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Distortion-Free Displacement Mapping
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Figure 1: Displacement mapping a textured surface introduces distortions as can be seen for the stretched letters (arrows in (a) and (c)).
Our approach corrects this (arrows in (b) and (d)) by counter-distorting the texture map (f) according to the displacement map (e).

Abstract
Displacement mapping is routinely used to add geometric details in a fast and easy-to-control way, both in offline render-
ing as well as recently in interactive applications such as games. However, it went largely unnoticed (with the exception of
McGuire and Whitson [MW08]) that, when applying displacement mapping to a surface with a low-distortion parametrization,
this parametrization is distorted as the geometry was changed by the displacement mapping. Typical resulting artifacts are
“rubber band”-like distortion patterns in areas of strong displacement change where a small isotropic area in texture space
is mapped to a large anisotropic area in world space. We describe a fast, fully GPU-based two-step procedure to resolve this
problem. First, a correction deformation is computed from the displacement map. Second, two variants to apply this correction
when computing displacement mapping are proposed. The first variant is backward-compatible and can resolve the artifact in
any rendering pipeline without modifying it and without requiring additional computation at render time, but only works for
bijective parametrizations. The second variant works for more general parametrizations, but requires to modify the rendering
code and incurs a very small computational overhead.

CCS Concepts
• Computing methodologies → Texturing;

1. Introduction

Displacement mapping is a common and computationally efficient
way to add details to a shape which would be inefficient or impos-
sible to store as a 3D surface. It is therefore popular both in offline
rendering for film production and in computer games. Also, artists
prefer to directly manipulate a height field in a painting program
such as Autodesk Mudbox or ZBrush over manipulation of indi-
vidual polygonal primitives. Ideally, a displacement-mapped sur-
face should have the same visual appearance as a full polygonal
mesh. While this has become reality in the industry in terms of the
surface geometry, it is not true in terms of texturing. Whereas full
polygonal meshes are now routinely parametrized to achieve low-

distortion texture mapping, this is not possible for displacement-
mapped surfaces, a shortcoming addressed in this paper (Fig. 1).

Besides a discussion in McGuire and Whitson [MW08], the
artifact in question went surprisingly unnoticed. The artifact has
the following cause: While a base surface has a low-distortion
parametrization, displacement mapping deforms the “base” surface
but the parametrization of the base mesh remains unaffected. Con-
sequently the parametrization becomes distorted: e. g., circles in
texture space that were circles in world space are not circles in
world space anymore. This cannot be fixed by simply parametrizing
the result of the displacement mapping, as representing this surface
ideally is “avoided” , e. g., in the REYES architecture [CCC87]
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because it would not fit into memory, or because it could not be
handled by common parametrization methods that solve sparse
linear system with a size in the order of the number of vertices
[DMK03, FH05]. At the same time, the artifact is visually impor-
tant because the mammalian (i. e., human) visual system perceives
textures as anisotropic frequency content which is substantially dif-
ferent [HW62]. Even worse, the systematic error is correlated with
geometry, resulting in an additional but wrong perceptual texture-
density cue [BL76].

As a solution, we devised a special correction parametrization
that changes the texture mapping process, such that when it is later
used for a specific displacement map, the distortion is minimized.

2. Background

Displacement mapping was introduced by Cook in 1984 [Coo84].
It is nowadays routinely used in interactive graphics, thanks to effi-
cient GPU implementations [SKU08]. The two dominant methods
on GPUs are either to tesselate the coarse base geometry [Tat07]
or to use ray casting in a height field enclosed by a bounding vol-
ume [PHL91]. Our work is orthogonal to how the displacement
is produced. Generalization to vectorial displacements are possi-
ble [WTL∗04] and supported by our approach.

Displacement mapping is closely related to the idea of storing
the entire geometry in a regular structure such as in geometry im-
ages [GGH02] and multi-chart geometry images [SWG∗03]. These
works map arbitrary genus-0 surfaces to the two-dimensional disk,
which is similar to the problem we face. The idea to resample a sig-
nal, such that certain problems are avoided, was proposed for sur-
face attributes by Sander et al. [SGSH02]. We identify the specific
issue in the relation of parametrization and displacement mapping
and find a simple solution tailored to displacement mapping that
could be combined with signal-specialized parametrization but is
not identical to it as the signal and the change of parametrization
are in a more general relation. We also show how re-sampling is not
the best choice in terms of quality for our problem in all situations,
e. g., if distortions are extreme or there is no bijective mapping be-
tween the displacement map and the texture. In both cases, a simple
shader modification allows for better results.

