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Sampling Projected Spherical Caps in Real Time
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(a) Point light (1 sample
per pixel, 0.27 ms)

(b) Solid angle sampling
(1 sample per pixel,
0.29 ms)

(c) Our projected solid
angle sampling (1 sample
per pixel, 0.30 ms)

(d) Our projected solid
angle sampling (32 samples
per pixel, 4.4 ms)

Fig. 1. Spherical light sources (b,c,d) give a more pleasant and smooth shading than point lights (a). However,
sampling a spherical light source proportionally to solid angle introduces noise, especially for lighting at
grazing angles. Our projected solid angle sampling produces nearly noise-free results outside of penumbrae.
An adequate sampling of the visibility in penumbrae still requires more samples. Timings are full frame times
for a resolution of 10242 on an NVIDIA RTX 2080 Ti and we use the Disney diffuse BRDF with roughness 0.5.

Stochastic shading with area lights requires methods to sample the light sources. For diffuse materials, the best
strategy is to sample proportionally to projected solid angle. Recent work in offline rendering has addressed
this problem for spherical light sources, but the solution is unsuitable for a GPU implementation. We present a
far more efficient solution. It offers results without noteworthy noise for diffuse surfaces lit by an unoccluded
spherical light source while being only two to three times more costly than simple sampling of the solid
angle. The core insight of the technique is that a projected spherical cap can be decomposed into, or at least
approximated by, cut disks. We present an efficient method to sample cut disks and show how to use it to
sample projected spherical caps. In some cases, our method does not sample exactly proportionally to projected
solid angle but the deviation is provably bounded.
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1 INTRODUCTION
In offline rendering, spherical light sources are the most common light type besides emissive
geometry. They approximate many real-world light sources well (e.g. the sun or light bulbs) and
provide pleasantly smooth shading as well as plausible soft shadows. Lately, these positive traits
have lead to an increased interest in spherical lights for real-time rendering [Dupuy et al., 2017].

Meanwhile, advances in graphics hardware have made real-time ray tracing viable. Distributed
ray tracing for soft shadows is among the first applications of this new hardware. Hence, shading
is no longer computed through a closed-form solution to an integral but approximated by means of
Monte Carlo integration. This approach requires a stochastic sampling of light sources.

It is well-known that the sampling strategy has a major influence on the variance in the resulting
image. A good importance sampling strategy ensures that parts of the light source with a larger
contribution to the reflected radiance are sampled more frequently. For diffuse surfaces, this means
that parts of the spherical light source should be sampled proportionally to their projected solid
angle. Since a diffuse BRDF is nearly constant, results of this strategy show almost no noise outside
of penumbra regions.

Ureña and Georgiev [2018] have recently presented the first practical offline-rendering technique
to sample in this manner. They demonstrate an impressive quality improvement at a cost that is
reasonable in relation to the cost of ray tracing. Furthermore, the technique is compatible with
stratification as it only takes two random numbers as input. However, it is not well-suited for
graphics hardware. It uses inverse function sampling, but performs this inversion by means of
Newton’s method or a fallback to bisection. Performance of such iterative methods on graphics
hardware severely suffers from branch divergence. Beyond that, numerical instabilities necessitate
the use of double-precision arithmetic.

In this paper, we present a far more efficient solution: It is not iterative, does not require lookup
tables and works robustly in single-precision arithmetic. It is based on a novel method to sample a
cut disk uniformly. Like previous work, it is compatible with stratification and depends continuously
on the input. In most cases, the resulting density is exactly proportional to the projected solid
angle. Only when the center of the light source is below the horizon, we allow a provably bounded
deviation in the density. Since we can compute the density exactly, the Monte Carlo estimate
remains unbiased but its variance is slightly higher than with more computationally expensive
solutions [Ureña and Georgiev, 2018].
We validate our technique by rendering ray traced soft shadows for spherical lights on diffuse

surfaces in real time. Our results show almost no noise outside of penumbra regions (Fig. 1). The
quality improvement compared to the less intricate solid angle sampling is greatest for lighting at
grazing angles and with large light sources. Our technique is two to three times more expensive than
basic solid angle sampling, which is a minor part of the shading work anyway. We also compare our
approach to the work of Ureña and Georgiev [2018] and find that it is substantially faster without
significant differences in quality. Full source code for our renderers is made available.

