parameters of a mixture model. By design, none
of these approaches is applicable to more than four dimensions. Dutta
et al. [8] model a single Gaussian or a GMM with a fixed number of
components to each univariate value distribution in a cluster of the data.

The authors compare several clustering techniques to determine homo-
geneous regions in volumetric data. Since an optimal clustering of the
data is generally domain or application specific, we do not make any
assumptions about the clustering procedure. Our method overcomes the
limitation to low-dimensional data by working with low-dimensional
GMMs for all relevant combinations of dimensions. We also introduce
a fast and adaptive selection of the number of GMM components.

For parameter studies in cosmological simulations, Wang et al. [44]
store GMMs as a prior knowledge to reconstruct high-resolution
datasets from multiple prior simulation runs. Li et al. [26] reduce
cosmological simulation data in-situ by subdividing space using a k-d
tree and estimating particle density using a GMM in each leaf node.
During the analysis stage, particles are sampled from the GMMs. Haz-
arika et al. [11] propose a copula-based uncertainty modeling approach
to represent a multivariate distribution using different types of univari-
ate distributions, including GMMs, separately from their interrelation.
To summarize large-scale multivariate volumetric data, a copula-based
analysis framework has been introduced [12]. This approach is the
first to address the modeling of multivariate data, but the Gaussian
copula function limits the correlations between dimensions to a single
Gaussian. Whilst we similarly decompose a high-dimensional model
into more manageable low-dimensional models, we do not share this
limitation. Moreover, the approaches of Hazarika et al. and Li et al.
require sampling, which hinders the application to interactive visual
analysis, especially for rendering scattered data. Similarly, we do not
perform subsampling of scattered data [36,48] for data reduction since
our GMMs already estimate density, which we use directly in our
density-based visualizations.

2.2 Density-Based Scatter and Parallel Coordinate Plots

Scatter and parallel coordinate plots can be used to visualize multivari-
ate data. For large data, these item-based visualizations are challenged
by overdraw and visual clutter. Instead of drawing discrete glyphs, den-
sity estimation methods reconstruct and visualize a continuous density
of data values. For scatterplots, a simple form of density estimation
is to draw individual points semi-transparently using alpha blending.
Histograms and hexagonal binning are often employed to convey fre-
quency information, but can lead to aliasing due to their discrete nature.
The concept of histograms has also been extended to parallel coordinate
space [1,3,34]. Although kernel density estimation would allow for
an improved reconstruction of continuous density, it is computation-
ally expensive. Splatterplots [29] perform kernel density estimation to
avoid overdraw, but explicitly add representative outliers. We estimate
density using GMMs and similarly support the explicit visualization of
outliers.

In the field of scientific visualization, continuous scatter and parallel
coordinate plots have been introduced [2, 14] to construct density plots
by considering the topology and interpolation of data samples in their
spatial domain. Despite optimizations [13], this remains a computation-
ally challenging approach that is unsuited for the interactive analysis of
large-scale datasets.

2.3 Rendering 3D Gaussians

The encoding of scattered, unstructured, or large volumetric data using
radial basis functions (RBF) has been an active research topic [5,17,18,
47]. This involves the rendering of isotropic and anisotropic Gaussian
kernels [16,20,33]. In detail, Zwicker et al. [49] discuss splatting of
elliptical Gaussians by approximating the footprint after perspective
projection. They extend their splatting approach by combining the
reconstruction with a low-pass kernel, which could be similarly applied
to our approach. In contrast to previous work, we derive a closed-
form solution to integrate a Gaussian kernel along a ray. This enables
us to efficiently splat large amounts of Gaussians without requiring
expensive precomputation. Note that we consider three-dimensional
Gaussians defined by a mean and covariance matrix, which makes the
use of a view-independent look-up table infeasible. Additionally, we
employ moment-based order-independent transparency [31] to address
the short-comings of back-to-front splatting. Our method could also be
employed during volume ray casting [23].
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(a) Clustered data

(b) Scatter plot matrix

Fig. 2: From a given clustering of the data (a), we model each cluster
using combinations of low-dimensional distributions, similar to a scatter
plot matrix (b).

3 PROBABILISTIC SUMMARIES

In this work, we describe the creation of probabilistic data summaries
for multivariate, scattered data. We assume that the data is clustered
into spatially coherent regions [8]. In Sect. 6, we discuss both domain
specific and standard clustering techniques for scattered data. Similar to
previous work, we employ Gaussian mixture models to represent data
distributions in each cluster. However, these have not been applied to
multivariate data. High-dimensional Gaussian mixture models require
immense computational effort and due to the curse of dimensional-
ity, there are not enough samples to cover a multi-dimensional space
extensively.

Our approach is based on the observation that we do not require
more than three data-dimensions at once to employ common interactive
visual analysis techniques. In fact, the visualization of the spatial distri-
bution is the only aspect considering correlations of three dimensions.
Therefore, our approach is to only generate GMMs for the relevant
combinations of dimensions. By default, these are all individual dimen-
sions, all pairs of dimensions (cf. Fig. 2) and all vectorial attributes. As
for high-dimensional GMMs, the storage cost grows quadratically with
the number of dimensions. To better reason about our approach, we
first introduce it more formally.