The general topic of parametrization is covered in a survey
[FH05] and a recent course [HPS08], in particular page 41 and
following. General parametrization, in particular when multiple
charts are involved, can be computationally demanding: a 4M ver-
tices (equivalent to a 2000×2000 displacement map) mesh of the
pelvis takes in the order of hundreds of seconds for an already
well-optimized state-of-the-art parametrization method (ABF++)
[SLMB05, Fig. 9 and Table III]. We will show how the problem of
correcting displacement map parametrization has a more practical
solution by applying the adapted MIPS (Mostly Isometric Parame-
terization) energy [DMK03] to displacement maps.

McGuire and Whitson [MW08] have introduced an indirection
map, mapping texture coordinates that were distorted by displace-
ment mapping to undistorting texture coordinates, thus obtaining
a more uniform resolution across the entire displaced mesh. For
their undistortion, they implement a CPU-based quasi-conformal
multi-scale spring relaxation algorithm that first re-distributes the

subdivisions of the displaced mesh, and then computes the inverse
mapping by rasterization. In contrast, we directly compute the cor-
rection map, without additional resampling, using a general energy-
based approach with massive parallelization on the GPU (GLSL
code is included in the appendix). We show results for a specific
energy function for good area- and angle preservation that has been
shown useful in previous parametrization work [DMK03], but other
proven energies are supported. In addition, our approach allows
adapting boundary constraints optimized for the use case, e. g., tiled
or non-tiled textures.

3. Our approach

We will start the exposition of our approach by an overview in the
next section Sec. 3.1 before presenting its two main steps in detail
in Sec. 3.2 and Sec. 3.3.

3.1. Overview

Our approach consists of two main steps: First, computing a cor-
rection field and second applying this correction.

Input to the first step (Sec. 3.2) is the displacement map. Out-
put of this step is a correction map, a two-dimensional field of
two-dimensional vectors c that, when applied to a texture coor-
dinate of the polygonal surface, will correct the distortion caused
by displacement mapping. Fig. 2 shows an example for the one-
dimensional case. The texture is assumed to have been station-
arized [MJH∗17], i. e., that its statistics are spatially invariant. A
typical example is wood, stone or fabric. Textures correlated with
the underlying displacement map, e.g. containing distinct textured
parts of complex objects, can be less suited for our approach. For
more basic correlations, such as the darkening in the creases of
cobblestones, our approach easily allows the addition of additional
fixation constraints (see Sec. 3.2.2).

The second step (Sec. 3.3) uses the correction field to improve
sampling of other, e. g., diffuse, textures. This improvement is
independent of the actual displacement mapping technique used

f (u)
u0

1

g (u)

g (u) on f (u)

g (c(u)) on f (u)

Figure 2: Displacement mapping texture distortion in flatland: The
displacement function f maps the real unit interval U to a point in
R2. The texture function g is also defined on U and in this example
produces blue dots. Common texturing makes equally-sized steps
in u, resulting in a distortion in the 2D target space (longer and
shorter blue boxes). Our approach finds a correction c, such that
using g(c(u)) has no distortion (boxes of same length).
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[SKU08]. In the first variant (Sec. 3.3.1), the undistortion field
computed is stored into an additional map. When any texture is
to be read at coord u, it is read at the coord c(u) instead. This de-
livers good undistortion quality and works with texture maps in
arbitrary alignment relative to the displacement map, but requires
to change the shader. In the second variant (Sec. 3.3.2), the tex-
ture maps are directly resampled. This results in a fast, simple and
backward-compatible solution, as the shader code does not need to
be changed. However, the resulting quality is lower due to resam-
pling and it does not work with unaligned texture maps.

