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Abstract
In a recent journal paper, we introduced a technique to represent reflectance spectra by an arbitrary number of
Fourier coefficients. As a special case, we converted tristimulus data to three Fourier coefficients. After summa-
rizing this work, we introduce the Fourier sRGB color space. It is defined in terms of Fourier coefficients but
designed to behave similar to sRGB. Textures stored in Fourier sRGB support efficient spectral rendering but can
be compressed with techniques designed for sRGB textures. Compression errors are similar to sRGB.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Color representation is fundamental in computer graphics.
Tristimulus color spaces are sufficient to describe the per-
ception of light by a standard observer. However, accurate
rendering requires more information. Light transport results
in products of emission spectra and reflectance spectra along
the light path. Correct computation of the final tristimulus
values requires evaluation of these products throughout the
range of visible wavelengths.

Nonetheless, it is common practice to use RGB color
spaces for textures storing surface albedos. Artists are famil-
iar with them and the resulting textures can be stored com-
pactly. There is even hardware acceleration for decompres-
sion of RGB textures on GPUs. Many renderers use the sim-
plifying assumption that each channel corresponds to one
wavelength and perform component-wise multiplication of
RGB triples. This model is self-consistent, simple and highly
efficient but fails to capture the more complex reality.

A more principled approach is to turn RGB triples
into continuous reflectance spectra during rendering.
This is accomplished by precomputed, piecewise linear
fits [Smi99, OYH18] or moderately large lookup tables
[Mac35, MSHD15]. Though, some of these techniques pro-
duce physically implausible spectra [Mac35, Smi99] while
others suffer from discontinuous results [OYH18] or high
bandwidth requirements [Mac35, MSHD15]. A more recent
technique [JH19] guarantees a smooth and physically mean-

ingful reflectance whenever this is possible and only uses a
lookup table before rendering to convert the texture. How-
ever, the converted textures are more vulnerable to rounding
errors such that compression becomes difficult.

In this paper, we extend a recent work of ours [PMHD19].
Our prior work proposes to represent reflectance spectra by
a small number of Fourier coefficients. For the reconstruc-
tion of a continuous reflectance spectrum, we do not use
a simple truncated Fourier series because its ringing could
lead to a reflectance of less than zero or more than one. In-
stead, we derive the bounded maximum entropy spectral es-
timate (bounded MESE): A novel non-linear reconstruction
that guarantees smooth results bounded between zero and
one whenever this is possible at all. It is evaluated by means
of a closed-form solution rather than a lookup table.

When full reflectance spectra are known, we convert them
to a small number of Fourier coefficients, typically four to
six. Reconstructions of real-world reflectance spectra from
this compact representation turn out to be highly accurate. If
full spectra are not available, data defined in tristimulus color
spaces can be turned into Fourier coefficients using a lookup
table before rendering. This approach is similar to prior work
[JH19] but the Fourier coefficients are more robust to quan-
tization errors because of their linear relationship to the orig-
inal spectrum. We found that 10 bits per coefficient suffice.

After reviewing our recent work [PMHD19] in more de-
tail (Section 2), we further explore possibilities for com-
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pression of Fourier coefficients generated from tristimulus
data. We propose a novel color space called Fourier sRGB
(Section 3). It relates to Fourier coefficients through a lin-
ear transform and a non-linearity applied per component (as
in sRGB). By design, its three coefficients behave similarly
to coefficients of sRGB. A lookup table maps each sRGB
triple in [0,1]3 to a matching Fourier sRGB triple in [0,1]3.
The resulting Fourier sRGB textures can be compressed in
the same manner as common sRGB textures (Section 4).
The impact of compression on color reproduction is similar
to sRGB. Thus, spectral rendering without increased band-
width requirements becomes viable.

2. The Bounded MESE and Spectral Rendering

Our bounded MESE [PMHD19] is derived as dual of the
MESE [Bur75, PKHK15]. While the bounded MESE pro-
duces signals bounded between zero and one, the MESE
only guarantees positive signals. Thus, the MESE is suitable
for emission spectra while the bounded MESE offers mean-
ingful reflectance spectra. We focus on reflectance since the
need for compact storage is more pronounced for textures.