3.1 Data Model

Our data consists of n € N samples. Each sample is associated with a
position in 3D space, m, — 1 € Ny additional vectorial attributes and
ms € Ny scalar attributes. Of course, the approach is also applicable
to scattered data in 1D or 2D space. We denote the data for sample
i€{0,...,n—1} by:

* vio € RIS for the position,
*vij € R!*3 for vectorial attribute j € {1,...,m, —1},
* 5;; € R for scalar attribute j € {0,...,m; —1}.

To define our probabilistic summaries, we concatenate all attributes
for sample i € {0,...,n— 1} into a single vector with my, := 3m, + my
entries to enable linear indexing:

N 1xm,
Ui 7= (Vi0sViily > Viamy—155i05 - -+ Simy—1) € R,

GMMs are generated for each given cluster I C {0,...,n— 1} and for

each relevant combination of dimensions. First, we generate 1D models

for each attribute j € {0,...,m, —1}:
(uij)ier € RIF<L.

Then, we generate 2D models for each pair of dimensions

J,ke{0,...,my, — 1} with j <k:

(i juig)iex € RI2.

—— GMM, 2 components
2 | —— Gaussian
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Fig. 3: To the distribution shown by the histogram, we have fitted a
Gaussian (red) and a mixture of two Gaussians (blue). In this example,
the GMM better models the data.

Finally, we generate 3D models for each vectorial attribute
j€{0,....m,—1}:

(vi,)ie1 € RIS,
Of course, the generation of GMMs for particular combinations of
attributes may be skipped if the analysis of their mutual dependence is
of no interest in a specific application.

Our probabilistic summary is the combination of all these low-
dimensional GMMs for all clusters. They capture all information
needed for common interactive visual analysis techniques but limit
the analysis of higher dimensional correlations. By modeling only
low-dimensional distributions, the curse of dimensionality does not
apply. Ultimately, this limitation enables us to create reliable models
of multivariate data.

3.2 Gaussian Mixture Models

We use GMMs because they offer a compact and efficient representation
of the target distributions and have been employed successfully for
modeling low-dimensional distributions in previous work [7,8,45]. In
the following, we provide more details on our fitting procedure.

We generate a GMM for each combination of a cluster I and a
relevant subset of attributes J C {0,...,m, — 1}. As explained above,

the number of attributes |J| is one, two, or three. A GMM is indexed by
a pair g := (I,J) and consists of n, € N weighted Gaussians. Gaussian

1€{0,...,ny — 1} is given by its weight w, ; > 0, its mean p,; € R
and its covariance X, ; € RHHI The density of a GMM at p € RHlis

the weighted sum of the individual Gaussian densities (Fig. 3):

P (_ (p _“g,l)TZ;II (P - .ug,l)> .

ng—1 We

pg(p) == ex
& ]§0 V2T, ]

We compute the parameters of a GMM from a sequence of input
samples with the expectation maximization (EM) procedure. This
iterative method seeks maximum likelihood estimates of the model
parameters. It alternates between an expectation step, which evaluates
the log-likelihood of the input samples using the current parameters, and
a maximization step, which computes the parameters by maximizing
the expected log-likelihood found in the expectation step.

2

3.3 Fast Selection of GMM Components

The EM algorithm takes the number of Gaussian components ng as
input. With more components, the target distribution can be modeled
better. However, too many components may not significantly improve
the model, but increase the storage overhead. A fixed, arbitrary number
of number of components is often used [7, 8, 12]. Similar to Wang et
al. [45], we adaptively select the appropriate number of components,
but propose approximations to significantly reduce the computational
complexity.

We iteratively fit GMMs with an increasing number of components
up to a user specified maximum and select the GMM with the best
Bayesian information criterion (BIC) [38]. The BIC rewards a high
likelihood over the training data and penalizes by the number of com-
ponents. It is defined using the number of free parameters kgppy in the
GMM as

—2Lp, + kgmm log |1,
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where L, denotes the maximized log-likelihood and kgymy is given by
JI(JI)+1
kamm = ng (% + |J|> + -1

The iterative computation of GMMs with different numbers of com-
ponents is computationally challenging, especially for large clusters. To
speed up the selection of the best n;, we propose two approximations:
First, we take a random subset I C I of our cluster whilst iteratively
estimating the GMMs. After we have selected the best n, based on
the BIC, we recompute the GMM with n, components for the whole
cluster 1.

Second, after we have selected the number of components
{no,...,ny,—1} for all one-dimensional GMMs, we use them as lower
and upper bounds for the two- and three-dimensional GMMs. In detail,
for a subset of attributes J C {0, ...,m, — 1}, we define the lower bound
as

min .__ 3
MLy TR

and an approximate upper bound as
}’li‘nfx = Hjej”]l,{j}~

This implies that the higher-dimensional GMM:s include at least the
complexity of lower dimensions, whilst being bound by all combina-
tions of all lower dimensional Gaussian components. In the supplemen-
tary material, we show that the bounds introduce no error, whilst the
subsampling introduces a small error on our datasets.