3.2. Computing the undistortion

Input Displacement maps can either come as height field displace-
ment maps or as vector displacement maps. A height field can
be converted into a vector displacement map by scaling the nor-
mal at each point by the height. The vector displacement map can
be converted into a parametric 3D surface by adding the vector
displacement to a parametric base surface. In order to unify the
handling and for ease of notation, our derivation directly uses a
parametric displaced surface f (u) ∈ U → R3 defined on a chart
U ⊂ (0,1)2 ⊆ R2 which is homeomorphic to a disk and has a
boundary B ⊆ U . Depending on the type of displacement used
(height field, vectorial), conversions need to be done when eval-
uating f .

Output As output, we would like to compute a function c(u) ∈
U → U that remaps texture coordinates u to new texture coordi-
nates c(u) such that the magnitude of differential changes ∂uc(u)
with respect to u becomes proportional to the magnitude of differ-
ential changes ∂u f (u) in world space.

Please note that c is never used to change evaluation of the dis-
placement maps, but only to warp the texture coordinates of one or
multiple texture maps that are subsequently applied to the displaced
surface, such as diffuse, specular, or normal maps. Without loss of
generality, such maps are henceforth denoted as g(u) ∈ U → Rn,
since their nature does not have an influence on the computation of
the undistortion.

3.2.1. Distortion Energy

The first fundamental form I f of a parametric map f defined as

I f = (∇u f )T ∇u f , (1)

describes how a mapping from 2D to 3D distorts angles and
area [DMK03]. In order to minimize distortion, we want to pre-
serve both angles, found in the ratio of smallest and largest eigen-
value, and area, found in the determinant of I. An angle- and area-
preserving mapping is called isometric and its fundamental form is
the identity. Such mappings exist only for a very limited class of
surfaces in practice, so a tradeoff between angle and area preser-
vation has to be made. Therefore, we want to find a function c,
such that I f (c−1(u)) =: I f/c is as close as possible to the iden-
tity. Area distortion can be measured by considering an infinitely
small quad mapped to a trapezoid with area

√
detI f . If x = 1, area

is preserved. Similar, angle preservation corresponds to the ratio of
the larger and the smaller eigenvalue λmax/λmin of f . Here, x = 1
preserves angle as well.

Degener et al. [DMK03] propose to find the mapping c using
the function x+ 1

x to penalize deviations from isometry. Distortion
occurs at x > 1. They minimize the energy

E(c,u) =
(√

detI f/c(u))+
1√

detI f/c(u)

)θ

(√ λmin(I f/c(u))
λmax(I f/c(u))

+

√
λmax(I f/c(u))
λmin(I f/c(u))

) (2)

with respect to the boundary condition that c(u) = u if u ∈ B.

3.2.2. Optional Correlation Constraints

Correlations of color maps with displacement maps, e.g. specific
materials in creases or important straight lines, can be simply en-
forced by the addition of penalty terms for the movement of spe-
cific texels. We introduce an optional fixation factor γ(u) ∈ [0,1]
that defaults to 0, but lets certain coordinates u be fixed such
that ‖c(u)− u‖ ≤ 1 texel for γ(u) = 1. The penalty term added
to the energy E(c,u) and derived by the solver is then:

Eγ(c,u) :=
1
2

1

max
(

1−‖γR (c(u)−u)‖2 ,0
) ,

where R is a vector of the number of texels for each dimension of u.

3.2.3. Solver

We propose to exploit the special structure of our problem in a sim-
ple, iterative and fine-grained parallel – therefore GPU-friendly –
solver that exploits the implicit 2D problem structure. The displace-
ment map texels are interpreted as vertices in a regular grid of tri-
angulated quads. Derivatives of the energy with respect to texture
coordinates are computed for the six triangles adjacent to each texel
and a local gradient descent is made. In practice c and f are dis-
cretized into images of n texels, stacked into two vectors c ∈ R2×n

and f ∈ R3×n. Initially, the correction is set to identity. Then, in
each step, for texel i, the gradient of the energy∇e in respect to the
correction is computed. In the following, We will derive a closed-
form expression for this gradient.