2 RELATEDWORK
The reflection equation is naturally written as an integral over solid angle. To avoid introducing
additional geometry terms with additional variance, Monte Carlo integrators should prefer sampling
proportionally to the solid angle rather than the area of light sources. Therefore, sampling of various
primitives proportionally to their solid angle is a well-studied problem. Uniform samples from the
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solid angle of a sphere, commonly referred to as spherical cap, are obtained by sampling the cosine
between its center vector and the sampled direction uniformly [Wang, 1992]. The solid angle of
triangles can be sampled approximately [Wang, 1992] or exactly [Arvo, 1995] with efficient closed
forms. Polygons may be represented by several triangles but there is also a specialized solution for
rectangles [Ureña et al., 2013]. Tight approximations of disks and cylinders by rectangles lead to a
sampling strategy for these primitives [Gamito, 2016]. Alternatively, the solid angle of disks and
other primitives such as ellipsoids that map to spherical ellipses can be sampled directly [Guillén
et al., 2017, Heitz, 2017].
Sampling the projected solid angle yields even better results (see Section 3.1) but work on this

topic is less extensive. For triangles, there is an approach based on recursive subdivision [Ureña,
2000]. A closed form to compute (but not sample) the projected solid angle of spheres has been
known for a long time [Snyder, 1996]. More recent work [Ureña and Georgiev, 2018] addresses
the sampling of projected spherical caps, just like our work. Since this work is closely related, we
discuss commonalities and differences throughout the paper.
When used for the sampling of light sources, these techniques are part of a larger system.

Stratified sampling guarantees that certain subsets are sampled equally to accelerate convergence
[Christensen et al., 2018]. Many of the sampling techniques above are compatible with stratification
as they use exactly two (quasi-)random numbers to produce one sample [Arvo, 1995, Guillén et al.,
2017, Ureña et al., 2013, Ureña and Georgiev, 2018, Wang, 1992]. Sampling among the hundreds
of thousands of lights in offline rendering necessitates the use of light hierarchies [Conty Estevez
and Kulla, 2018]. For spherical light sources and specular BRDFs, the product of an approximate
specular BRDF and the light source can be sampled exactly [Dupuy et al., 2017]. Related work has
shown how to approximate specular BRDFs to compute lighting from polygonal and spherical light
sources in closed form [Heitz, 2017, Heitz et al., 2016].
Stochastic real-time rendering needs to work with low sample counts and thus denoising is

essential. To ensure that denoising is only needed in penumbra regions, Heitz et al. [2018] use a
ratio estimator that maintains additional screen space buffers and evaluates exact shading without
shadows. Spatial filtering with adaptive filter weights, combined with temporal accumulation, leads
to a filter that is applicable in real time and produces noise-free results from input images path
traced at one sample per pixel [Schied et al., 2017]. This filter introduces more blur for noisy input
such that good importance sampling remains valuable.

3 SAMPLING PROJECTED SPHERICAL CAPS
In the following, we develop our method to sample projected spherical caps. We begin by explaining
why such a strategy reduces variance. Thenwe analyze the geometry of spherical caps and introduce
solutions for three different geometric configurations. Their common building block is a novel way
to sample cut disks. Finally, we combine all solutions into a single sampling procedure.

3.1 A Radiometric Motivation
Our primary motivation is to approximate the lighting from a spherical light source. Consider a
sphere with center q ∈ R3 and radius r > 0 emitting light isotropically with a radiance Le at all
surface points. This light source illuminates a surface element at position p ∈ R3 with unit normal
n ∈ S2 and BRDF f .

According to the reflection equation, we have to integrate over the solid angle of the light source,
which forms a spherical cap on the unit sphere S2:

D :=
{

s − p

∥s − p∥2
| s ∈ q + rS2

}
⊆ S2
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The reflection equation states that the radiance reflected towards directionωo ∈ S2 is

Lo(p,ωo) = Le

∫
D
f (ωo,ωi )V (p, s(ωi ))max{0,nTωi } dωi , (1)

where s(ωi ) ∈ R3 denotes the point where the ray p + tωi first intersects the sphere and the
visibility V is one if the given line segment is unoccluded and zero otherwise.

Equation (1) suggests that a Monte Carlo integrator should sample the spherical cap D uniformly
but this approach is not ideal. The visibilityV (p, s(ωi )) is constant outside of penumbrae and when
the BRDF is diffuse, f is nearly constant. Then the Lambert term max{0,nTωi } is the primary
source of variation in the integrand. Light sources that are partially below the horizon lead to
samples with no contribution. Even for light sources entirely above the horizon, some samples may
have a much larger contribution than others. Lighting at grazing angles and large light sources
provoke this problem. An alternative strategy would sample the area of the light source uniformly
but that would introduce an additional directional cosine and a square falloff term, thus making
matters worse.