Lastly, it is possible that some clusters contain only a small number
of data samples. Although such a clustering may not seem optimal,
it is quite likely to occur for scattered data. For very small clusters,
e.g. |I] < 20, fitting a GMM is problematic since the target distribution
may be underdetermined. In this case, we fit a single Gaussian to these
clusters.

4 SPATIAL VISUALIZATION

In this section, we discuss the visualization of the spatial density dis-
tribution. Although we could reconstruct the original data by drawing
samples from the GMM of each cluster, this would require rendering
a large amount of scattered data. Instead, we derive an efficient for-
mulation to directly splat three-dimensional Gaussians. Additionally,
we consider the application of a transfer function to a one-dimensional
value distribution in each cluster.

4.1 Integrating Visibility for Gaussians

To render a trivariate Gaussian distribution, we integrate along a view
ray o +xd starting at o € R3 in normalized direction d € R3 with x € R.
The Gaussian is given by its weight w := wg ;, mean [l := U, | € R3 and
covariance X :=X,; € R3*3. To derive a general solution, we integrate
over [a, b] by substituting the ray equation into the trivariate Gaussian
distribution:

b (o+xd—u)TE " (0+xd —p)
I(a,b) .—/a Mexp( 5 ) dx.

Through integration by substitution (see the supplementary material),
we obtain the following closed-form solution:

Cod
vedd (b+ dd )

VE [1 } |
I(a,b)=c 5 erf(y) 0\’ W
VCdd 2 \/m(a{%)

with
1
Cad = Ede—lar,

1 _
Cod ‘= E(O_N)TE ld,

2
1 1 Te—1 Co.d
= (o= "= N o—p)+ 2% ).
c oy exp ( (o—p) (o—p) )

[\

o
N
A

When integrating over all of R, this result simplifies to
T
H(—ooyo0) = e Y. )
V/Cdd

We could use this result inside a ray tracer, possibly with ray tracing
GPUs [22]. It only has to identify relevant Gaussians per pixel, ray
marching for integration becomes unnecessary. In the following, we
discuss our approach using GPU rasterization, which works efficiently
on commodity graphics hardware.

4.2 Back-to-Front Splatting

To splat scattered 3D Gaussians, we sort them from back-to-front based
on their mean distance to the camera. Then, we integrate the Gaussians
along the viewing direction using Equation 2. Integrating from —oo
to oo is generally a reasonable approximation, but it is possible that
we incorrectly evaluate a Gaussian if the camera is positioned within
its support. Alternatively, we could employ Equation 1, but this is far
more expensive and only gives a benefit in rare cases.

To render a single 3D Gaussian, we first compute the principal com-
ponents of the distribution to fit a bounding box along the principal axes.
By default, we limit the size of the bounding box in each dimension by
3 standard deviations. This box is then rasterized and for each resulting
fragment, we integrate the Gaussian along the viewing direction in a
fragment shader using Equation 2. Finally, we tone-map the resulting
density (see Equation 4) to better convey the high-dynamic range.

We did experience some numerical issues with some of our datasets
due to very large or small spatial and value domains. We were able to
address these issues by switching to a more numerically stable eigen
decomposition [10, Algorithm 8.2.3]. Lastly, we make use of the
Cholesky decomposition to invert covariance matrices, which behaves
robustly even for nearly singular matrices [43, p. 176].

4.3 Order-Independent Transparency

The splatting approach assumes that distributions do not overlap since
this could lead to visible flickering between frames when the order
changes. Depending on the clustering of the data, this assumption
is not always acceptable. For this reason, we propose the use of an
order-independent transparency (OIT) approach to avoid sorting semi-
transparent Gaussians. Although, a large number of Gaussians are prob-
lematic for most OIT approaches, moment-based order-independent
transparency (MBOIT) [31] is well-suited for this application. We
introduce the steps of this method briefly.

MBOIT first accumulates moments of the optical depth in an additive
rendering pass. These moments offer a compact representation and an
efficient reconstruction of the transmittance function per view ray. Sub-
sequently, a second additive rendering pass of all Gaussians composites
the fragment colors using transmittance values reconstructed from the
moments. We use three trigonometric moments in half-precision, which
results in a total of 112 bits per pixel for the moments.

4.4 Uncertainty Transfer Function

Lastly, we discuss how to apply a transfer function to the distribution of
an attribute j € {no, ..., ny,_1} for each cluster I. The one-dimensional
value dimension is modeled separately from the cluster as a GMM
¢ = (I,{j}) with ng components. For each cluster, we compute an
expected color and opacity [37] by convolving the transfer function f
with the value distribution:

Eflgl= [ f(p)pe(p)dp.