In this section, we summarize properties of the bounded
MESE (Section 2.1), describe its application to spectral ren-
dering (Section 2.2) and recapitulate the conversion from
tristimulus color spaces to Fourier coefficients (Section 2.3).
For a detailed derivation of the bounded MESE and the al-
gorithm, we refer to our prior work [PMHD19].

2.1. The Bounded MESE

Consider a 2π-periodic, bounded signal g(ϕ)∈ [0,1]. In Sec-
tion 2.2, we describe a mapping from wavelengths λ to
phases ϕ ∈R such that g(ϕ) can be thought of as reflectance
spectrum. We represent this signal by the Fourier coefficients

c j :=
1

2π

∫ π

−π

g(ϕ)exp(−i jϕ)dϕ ∈ C (1)

with j ∈ {0, . . . ,m}.

While these m+1 Fourier coefficients are known exactly,
infinitely many are unknown. A truncated Fourier series as-
sumes that all unknown Fourier coefficients are zero. In do-
ing so, it introduces ringing artifacts, which may lead to val-
ues below zero or above one.

The bounded MESE implements a drastically different ap-
proach. It constructs the unique signal g(ϕ) ∈ [0,1] that sat-
isfies Equation (1) and maximizes the logsin-entropy∫ π

−π

logsin(πg(ϕ))dϕ.

This prior is visualized in Figure 1a. It rewards values near
0.5 while penalizing values near zero or one with scores go-
ing to minus infinity. In accordance with this entropy, the
resulting reconstructions are smooth and avoid extreme re-
flectance values (Figure 1b, blue). Unlike a truncated Fourier
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Figure 1: Due to the logsin entropy, the bounded MESE
tends to avoid extreme values (1a). Still it can attain them, if
needed (1b, orange). It is a Fourier series, mapped to [0,1]
by a scaled and shifted arctangent (1c).

series, they have energy throughout the spectrum. If the
Fourier coefficients do not allow a smooth bounded recon-
struction, the bounded MESE approaches reconstructions
composed of box functions (Figure 1b, orange).

Maximizing the logsin-entropy does not require a costly
non-linear optimization. We have derived a closed-form so-
lution for the bounded MESE. It takes time O(m2) overall
and time O(m) per phase ϕ where the bounded MESE needs
to be evaluated. There are two variants of the algorithm.
Which of the two is faster depends on how many samples
of g(ϕ) are evaluated. The algorithm that is faster for many
samples constructs Lagrange multipliers λ0, . . . ,λm. Then
the bounded MESE takes the form

g(ϕ) =
1
π

arctan

(
<λ0 +2<

m

∑
l=1

λl exp(−ilϕ)

)
+

1
2

. (2)

This representation also offers a compelling way to under-
stand what kind of function the bounded MESE produces.
It is a truncated Fourier series forced into the bounds be-
tween zero and one by a scaled and shifted arctangent (Fig-
ure 1c). Thanks to the way in which the Lagrange multipliers
are computed, it matches the original Fourier coefficients c j.

2.2. Mapping Wavelengths to Phases

From Equation (2), it is clear that the bounded MESE is a
2π-periodic function. Though, the reflectance spectra that
we wish to describe are usually aperiodic. We overcome this
problem using coefficients of a cosine transform. The phase
for a wavelength λ ∈ [λmin,λmax] is defined as

ϕ = π
λ−λmin

λmax−λmin
−π ∈ [−π,0].

To define a signal g(ϕ) on all of [−π,π] we mirror it
by setting g(ϕ) := g(−ϕ) for all ϕ ∈ [0,π]. The moments
c0, . . . ,cm for such an even signal are real. Thus, we only
use half of our reconstruction but also need roughly half as
much space to store the moments.