The gradient is computed in respect to a six-neighborhoodNi of
texels adjacent to the triangles formed with texel i. Let j = 1, . . . ,6
be an index in this neighborhood, we write ∆ci, j = ci − cNi, j ,
∆ fi, j = fi − fNi, j . For triangle j adjacent to neighbour texels j
and j+ 1 (modulo 6), the areas are Ac

i, j =
1
2 ||∆ci, j×∆ci, j+1|| and

A f
i, j =

1
2 ||∆ fi, j×∆ fi, j+1||. Then

Ei, j =
1

Ac
i, jA

f
i, j

(
||∆ci, j||2

〈
∆ fi, j+1−∆ fi, j,∆ fi, j+1

〉
+||∆ci, j+1||2

〈
∆ fi, j,∆ fi, j−∆ fi, j+1

〉
+||∆ci, j−∆ci, j+1||2

〈
∆ fi, j,∆ fi, j+1

〉)
(Ac

i, j

A f
i, j

+
A f

i, j

Ac
i, j

)θ

is the energy of adjacent triangle j [HPS08]. We use θ = 3 as a
tradeoff between angle and area preservation.
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unconstrained

A

D

c(u)

A◦c

ground fixed

A

D

c(u)

A◦c

Figure 3: Without additional constraints, our method can perturb texture maps (A) in arbitrary ways, potentially causing straight lines to be
curved and correlations with geometry (defined by displacements D) to be disrespected. By adding an additional penalty term to the energy
in our solver, parts of the texture maps may be fixed to certain locations. The influence of the penalty term is controlled by additional inputs to
the optimizer, e.g. a certain height interval in the displacement map, or an additional artist-provided input texture. Fixed areas are overlain
in red on top of the displacement map D on the right.

The energy of texel i is then Ei = ∑
6
j=1 Ei, j. Writing

Ei, j = E(1)
i, j (E

(2)
i, j +E(3)

i, j )
θ, the gradient is

∇cEi, j =(∇cE(1)
i, j )(E

(2)
i, j +E(3)

i, j )
θ

+E(1)
i, j (θ(E

(2)
i, j +E(3)

i, j )
θ−1(∇cE(2)

i, j +∇cE(3)
i, j )).

Note that the partials of ∆ci, j with respect to c are 1. Then,

∇cE(1)
i, j =−

E(1)
i, j

Ac
i, j
∇cAc

i, j

+
1

Ac
i, jA

f
i, j

(
∆ci, j < ∆ fi, j+1−∆ fi, j,∆ fi, j+1 >

+∆ci, j+1 < ∆ fi, j,∆ fi, j−∆ fi, j+1 >
)
,

∇cE(2)
i, j =

1

A f
i, j

∇cAc
i, j,

∇cE(3)
i, j =−

A f
i, j

(Ac
i, j)

2∇cAc
i, j, and

∇cAc
i, j =

(
∆ci, j+1

(t)−∆ci, j
(t)

∆ci, j
(s)−∆ci, j+1

(s)

)
.

Finally, the derivative of the energy at texel i is then ∇ei =

∑
6
j=1∇cEi, j. With the gradient ∇e for every texel at hand, we can

decrease the local energy Ei of texel i by moving ci along −∇ei.
Since the energy is locally convex (i. e., with respect to ci), a step
size λi is easily computed using a ternary search to find the mini-
mum of Ei along the gradient line (code in the Appendix).

The gradient of the optional constraint energy Eγ,i is:

∇Eγ,i =
γ

2
i R2 (ci−ui)

max
(

1−‖γi R (ci−ui)‖2 ,0
)2 ,

where ui is the coordinate that the correction ci is supposed to be
pinned to for γi = 1.

Update It is now tempting to simply update the correction itera-
tively using c(k+1) ← c(k)− λ

(k)∇e(k), where λ
(k) ∈ Rn is a vec-

tor that is 0 for texels on the boundary B or outside the chart U
and the computed step size λi, otherwise. However, care has to be
taken since the local steps −λi∇ei only guarantee to decrease en-
ergy with respect to a constant neighborhood. Luckily, our problem
has grid topology, so the neighborhood can be kept constant by al-
ways leaving every second row and every second column constant
and changing constant rows and columns in every iteration. If λ

(k)

is stored in quad order (a list of quads), this corresponds to setting

λ
(k)
i =

{
λi, if (imod4) = (k mod4)∧U 3 i /∈ B
0, otherwise.