We insert the Gaussian mixture model into this equation and rearrange:

_ 2
1 exp ( ([7 .ug,l) )dp. 3)

2
\ /27rcg2J 20,

ng—1

Elfle)= F wer | 1)

We efficiently evaluate this equation by precomputing the integrand,
which is simply a convolution of the transfer function with differently
parametrized Gaussians. The resulting 2D lookup table thus depends
on the transfer function and is parameterized by mean and variance.
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5 VISUAL ANALYSIS

Now that we are able to render the spatial distribution of our data,
we move on to the visual exploration and analysis of additional data
dimensions using our representation. This includes multiple views with
brushing and linking coupled with a focus and context visualization to
emphasize brushed values.

5.1 Density-Based Visualization

Prior work relies on sampling to create visualizations from modeled
distributions. Although this is similarly possible with our data represen-
tation, see Fig. 11 (c) and (d), we focus on density-based visualizations.
Since we already have an estimate of density in the form of our GMMs,
we efficiently construct density-based visualizations that are costly to
compute otherwise. To obtain the density, we evaluate and accumulate
the Gaussian distributions from the GMMs in all clusters. Since the
distribution in each cluster is normalized, we additionally weight each

cluster I by the normalized number of samples it represents %|]I|

5.1.1

To compute a density in 1D or 2D, we evaluate and accumulate the
Gaussian distributions, see Fig. 1(b) and (c). Since this operation can be
parallelized trivially, we make use of GPU acceleration. In the 1D case,
we evaluate 1D Gaussians on the GPU and plot a probability density
function. For a 2D plot, we render a quadrilateral for each Gaussian,
evaluate the Gaussian for each fragment, and additively accumulate the
results.

Density Plots

5.1.2 Parallel Coordinate Plots

Miller and Wegman [30] formulate parallel coordinate plots for bi-
variate Gaussian distributions. With this formulation, we splat the 2D
distributions for each pair of consecutive dimensions in parallel coordi-
nate space. Specifically, for each pair of axes we draw a quad for each
Gaussian by truncating its support to three standard deviations. In the
fragment shader, we evaluate the density in parallel coordinate space
and additively blend the result with all other Gaussians. A density-
based parallel coordinate plot is shown in Fig. 1(d).

5.1.3 Mapping Density

The density-based visualizations described above and the spatial visu-
alization in Sect. 4 all produce a single density p per Gaussian and per
pixel. For large datasets, this density will have a high dynamic range
and needs to be mapped to an opacity between zero and one through
a non-linear mapping [19]. We choose a mapping that interprets the
density, scaled by a user-controllable parameter A > 0, as optical depth.
The resulting opacity is

1 —exp(—Ap). 4

With this mapping, multiplying the density of a Gaussian by an integer
factor k produces the same result as rendering it k£ times with alpha
blending, which is an intuitive behavior. At the same time, it retains
detail even for large densities.

5.2 Brushing Distributions

To brush a value range of a dimension with our data representation
and reflect this in all linked views, we use the clustering information.
Although we could brush based on the cluster mean value, this is con-
fusing and not very intuitive, especially when considering a dimension
represented by multiple Gaussian components, see Fig. 4(a) and (b).

Feng et al. [9] discuss user interaction based on Gaussian distribu-
tions in the context of uncertainty visualization. We generalize their
work and the concept of smooth brushing [6] to Gaussian mixture mod-
els. In detail, we compute the amount a cluster is in focus, the degree
of interest, as the ratio between the integrand of the brushed regions
of the GMM and the total area, see Fig. 4(c). For clusters that contain
multiple Gaussian components, we compute the degree of interest as
the weighted sum of all components.

a b H a b H a b
(a) Brushing (mean) (b) Brushing (mean) (c) Brushing (distribution)

Fig. 4: Brushing of a value range [a,b] applied to several distributions.
Brushing only based on the mean value p would lead to confusing
results (a), especially if the distribution is represented by multiple
Gaussian components (b). We compute the degree of interest of the
brushing operation as the ratio between the integrand (gray) and the
total area under the curve (c).

5.3 Time-Dependent Visualization

Brushing in different time steps is a powerful tool for the interactive
exploration of time-dependent data [15], but is not practical for large
datasets since all time steps have to be processed. Our compact data
summaries enable us to interact with multiple time steps at once. We
support this interaction in a time histogram [24] where we depict a time-
series of a selected dimension as a series of 1D histograms, see Fig. 10.

If the clustering is fixed over time, we can trivially extend the brush-
ing operation to time-dependent data. This is not possible when clusters
change over time, e.g. merge together into larger, or split into smaller
clusters. In this case, the relationship of clusters in different time steps
has to be explicitly modeled and stored.

For brushing, we need to reassign degrees of interest from frame to
frame. To this end, we transfer the degrees of interest to the individual
samples uniformly and then reassign them to clusters. Say we have n; €
Neclusters I, g,...,I; o,—1 € {0,...,n— 1} in frame ¢ and analogously
for frame 7 + 1. The clusters in frame ¢ have associated degrees of
interest d; ,...,d; p,—1 € [0,1]. Then we define the degree of interest
of cluster k € {0,...,n;41 — 1} in frame 7 + 1 as

) el AR

dt.l € [07 l}
1.

diyip=

1=0

The quotient in this sum is the fraction of samples in cluster I, ;| ; that

was part of cluster II; ; in the previous frame. Interest is inherited from

the cluster in the previous frame in proportion to that quotient. Note

that this method defines a simple linear transform. There is no need

to consider all samples at run time. Instead, the transfer coefficients

for the degrees of interest can be precomputed and stored in a sparse
matrix.