Additionally, it would be useful to account for the percep-
tual importance of particular wavelength ranges. We have
to work with Fourier coefficients to be able to apply the
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Figure 2: Our Fourier basis gets warped by ϕ(λ) (left) and
weighted by ϕ

′(λ) (middle). The warp is optimized for a
good fit (dotted lines) to the color matching functions (right).

bounded MESE. Otherwise, a perceptually ideal choice for
three coefficients would be CIE XYZ. While we cannot
reach this goal exactly, we have one way to get close.

We optimize a monotonic function ϕ(λ) ∈ [−π,0] (Fig-
ure 2). Effectively, this mapping warps our Fourier basis
and weights it by the derivative ϕ

′(λ). Our optimization
maximizes similarity between the space spanned by this
warped and weighted Fourier basis and the space spanned
by the color matching functions for the CIE standard ob-
server x(λ),y(λ),z(λ). The optimized function ϕ(λ) is stored
as lookup table in 5 nm intervals. Its use is highly beneficial
to the color reproduction of our approach, especially for a
small number of Fourier coefficients.

2.3. Conversion of Tristimulus Data

Although our prior work focuses on a compact representa-
tion for spectral reflectance data, we acknowledge that the
use of tristimulus color spaces is far more common. There-
fore, we construct lookup tables mapping colors in tristimu-
lus color spaces to three Fourier coefficients.

The construction is a two-step procedure. First we take a
dense sampling of the space of Fourier coefficients, e.g. with
10243 samples. For each triple, we reconstruct a reflectance
spectrum using the bounded MESE and compute CIE XYZ
coefficients. In the second step, we enter all CIE XYZ triples
into an index for nearest-neighbor queries. To have a mean-
ingful notion of distances, we use CIE LAB. Then we use
nearest-neighbor queries to fill a uniform grid in the relevant
tristimulus color space with matching Fourier coefficients.
For example, we create a grid with 2563 samples to map
sRGB triples to triples of Fourier coefficients.

3. Fourier Color Spaces

In this section, we introduce two new color spaces. Both of
them are defined in terms of Fourier coefficients, not in terms
of CIE XYZ. Thus, they do not determine perception of a
stimulus by a standard observer uniquely but are compatible
with the bounded MESE. Thanks to the warp described in
Section 2.2, they behave similar to CIE XYZ nonetheless.

Our objective is more efficient compression of textures
with three Fourier coefficients. Previously, we have demon-
strated that 10 bits per Fourier coefficient are sufficient for

good results. However, 30 bits per pixel are still a lot com-
pared to a compressed sRGB texture. If all of our Fourier co-
efficients stem from a lookup table for sRGB, we would pre-
fer a representation that can be compressed just like sRGB.

3.1. The Fourier XYZ Color Space

As an intermediate step, we define a linear transform map-
ping Fourier coefficients to a color space that resembles CIE
XYZ. We call it Fourier XYZ. Due to the warp described in
Section 2.2, our Fourier basis already spans a similar space.
We solve three linear least squares problems to find three
linear combinations of our Fourier basis that approximate
the three color matching functions x(λ),y(λ),z(λ) optimally.
Implicitly, we assume illuminant E here. If we take the same
three linear combinations for our Fourier coefficients, we ob-
tain three Fourier XYZ coefficients:Xc

Yc
Zc

:=

107.105747 100.951852 69.1110083
106.856988 72.8910048 −60.5204316
108.902261 −172.572868 103.202221

c0
c1
c2


3.2. The Fourier sRGB Color Space

We use the method described in Section 2.3 to map 2563

sRGB triples in [0,1]3 to Fourier XYZ. Our method finds a
valid reflectance spectrum for each sRGB triple. Figure 3a
visualizes the range of the resulting Fourier XYZ coeffi-
cients using Fourier chromaticity

xc :=
Xc

Xc +Yc +Zc
, yc :=

Yc

Xc +Yc +Zc
.

To define Fourier sRGB, we seek a triangle of minimal area
that encloses this range in the Fourier chromaticity diagram.
Once properly stated, this optimization problem is three-
dimensional and a generic global minimizer solves it well.