Thus, local and global energies can only decrease and convergence
is guaranteed. In essence, this is a massively parallel version of
the Gauss-Seidel-like approach described in [Hor01]. While theo-
retically, convergence to only local minima could be possible, it is
unclear whether local minima exist at all [Hor01] and in practice,
we have found our parallel optimization to be reliable and fast.

Repeated Displacement Maps For repeated displacement maps
(e. g., sampled with wrap mode REPEAT in OpenGL), improved
corrections can be obtained by freeing the boundary (B = ∅) and
instead also applying the wrapping rules during optimization: In
this case, when enumerating the neighborhood Ni of texel i, the
texel left to the left-most texel is simply the right-most texel, etc.

Multiple Charts To optimize across multichart boundaries, we
have to encode additional neighborhood information into a sec-
ondary texture [RBM06, GP09] that can then be used when the
neighborhood is fetched for texels on chart boundaries. Afterwards,
it might be necessary to move a small subset of boundary texels
across chart boundaries in the texture maps to be undistorted, akin
to filtering guard bands.
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Mip 0 Mip 1 Mip 2 Mip 3 Mip 4

Figure 4: Different mip levels rendered with our correction method. Mip mapping can be used for the correction texture just like for the
color texture. While the correction offsets can change and lose precision in the lower-resolution mip levels, the parallel loss of accuracy in
the color mip levels nicely covers up these changes. Our supplemental WebGL demo allows you to see the effects of mip mapping in motion.

3.2.4. Implementation

We implemented the optimization in a straight-forward GLSL
shader that parallelizes over texels i. e., by running exactly as many
threads as there are texels and synchronizing after each iteration.
All data is stored in floating-point textures (RGB for vector dis-
placement; luminance/R for height fields).

Note that rather than storing the absolute corrected texture coor-
dinates c, we store relative correction offsets ∆c = c−u, which has
several benefits: It naturally works with several texture wrapping
modes and is easy to compress (Sec. 3.3.1).

Also note that in applications, displacement maps are often eval-
uated on texture boundaries rather than texel centers. In this case,
computing and storing the correction map at half a texel offset can
avoid unnecessary resampling artifacts. Naturally, this offset then
needs to be countered when applying the correction map.

3.3. Using the undistortion

The undistortion map can be used in two ways: without resampling
(Sec. 3.3.1) and with resampling (Sec. 3.3.2).

3.3.1. Without resampling

It this variant c is used in the way it is defined and computed:
as a re-mapping of the coordinates. To this end, the shader using
a texture map g, such as a diffuse texture, has to use an indirec-
tion when reading g: Whenever the value g(u) is meant to be read,
g(u+∆c(u)) is to be read instead. Here, the relative correction off-
set ∆c(u) can be sampled just like a regular texture, using interpo-
lation and even wrapping modes. Thus, the solution is robust for
several important combinations of displacement and texture maps:
Both of them are allowed to wrap in an arbitrary mode such as RE-
PEAT,CLAMP,BORDER while neither needs to be aligned to the

other in any way. (Due to making ∆c a relative (instead of absolute)
correction field, it can be interpolated across tiling borders and still
yields correct results.)

This approach has previously also been discussed by
McGuire and Whitson [MW08], where additional reasoning
about structured and unstructured texture content is provided.

Compression Before usage in rendering, the correction ∆c is con-
verted from a float into an 8-bit RG texture, to be read with bilinear
filtering which naturally provides a piecewise linear parametriza-
tion, analogous to triangles. A reduction over ∆c yields the smallest
enclosing interval of correction offsets (typically ∼[−0.02,0.02]).
The range is stored and the offsets are quantized by remapping the
interval to the [0,255] range. Thus, the storage overhead is kept
low. Our experiments indidcate that correction maps may often be
stored at half the resolution of the displacement map.

3.3.2. With resampling

In this variant, the correction field c is simply used to resample
every texture g. Similar re-samplings have been used to provide
higher accuracy in texture areas with more details [SGSH02]. The
appealing property of this option is, that it can achieve the correc-
tion without knowing or having access to the displacement shader
code and that it comes without additional computation cost at run-
time. Also, it does not incur any memory overhead.