5.4 Uncertainty Visualization

We introduce an error estimate to convey the uncertainty of the data
summaries. By computing and storing an error for each cluster, we are
able to visualize the uncertainty interactively during the visual analysis
and to support brushing and linking. Prior work measures the error
directly between the density of the Gaussian mixture model and the
original data. However, this is not robust and suffers from aliasing
due to the necessary use of histograms. Instead, we define the error
between a Gaussian mixture model and the samples of a cluster I for a
dimension j € {0,...,m, — 1} similar to common statistical goodness
of fit tests. In detail, we compute the empirical cumulative distribution
functions (CDF) of the data samples

1 1 ifu; <p,
Fi(p) ==Y b =P )
Il it

0 otherwise

and compare it to the CDF Fy of the Gaussian mixture model using the
Wasserstein distance [35]:

W(EF) = [ |Fi(p)~ F(p)| dp. ©)

To visualize the Wasserstein distance, we show it together with the
CDF, cf. Fig. 8 (b). A high Wasserstein distance consequently indicates
a high uncertainty of the data model.
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Fig. 5: To rank samples by their outlyingness, we evaluate the Ma-
halanobis distance to the closest Gaussian. This measures how many
standard deviations a sample is away from the mean of the closest
Gaussian.

(a) Synthetic data (b) GMMs (c) GMMs and outliers

Fig. 6: Rendering of Gaussians from the synthetic dataset using kernel
density estimation (a), with our data model (b), and with 2% of outliers

(c).

5.5 Level of Detail and Outliers

By design, our representation is a simplified model of the data. During
the exploration and analysis process, a scientist might want to investi-
gate a subset of the data more closely. For this purpose, we substitute
brushed clusters by their original data values. To integrate the data
distributions into our frequency-based views, we perform kernel density
estimation using Gaussian kernels. We can thus avoid differentiating
between the modeled and original data distributions.

Moreover, outliers, i.e. isolated samples in regions of low density,
tend to get lost in density-based visualizations [29,34]. To explicitly
add outliers to our visualizations, we sort all samples in a cluster in
a preprocess according to a measure of outlyingness. Although any
measure between a sample and a GMM could be used, we employ the
Mahalanobis distance [28] to the closest Gaussian component. This
effectively measures how many standard deviations a sample is away
from the mean of the closest Gaussian, see Fig. 5. To visualize outliers,
we then take a fixed percentage p,, of outliers from a cluster I by loading
the first p,|I| samples. Fig. 6 (c) shows a spatial visualization with 2%
of outliers.

6 EVALUATION

In this section, we apply our approach to a synthetic and three real-
world datasets. Additional results can be found in the supplementary
material.

6.1 Synthetic Data

We first apply our approach to a small synthetic dataset consisting
of 10 clusters from a total of 100000 points. The dataset contains 9
dimensions. The three spatial dimensions in each cluster are normally
distributed, but 10 % of the points are distributed uniformly to add noise
to the distributions. Fig. 6 (a) shows this dataset. The 3D Gaussians are
shown in Fig. 6 (b) and in (c) where we explicitly add 2% of outliers
from all clusters.

We compare the uncertainty transfer function to a 1D transfer func-
tion based on mean values in Fig. 7. In (a), we set the opacity of the
transfer function, where the peak coincides with the mean value. The
synthetic dataset in (b) shows the resulting rendering. For our data
summaries in (c), the opacity is similarly reduced. This is due to the
uncertainty transfer function since it computes the expected opacity
with respect to the value distribution. In comparison, the opacity of
the Gaussians in (d) using a mean transfer function does not change
since the opacity of the mean value is still set to opaque in (a). Thus,

-0.4 0.0 0.4

(a) Transfer function
e .

ke
a2

(b) Synthetic data (c) Expected opacity (d) Mean opacity

Fig. 7: We set the opacity of the transfer function (a) to visualize the
synthetic dataset (b). Our uncertainty transfer function (c) computes
the expected opacity (i.e. the integral of the opacity curve), while a
1D transfer function based on the mean value (d) sets all Gaussians to
opaque.

Probabilistic summary
mmm Particles
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(a) Probability density function (b) Cumulative distribution function

Fig. 8: The exponentially distributed dimension (a) is hard to model
using Gaussian components. The cumulative distribution function in
(b) conveys the error to the user.

changing any of the opacity (or color) values of the transfer function
has no influence except if the mean value is changed. An alternative
would be the use of a 2D transfer function [21] that offers increased
control over the classification, but complicates user interaction.