The three vertices of the resulting triangle should be
thought of as primaries for red, green and blue. Except for
the scaling, they define the three rows of a linear transform
mapping Fourier XYZ to our linear Fourier sRGB. We de-
termine the scaling of each row such that the maximal value
across all sRGB samples is one. If we concatenate the re-
sulting transform with the one from Fourier coefficients to
Fourier XYZ, we obtain the following mapping:R′c

G′c
B′c

:=

.998343427 2.25573287 2.00536162
.998381251 0.113152869 −1.60073754
.997450035 −1.89517143 1.01411899

c0
c1
c2


We apply the non-linearity that converts rec. 709 into sRGB
to each component to obtain the final Fourier sRGB coef-
ficients Rc,Gc,Bc. With this color space, each sRGB triple
corresponds to a Fourier sRGB triple in [0,1]3.

3.3. Biasing

We can use a lookup table to map sRGB to Fourier sRGB.
The bounded MESE serves to reconstruct the reflectance
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Figure 3: Visualizations of the Fourier sRGB color space.
To the left we show how it encloses all samples needed to
represent sRGB. The range covered by sRGB is grey, the
spectral locus orange. To the right we show the sRGB colors
for various slices through the Fourier sRGB color space.

spectrum for each resulting Fourier sRGB triple. However,
if we apply lossy compression directly to a Fourier sRGB
texture, that may no longer be true. There are Fourier sRGB
triples in [0,1]3 for which no matching reflectance spectrum
exists (see Section 3.3 in [PMHD19]).

We want to be able to treat compression as black box
that may introduce arbitrarily large errors. Thus, we have to
make a best effort to still provide a meaningful reflectance
spectrum for Fourier sRGB triples corrupted in this man-
ner. Our strategy is to manipulate Fourier coefficients during
the reconstruction if they turn out to be invalid. Algorithm 2
projects them back into the valid domain efficiently. The de-
tails, which require an understanding of the inner workings
of the reconstruction, are described in Appendix A.

4. Results

Figure 3b shows sRGB colors for a few slices of the Fourier
sRGB color space. They resemble images where the x and
y coordinates are mapped to R and G of sRGB. Hence,
the overall behavior of Fourier sRGB is similar to sRGB,
as intended. Colors change smoothly throughout the unit
cube [0,1]3. A small error in the Fourier sRGB coeffi-
cients Rc,Gc,Bc corresponds to a small change in color. The
strongest non-linearities are visible in the slice for Bc = 1 be-
cause biasing is necessary for most of the upper third of this
slice. Nonetheless, the behavior is smooth. Fourier sRGB
triples in this part of the color space should only arise from
compression artifacts such that smoothness is all we need.

To verify that compression of Fourier sRGB textures is
unproblematic, we take a 10242 sRGB texture and convert it
to Fourier sRGB. Then we compress the original texture and
the Fourier sRGB texture to 210 kB using JPEG. To mea-
sure the perceptual error in the colors, we convert both com-
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Figure 4: Results of JPEG compression applied to a Fourier
sRGB texture (Figures 4a, 4b) and directly to the original
sRGB texture (Figure 4c).

pressed textures to the CIELAB color space and measure the
Euclidean distance to ground truth per pixel. Figure 4 shows
results. Although errors are distributed differently for sRGB
and Fourier sRGB, the mean errors of 5.04 for sRGB and
5.26 for Fourier sRGB are close. The reconstructed Fourier
sRGB texture (shown in Figure 4a using sRGB) only shows
typical JPEG artifacts.