However, the usual caveats of resampling apply: the more non-
uniform f is, the more sampling loss occurs. Also, a unique map-
ping between all locations g and f must exist and be known before-
hand. This is violated if f and g differ by a transformation or if g is
used in combination with different displacement maps f1 and f2. In
such cases, g needs to be aligned to f by separate resampling steps.
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Figure 5: Our method applied to displacement maps D and color maps A constructed after or taken from the example cases presented by
McGuire et al. [MW08], in order to allow for a more direct comparison of our results with their figure in their paper. Areas that are fixed by
correlation constraints are overlain in red on top of the displacement map D.

4. Results

Results are reported for an Nvidia Geforce GTX 560. Images
are shaded with screen-space ambient occlusion and image-based
lighting, not included in timings. We also provide a supplemen-
tal WebGL demo with full source code. We perform displacement
mapping using tessellation shaders [Tat07]. Note that other dis-
placement mapping techniques (such as parallax occlusion map-
ping [PHL91]) that require to read the displacement many times do
not imply that our correction is performed more than once.

Overall we found the run-time performance difference too small
to be measured reliably. The offline optimization process takes
between one and a few seconds on the GPU, at a resolution of
256× 256 and 300 iterations, including real-time preview of all
preliminary results, see also the supplemental videos. In contrast
to previous CPU-based approaches, which take up to several min-
utes [MW08], our method therefore allows for easy integration into
interactive content creation tools with potential for real-time user
intervention, e. g., for constrained undistortions.

Fig. 6 and Fig. 7 show results of our approach in different scenes.
The first column shows common displacement mapping. The sec-
ond column shows our correction enabled with resampling. The
third column show our correction without resampling. The final
column visualizes (from top to bottom) the height map used to cre-
ate f, the correction field c (where red means horizontal, green in-
dicates vertical correction) and the initial energy e (where white
indicates a high energy). The supplemental video shows this figure
animated, demonstrating convergence of the solver.

Figure 5 provides results for our method in scenes constructed to
match the overview figure of McGuire et al. [MW08], in order to
allow for a better comparison with their work. Figure 4 shows how
our method interacts with minification filtering. When mip maps
are used for both the color and the correction offset texture, the re-
sult is still well-behaved (also see our WebGL demo showing the
effect in motion). Finally, Figure 3 illustrates how undesired distor-
tion caused by our displacement unwarping can be controlled with
our optional correlation constraints.

5. Conclusion

In this paper we addressed a common, but besides academic previ-
ous work [MW08] to our knowledge not yet often addressed arti-
fact in displacement mapping. We proposed an efficient GPU solu-
tion to compute a correction that can be used without knowing the
shader to correct and without additional computation.

Our approach allows for fast displacement map correction up-
dates that can provide fast feedback for content creation. Also our
correction is not required for all texture maps: Texture maps that
were created from a carefully designed automatic process, such
as simplification [CMRS98] are not affected much by the distor-
tion described. Correction is most important for stochastic textures
showing meso- and micro-structure (stone, bark, sand) acquired
form a flat surface.

Since our technique applies to the texture globally, it may move
features meant to align with geometric features of the displaced
surface (note that this is also true for [MW08]). Further exploration
of constraints that preserve correlations between the base geometry
and the texture is an interesting avenue for future work.

We proposed two variants that both have benefits and drawbacks.
In future work, we would like to devise an on-the-fly correction, a
correction with less memory overhead or a mixture between resam-
pling and no-resampling.
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Figure 7: Results of our approach for two scenes. Top: A rusted machine part with geometry details entirely modeled using displacement
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Appendix A: Undistortion Optimization Code

In this appendix, we provide GLSL fragment shader code that al-
lows for an incremental computation of the relative correction off-
sets that can then be stored in a texture to allow for lookup of the
undistorted texture coordinates. Adding the stored correction off-
sets to the texture coordinates of the lookup yields the final undis-
torted texture coordinate.