In Fig. 8 (a) we illustrate an exponentially distributed dimension of
the dataset, which is difficult to model using only Gaussian components.
The cumulative distribution function shown in (b), illustrates this error
as measured by the Wasserstein distance. By quantifying the error, we
can decide if this error is acceptable, or brush and use the level-of-detail
mechanism to directly load a subset of the data with a high error.

6.2 Cosmological Data

The Mlustris simulation [32] is a large-scale cosmological hydrodynam-
ical simulation of galaxy formation that aims to predict both dark and
baryonic components of matter. In detail, the dynamics of dark matter
and gas are simulated with the quasi-Lagrangian code AREPO [41],
which employs an unstructured Voronoi tessellation of the domain.
After simulation, only the center points of the Voronoi cells are kept
and are referred to as particles. Since the simulation has been run
in different resolutions and we want to show both dark and baryonic
matter, we discuss multiple separate datasets as shown in Table 1. We
compare the data based on the 100th time step without descendant or
ancestor information.

The Illustris datasets have been clustered into halos using a domain
specific approach. The sizes of clusters are extremely irregular and
range in between a single particle and up to millions of particles per
cluster. Since we cannot fit a GMM to very small clusters, we fit a
single Gaussian for clusters of size below 20.
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Table 1: Overview of the cosmological data from the Illustris simulation.

Dataset # Dimensions # Particles # Clusters Datasize Summaries GMM comp. Wasserstein dist.
Ilustris-3 Gas 15 16,039,182 110,000 2GB 200 MB 2.15+1.60 1.77 x 1076
Mlustris-2 DM 7 319,324,195 841,639 11.3GB 617 MB 1.54+1.22 3.10 x 1077
Ilustris-1 DM 6 2,635,739,426 5,352,571 72.2GB 1.5GB 1.13+0.38 4.56x 1078
»o wo T
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Fig. 9: The Illustris-3 Gas dataset rendered by splatting particles (a) and 3D Gaussians (b). In (c) we have brushed a region and clusters that are
not in focus are shown in a desaturated gray. We load the original particle data of the brushed region and render them together with the context (d).
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Fig. 10: A time-histogram of electron abundance in the Illustris-3 Gas dataset is shown in (a). We have brushed (red) in the 94th time step, which
affects all linked views in the current, 100th time step. The spatial visualization that highlights the brushed values in the 100th time step is shown
in (b). Note that Gaussians are shown as saturated or desaturated, depending on how much they are in focus.
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Fig. 11: Visualization of a spray nozzle using our approach with the k-means 32.000 clustering by splatting 3D Gaussians (a) and by drawing
samples from the GMMs to create a 2D histogram (c) and a parallel coordinate plot (d). In (b), (e), and (f) the corresponding visualizations using

the original SPH particle data are shown. ;
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Table 2: Overview of the spray nozzle dataset. We show the absolute
summary size, relative to the original data size, the average number of
GMM components, and the average Wasserstein distance.

Table 3: Overview of the different clustering procedures of the Hurri-
cane Isabel dataset. We show the resulting absolute and relative data
size and the average Wasserstein distance.

# Clusters ~ Summaries Rel. size  GMM comp. Wasserstein dist. Model Clustering # Clusters Summaries Rel. size ~ Wasserstein dist.
2,000 6.7 MB 0.006% 1.7£1.19 5.54 % 1077 Our Blocks 1,000 12.1 MB 1.4% 1.20x 10~*
8,000 19.9 MB 0.017% 1.4+£0.85 1.57 x 1073 HD Blocks 1,000 5.2 MB 0.6% 1.21x 107

-6
32000  47.5MB  0.036%  1.2+0.61 4.64x 10 Our  Blocks 8000 826MB  9.0% 158 x 10-5
HD Blocks 8,000 347 MB 4.8% 1.56 x 1073
With our approach, we are able to interactively visualize and explore Our Blocks 16,000 146.8 MB 14.8% 8.49 x 106
these massive datasets that might not even fit into memory otherwise. HD Blocks 16,000 50.0 MB 5.1% 8.24x 1076
Fig. 1 shows several interactive, hnke.d YICWS of the Illustrls-.l dataset. our fomeans 1.000 12.1 MB 4% 123 % 104
We have brushed the X, ¥-s and z-axis in the para_llel coc_)rdmatf; plot HD k-means 1,000 54 MB 0.6% 1.26 x 10~4
(d). The brushed regions (green) are then highlighted in red in all =
other views. The density-based views are free of clutter and clearly Our  k-means 8,000 80.5MB 8.8% 166107
. . . HD k-means 8,000 33.8 MB 3.7% 1.57 x 10

show trends and correlations between the dimensions. For example,
the parallel coordinate plot in (d) indicates that the brushed values have Our k-means 16,000 143.9 MB 14.7% 8.75x107°
HD k-means 16,000 48.5 MB 5.0% 8.01x 1076

velocity components that are distributed around zero and are linearly
correlated. The spatial visualization depicts 5.3 million clusters that we
render and navigate interactively.