5. Conclusions

Our approach to spectral rendering used to have a disadvan-
tage over sRGB when it comes to compact storage of tex-
tures. With the introduction of Fourier sRGB, we have elim-
inated this disadvantage. Existing compression methods are
applicable and behave similar to sRGB. Thus, we offer prin-
cipled spectral rendering without increased bandwidth re-
quirements. It is a true alternative to component-wise multi-
plication of RGB triples and has many advantages over other
techniques for reconstruction of reflectance from sRGB.
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k=0 q(l−1)

k γl−k
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(q(l−1)

0 ,...,q(l−1)
l−1 ,0)−u(l)(0,q(l−1)

l−1 ,...,q(l−1)
0 )

1−|u(l)|2

Return 2π(q(m)
0 , . . . ,q(m)
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Appendix A: Biasing of Exponential Moments

The present appendix assumes familiarity with the deriva-
tions described in our prior work [PMHD19]. We use nota-
tions introduced there.

Evaluation of the bounded MESE always includes appli-
cation of Levinson’s algorithm (Algorithm 1) to solve a sys-
tem of linear equations with the Toeplitz matrix C(γ) and
the canonical basis vector e0. Levinson’s algorithm solves
this problem incrementally for growing main minors of the
Toeplitz matrix. If we denote the (l+1)×(l+1) main minor
of the Toeplitz matrix by C(l)(γ) for l ∈ {0, . . . ,m},

C−1
(l) (γ)e0 = 2πq(l).

The bounded MESE is applicable for the bounded
trigonometric moments c ∈ Cm+1 if and only if c0 ∈ (0,1)
and the Toeplitz matrix C(γ) is positive definite. We fix a
small constant ε> 0 (e.g. ε= 10−4) and ensure c0 ∈ [ε,1−ε]
through simple clamping. If the Toeplitz matrix is positive
definite, that also applies to all of its main minors C(l)(γ). In
particular, we know for all l ∈ {0, . . . ,m}

q(l)0 =
1

2π
e∗0C−1

(l) (γ)e0 > 0.

This criterion is not only necessary but also sufficient be-
cause by Cramer’s rule

e∗0C−1
(l) (γ)e0 =

detC(l−1)(γ)

detC(l)(γ)

where detC(−1)(γ) := 1.

Algorithm 2 Levinson’s algorithm with biasing.
Input: Exponential moments γ ∈ Cm+1 and a bias ε > 0.
Output: γ ∈ Cm+1 such that C(γ) is positive definite and
q :=C−1(γ)e0.

q0 := 1
γ0

For l ∈ {1, . . . ,m}:
u := ∑

l−1
k=0 qkγl−k

If |u| ≥ 1:
u := (1− ε) u

|u|

γl := 1
q0

(
u−∑

l−1
k=1 qkγl−k

)
ε := 1

(q0, . . . ,ql) := (q0,...,ql−1,0)−u(0,ql−1,...,q0)
1−|u|2

Return γ, 2π(q0, . . . ,qm)

Since

q(l)0 =
q(l−1)

0

1−|u(l)|2
,

we find that the Toeplitz matrix C(γ) is positive definite if
and only if |u(l)|< 1 for all l ∈ {0, . . . ,m}. With this insight,
we are prepared to introduce our biasing strategy.

If |u(l)| ≥ 1, we replace u(l) by

(1− ε)
u(l)

|u(l)|
.

Then we propagate this change back to γl :

u(l) = q(l−1)
0 γl +

l−1

∑
k=1

q(l−1)
k γl−k

⇒ γl =
1

q(l−1)
0

(
u(l)−

l−1

∑
k=1

q(l−1)
k γl−k

)

Intuitively, the inequality |u(l)|< 1 forces γl to reside in a
disk of radius 1

q(l−1)
0

and with center

− 1

q(l−1)
0

l−1

∑
k=1

q(l−1)
k γl−k.

Our biasing strategy simply pulls it back to the closest point
within this disk. Once γl is biased in this manner, the mi-
nor C(l)(γ) is positive definite but nearly singular. All higher
order moments (if any) are almost uniquely determined.
For reasons of numerical stability, it is beneficial to apply
maximal biasing to these higher-order moments, i.e. to set
ε = 1 after its first use. Algorithm 2 implements our strategy.
It omits iteration indices in identifiers and a few common
subexpressions have not been eliminated for readability.
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