The GLSL fragment shader code should be run at displacement
map resolution, issuing one draw call for each optimization itera-
tion. We use a ping pong buffer comprised of two textures that are
alternately set as render target and input texture, in order to com-
pute improved correction offsets from the previous offsets, respec-
tively. Initially, the input correction offset texture is cleared to 0.

uniform ivec2 resolution; uniform vec2 pixelWidth;

uniform float areaPreservation;

float areaPreservePow(float x) { return pow(x, areaPreservation); }

float areaPreservePowDeriv(float x) {

return areaPreservation * pow(x, areaPreservation - 1.0);

}

vec2 computeGradient(vec3 dnpos1, vec3 dnpos2,

vec2 dnuv1, vec2 dnuv2, out float energy) {

float adpos = length(cross(dnpos1, dnpos2));

float aduv = dnuv1.x * dnuv2.y - dnuv2.x * dnuv1.y;

float energyPart1 = 1.0 / (adpos * aduv);

float energyPart2 =

lengthSqared(dnuv1 - dnuv2) * dot(dnpos1, dnpos2)

+ lengthSqared(dnuv1) * dot(dnpos2 - dnpos1, dnpos2)

+ lengthSqared(dnuv2) * dot(dnpos1, dnpos1 - dnpos2);

float energyPart3Inner = adpos / aduv + aduv / adpos;

float energyPart3 = areaPreservePow(energyPart3Inner);

energy = energyPart1 * energyPart2 * energyPart3;

return
energyPart3 * (

(energyPart2 * energyPart1 / aduv)

* -vec2(dnuv2.y - dnuv1.y, dnuv1.x - dnuv2.x)

+ energyPart1 * 2.0 * (

(dnuv1) * dot(dnpos2 - dnpos1, dnpos2)

+ (dnuv2) * dot(dnpos1, dnpos1 - dnpos2)

)

)

+ energyPart1 * energyPart2 * (

areaPreservePowDeriv(energyPart3Inner)

* vec2(dnuv2.y - dnuv1.y, dnuv1.x - dnuv2.x)

* (1.0 / adpos - adpos / (aduv * aduv))

);

}

float computeEnergy(vec3 dnpos1, vec3 dnpos2

, vec2 dnuv1, vec2 dnuv2) {

float energy;

computeGradient(dnpos1, dnpos2, dnuv1, dnuv2, energy);

return energy;

}

vec2 computeConstraintGradient(vec2 duv, float pinned, out float energy) {

vec2 mc = pinned * vec2(resolution);
float ec = 1.0 / max(1.0 - lengthSqared(duv * mc), 0.5e-32);

energy = 0.5 * ec;

return ec * ec * (duv * mc * mc);

}

bool onGlobalBorder(ivec2 c) {

return c.x==0||c.y==0||c.x==resolution.x-1||c.y==resolution.y-1;

}

Listing 1: GLSL code computing Ei and∇ei.

uniform sampler2D displaceTex;
uniform sampler2D correctionOffsetTex;
uniform float texelOffset;

uniform float displacementScale;
uniform float fixHeight, fixInterval; uniform bool fixBoundary;

struct Node {
vec3 pos;
vec2 uv;
vec2 uvo;
float pinned;

};
Node fetchNode(vec2 coord) {
Node n;
coord *= pixelWidth;
vec2 wrapCoord = fract(coord);
/ / apply ha l f t e x e l o f f s e t to match geometric displacement
float height = textureLod(displaceTex
, wrapCoord - texelOffset * pixelWidth, 0.0).x;

n.pos = vec3(coord, displacementScale * height);
n.uvo = textureLod(correctionOffsetTex, wrapCoord, 0.0).xy;
/ / compute cons t ra in t s from given height i n t e r v a l
n.pinned = (fixInterval > 0.0)
? max(1.0 - abs(height - fixHeight) / fixInterval, 0.0) : 0.0;

n.uv = n.uvo + coord;
return n;

}

uniform int iterationIdx;
out vec4 newCorrectionOffset;

Listing 2: GLSL code for input and output data.

ivec2 currentCoord = ivec2(gl_FragCoord.xy);
Node currentNode = fetchNode(gl_FragCoord.xy);

#define NUM_NEIGHBORS 6
vec3 dnpos[NUM_NEIGHBORS];
vec2 dnuv[NUM_NEIGHBORS];
{ int i = 0;
for (ivec2 co = ivec2(-1); co.y <= 1; ++co.y) {
for (co.x = -1; co.x <= 1; ++co.x) {
if (co.x != co.y) {
Node nn = fetchNode(gl_FragCoord.xy + vec2(co));
/ / compute the neighbor index
int nbidx = i; / / i = 0 ,1
if (co.y == 0) nbidx = (co.x == -1) ? 5 : 2;
else if (i >= 4) nbidx = 8 - i; / / i = 4 ,5 −> nbidx = 4 ,3
/ / compute the neighbor o f f s e t s
dnpos[nbidx] = currentNode.pos - nn.pos;
dnuv[nbidx] = currentNode.uv - nn.uv;
++i;