Fig. 9 compares our probabilistic summaries with the original par-
ticle data of Illustris-3 Gas. Note that the interactive visualization of
Tllustris-1 and 2 is not possible on our system due to their data sizes. Al-
though we clearly miss some details in the spatial visualization, we still
manage to convey the general structure of the data and the distribution
of color-mapped values. Whilst sorting and rendering all 16 million
particles as isotropic Gaussians takes 61 ms on our system, the clusters
require only 2 ms. Note that for this dataset, the 110,000 clusters are
represented by a total of 357,512 Gaussians in 3D. In Fig. 9(c), we
have brushed a spatial region on the right side which is consequently
put into focus. In (d) we have loaded the original particle data of the
brushed clusters. Note that all of the linked views are also updated
by this operation. Since we only load an additional 240,000 particles,
the interactive visualization still takes only 3.8 ms to render. Although
other forms of level of detail are possible, this is a powerful way to
drill-down from an overview to a detailed view of the data.

Since the clusters split and merge over time in this dataset, we have
precomputed the transfer coefficients for time-dependent visualizations.
Fig. 10 depicts a time-histogram of a selected attribute over several
time steps. We have brushed the 94th time step, which is reflected in
all views in the current, 100th time step. The spatial visualization in
(b) highlights those brushed values. Due to our brush, mostly smaller
clusters are in focus. This brushing and linking over time thus allows
exploring the selected dimension and its time-dependent behavior. With
our data summaries, we can compute the whole time-histogram in just
under a second. In comparison, computing a time-histogram from the
particle data takes 34 s and is severely I/O limited since the complexity
scales with respect to the number of particles instead of the amount of
clusters.

6.3 Spray Nozzle

We have applied our technique to a smoothed particle hydrodynamics
(SPH) dataset of a fuel spray nozzle simulation [4]. In the context
of renewable energy production, biomass is converted into fuel by a
gasification process. The quality of the spray is analyzed since it is
critical for the efficiency of the gasification. However, the size of the
time-dependent data prevents the usage of common interactive visual
analysis techniques. In detail, the dataset contains about 43 million
particles per time step. Each particle contains a position, velocity,
pressure, density, and fluid type for a total of 9 separate dimensions.
The fluid type describes four different categories, including fluid, gas,
and two types of boundaries.

‘We have partitioned the data using a k-means clustering based on
the spatial position, fluid type, and velocity magnitude. Table 2 shows
the data size reduction and average number of GMM components for
different numbers of clusters. For this dataset, we fix the maximum
number of GMM components to 6. The size of the data summaries
increases with the number of clusters. At the same time, the average
number of GMM components decreases. This shows that the number of

GMM components adapts to the less complex clusters. Moreover, the
average Wasserstein distance is reduced for a larger number of clusters.

Fig. 11 depicts several visualizations created from our representation
and from the original SPH data. The spatial visualizations in (a) and
(b) depict velocity in u-direction. Our approach does lose some details,
especially on the finer structures on the right side of the cylindrical
domain. Since item-based visualizations of 43 million particles suffer
from strong overdraw and visual clutter, density-based visualizations
are preferable for this dataset. These are fast and efficient to create
using our representation that is already an estimate of density. The 2D
histogram in (b) and the parallel coordinate plot in (c) have been created
from samples drawn from the GMMs. Compared to the reference plots
in (e) and (f), we achieve nearly identical results. Moreover, it is
possible to vary the number of samples, which could be used to create
less cluttered visualizations, e.g. for scatter and parallel coordinate
plots.

We represent the fluid type, i.e. the categorical dimension, by inter-
preting it as a scalar dimension. This is possible since the data only
consists of four fluid types that we model using an appropriate num-
ber of Gaussian components. We could have increased the maximum
number of components for all marginal distributions containing a cate-
gorical dimension, but this was not necessary for this dataset. Although
a small number of categories is common in multiphase fluid simula-
tions, in general, representing categorical dimensions with GMMs does
not scale.

6.4 Hurricane Isabel

The Hurricane Isabel dataset is an atmospheric simulation from the
IEEE Visualization Contest 2004, produced by the Weather Research
and Forecast (WRF) model. Besides an implicit spatial position and
a velocity vector, the time-dependent dataset contains 9 additional
scalar quantities on a uniform grid of size 500 x 500 x 100. Since we
formulated our approach for scattered data and did not consider the
important but special case of gridded data, we disregard the topology
of the dataset.

To apply our approach, we either define clusters through uniform
blocks or apply k-means clustering based on the spatial position and
velocity magnitude. Both clustering procedures require a fixed number
of clusters as input. Independent from the clustering, we always store
3D distributions for the spatial position and the velocity vector and
compute the respective 2D marginal distribution from these. Apart from
that, we model and store all pairwise 2D distributions and all 15 one-
dimensional distributions. Additionally, we compare our representation
to modeling each cluster with a high-dimensional Gaussian mixture
model.

Table 3 shows the data summaries we have created with both clus-
tering procedures, with different cluster sizes, with our approach and
using high-dimensional Gaussian mixture models. We have chosen
a maximum number of 6 GMM components for the low-dimensional
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Fig. 12: Visualization of wind speed from west to east (U) in the Hurricane Isabel data by splatting the original data (a), with the k-means 16.000
clustering of the low-dimensional model (b), and the high-dimensional model (c).

Table 4: Performance of visualizations with our data summaries.

Table 5: Measurements of the data summary preprocessing.

Dataset Splatting PCP Density  Brushing
Sorting ~ OIT (x,u)

Iustris-3 Gas 39ms  43ms  439ms 1.0ms 4ms

llustris-2 DM 31ms 14ms 421ms 3.6ms 28ms

Tllustris-1 DM 196ms  28ms  124Ims 11.2ms 160ms

Hurricane Isabel k=8000  4.6ms 20ms 99ms 1.1ms 2ms

Spray Nozzle k=8000 44ms  23ms 47ms 1.4ms 2ms

and 32 for the high-dimensional models to achieve a comparable qual-
ity. Note that creating the high-dimensional model took nearly 43
hours, cf. Table 5. Both approaches can model the data well even
though some dimensions are quite challenging. The high-dimensional
model performs surprisingly well for this dataset, considering the di-
mensionality, which is due to high correlations in the dimensions. The
low-dimensional representation requires more storage since it cannot
make use of these higher-dimensional correlations. In both cases, the
two clustering procedures lead to similar results.

Fig. 12 shows a visualization of wind speed from west to east, i.e. u-
velocity, by splatting the original data and with our approach. Although
our representation loses some details, it conveys the major features
of the dataset. Whilst the low-dimensional representation models the
spatial position separately, the high-dimensional GMM takes correla-
tions between all dimensions into account. The marginal distribution
of the spatial positions is thus also influenced by the other dimensions,
which leads to the artifacts in Fig. 12(c). This reduces trust in the
high-dimensional model since it is unclear if these correlations actually
exist in the data or not. Lastly, the high-dimensional model contains
over five times the amount of Gaussian components, which increases
the complexity of all visualizations. In comparison, our representation
consists of low-dimensional models that are easier to understand and
more robust.

6.5 Performance

Our evaluations were performed on an Intel i7-6700 with 32 GB of
system memory and an NVIDIA GTX 1080 Ti graphics card providing
11 GB of video memory. For GPU acceleration, we make use of both
CUDA for general purpose computations and OpenGL for rendering.
For our spatial visualization, we have used a screen resolution of 1920 x
1080. The resolution of our 2D density plots was 200 x 200 and 800 x
300 for the parallel coordinate plot (PCP).

Timings for several visualizations are shown in Table 4. In gen-
eral, our prototype allows interactive navigation and creation of all
visualizations introduced above. The Illustris 1 and 2 datasets are the
most demanding, due to the large number of clusters. Note that the
performance of our approach scales with the number of clusters and
Gaussian components, not the original data size. The order-independent
transparency (OIT) approach performs very well on the cosmological
datasets compared to the back-to-front splatting using sorting. Note

Dataset Our GMMs  Low-dim. GMMs  High-dim. GMMs
Hurricane Isabel k=1000 2h 54m 9h 31m 42h 55m
Spray Nozzle k=2000 1h 43m 8h 13m 14h 51m

that the speed varies depending on the number of covered pixels. The
sorting approach is faster on the smaller and spatially more compact
datasets.

We create our probabilistic data summaries in a preprocessing step
using the Python scikit-learn library. This process is trivial to paral-
lelize since all time steps, clusters, and distributions can be processed
independently. Due to inherent restrictions imposed by our Python
prototype, an implementation in a native language is expected to be
significantly faster. The measurements for our prototype are shown
in Table 5. Our fast GMM component estimation (Sect. 3.2) leads to
a significant speedup. In the supplementary material, we show that
a slight error is introduced by this approximation. Lastly, computing
high-dimensional GMMs requires significantly more preprocessing
time, making it unsuited for use in practice. Note that our approxima-
tions for a fast estimation of GMM components cannot be used for the
high-dimensional data.

7 CONCLUSION

In this paper, we introduce probabilistic data summaries for multivari-
ate scattered data. They enable the interactive visual analysis of large
datasets that would not be possible otherwise due to limitations of mem-
ory or compute. Although our data representation is a simplified model
of the data, we inform the user about this uncertainty and present a
level-of-detail and outlier visualization for more detailed investigations.

The core insight of our approach is that we only have to model com-
binations of low-dimensional distributions for visual analysis, which
avoids the complexity of modeling high-dimensional distributions. Al-
though the data must be clustered, we do not make any restrictive
assumptions about the clustering procedure. In fact, our evaluation
shows that the impact of the clustering on the quality of the represen-
tation is less pronounced than expected and is largely offset by the
adaptive modeling of GMMs.

In the future, we want to improve the scalability of our approach even
further by adding a level-of-detail approach based on a hierarchical
clustering of the data. By interactively selecting the appropriate detail,
it should be possible to interactively explore massive datasets even on
mobile devices and seamlessly scale up to powerful workstations.
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