}
}

}
}

float energy = 0.0; / / in case you want to see i t
vec2 gradient = vec2(0.0);
/ / compute energy gradient for each neighbor t r iang l e
for (int i = 0, j = NUM_NEIGHBORS - 1; i < NUM_NEIGHBORS; j = i++) {
float neighborEnergy;
gradient += computeGradient(
dnpos[j], dnpos[i], dnuv[j], dnuv[i], neighborEnergy);

energy += neighborEnergy;
}
energy *= 0.5 / float(NUM_NEIGHBORS);

/ / handle constrained nodes
{
float cEnergy;
gradient += computeConstraintGradient(
currentNode.uv - currentNode.pos.xy, currentNode.pinned, cEnergy);

energy += cEnergy;
}

Listing 3: GLSL code computing the optimization gradients.
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float minStepSize = 0.0;
float maxStepSize = 2.0e32;
/ / compute maximum step s i z e ( before t r iang l e f l i p s )
for (int i = 0, j = NUM_NEIGHBORS - 1; i < NUM_NEIGHBORS; j = i++) {
float aduv = dnuv[j].x * dnuv[i].y - dnuv[i].x * dnuv[j].y;
float djXg = dnuv[j].x * gradient.y - gradient.x * dnuv[j].y;
float dgXi = gradient.x * dnuv[i].y - dnuv[i].x * gradient.y;
float den = djXg + dgXi;
float aduv0offset = aduv / den;
if (aduv0offset > 0.0) {
if (aduv > 0.0)
maxStepSize = min(maxStepSize, aduv0offset);

else
minStepSize = max(minStepSize, aduv0offset);

}
}
/ / a s ser t : minStepSize <= maxStepSize
if (!(minStepSize <= maxStepSize))
minStepSize = maxStepSize = 0.0;

/ / Perform ternary search on gradient l i n e to f ind optimum
while (maxStepSize - minStepSize > 1.0e-6 * maxStepSize) {
float third1 = mix(minStepSize, maxStepSize, 1.0 / 3.0);
float third2 = mix(minStepSize, maxStepSize, 2.0 / 3.0);
vec2 duv1 = third1 * gradient, duv2 = third2 * gradient;

float e1 = 0.0, e2 = 0.0;
for (int j = NUM_NEIGHBORS - 1, i = 0; i < NUM_NEIGHBORS; j = i++) {
e1 += computeEnergy(dnpos[j],dnpos[i],dnuv[j]-duv1,dnuv[i]-duv1);
e2 += computeEnergy(dnpos[j],dnpos[i],dnuv[j]-duv2,dnuv[i]-duv2);

}
e1 *= 0.5 / float(NUM_NEIGHBORS);
e2 *= 0.5 / float(NUM_NEIGHBORS);
float pe1, pe2;
computeConstraintGradient(
currentNode.uv - duv1 - currentNode.pos.xy, currentNode.pinned, pe1);

computeConstraintGradient(
currentNode.uv - duv2 - currentNode.pos.xy, currentNode.pinned, pe2);

e1 += pe1; e2 += pe2;
if (e1 > e2) minStepSize = third1;
else maxStepSize = third2;

}
float stepSize = mix(minStepSize, maxStepSize, 0.5);

/ / boundary handling
if (fixBoundary && onGlobalBorder(currentCoord)) stepSize = 0.0;

newCorrectionOffset = currentNode.uvo.xyxy;
/ / ensure convergence by only ever moving 1 ver tex per neighborhood
if ( (currentCoord.x & 1) == (iterationIdx & 1)
&& (currentCoord.y & 1) == ((iterationIdx >> 1) & 1) )
newCorrectionOffset.xy -= stepSize * gradient;

Listing 4: GLSL code computing the update steps for the iterative
optimization of undistortion correction offsets.
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