To eliminate all geometric terms at once, we rewrite the integral as an integral over the projected
solid angle of the light source. The projected spherical cap is the projection of the parts of the
spherical cap above the horizon to the plane orthogonal to the normal n:

P := {ω − (nTω)n | ω ∈ D with nTω ≥ 0} ⊆ R3

By the Nusselt analog, this allows us to rewrite the reflection Equation (1) as

Lo(p,ωo) = Le

∫
P
f (ωo,ω(ω⊥

i ))V (p, s(ω(ω⊥
i ))) dω

⊥
i

where ω(ω⊥
i ) := ω⊥

i +

√
1 − ∥ω⊥

i ∥
2
2n

undoes the orthogonal projection. A Monte Carlo integrator that approximates this integral by
sampling the projected spherical cap P uniformly (i.e. proportionally to projected solid angle) has
a very low variance for diffuse BRDFs outside of penumbrae. Therefore, we wish to perform this
sampling efficiently.

3.2 The Geometry of Projected Spherical Caps
We begin by analyzing the shape of the projected spherical cap P and introducing a case distinction.
An equivalent analysis is the starting point of Ureña and Georgiev [2018] although our formulation
avoids the introduction of angles to save costly evaluations of trigonometric functions.

The boundary of the spherical cap ∂D is a circle on the unit sphere. Projecting this circle to the
plane orthogonal to n yields an ellipse (Fig. 2a). To characterize this ellipse, we fix an orthonormal
coordinate frame: The z-axis is aligned with the surface normal n. The x-axis is aligned with the
vector towards the light centerq−p and orthogonal ton. Then the ellipse is entirely in the xy-plane
and just like the circle it is symmetric about the xz-plane.

This ellipse characterizes the projected spherical cap P but a case distinction is needed to make
their relation precise.

Case 1. If the spherical cap is entirely above the horizon, the mapping from the xy-plane to the
spherical cap is one to one. Hence, P agrees with the ellipse (Fig. 2a).

Case 2. If the spherical cap intersects the horizon but has its center above it, the same can be
said of the circle ∂D. The ellipse is a subset of the projected spherical cap because projecting points
inside the circle ∂D along z to the upper hemisphere yields points in the spherical cap. Beyond
that, the spherical cap goes all the way down to the horizon. The horizon is the unit circle in the
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Fig. 2. The shape of the projected spherical cap P (shaded yellow in the bottom row) depends on whether it
intersects the horizon and whether its center is above the horizon. Spherical caps entirely below the horizon
are not shown.

xy-plane and thus the ellipse is tangential to the unit circle at the two points where ∂D intersects
the horizon. All points enclosed between the horizon and the line connecting these tangent points
are also part of the projected spherical cap P (Fig. 2b).

Case 3. If the spherical cap intersects the horizon but has its center below it, the ellipse is still
tangential to the unit circle at two points. This time, projecting points inside the circle ∂D along
z onto the upper hemisphere yields points outside the spherical cap. Thus, only points enclosed
between the horizon and the ellipse are part of the projected spherical cap P (Fig. 2c). The ellipse
itself is not contained.

Case 4. The spherical cap is entirely below the horizon. Then the projected solid angle is empty.
This case should be detected and reported back without producing a sample.

Algorithm 1 constructs the local coordinate frame and computes the center c and extent r
of the circle ∂D along each axis. These quantities simultaneously characterize the ellipse in the
xy-plane. It also computes one point t where the ellipse is tangential to the unit circle. We follow
the convention that the extent rx is negative in Case 3 or 4 and that tx ≥ 1 in Case 1 or 4. Thus, all
cases can be identified without additional flags. The elementary geometric constructions that lead
to Algorithm 1 and subsequent algorithms are detailed in the supplementary document.

3.3 Caps Mostly Above the Horizon (Case 2)
To derive our sampling procedure, we first consider Case 2 because it inspires the design decisions
for all three cases. Ureña and Georgiev [2018] solve this case with inverse function sampling using
iterative methods for the inversion.

We obtain a more efficient scheme by cutting the projected spherical cap P vertically along the
line connecting the points where the ellipse is tangential to the unit circle (Fig. 3). The left part is a

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 1. Publication date: May 2019.



1:6 Christoph Peters and Carsten Dachsbacher

Algorithm 1 ComputeGeometry
Input: Surface normal n ∈ S2, vector to the center of a sphere d := q − p ∈ R3 and radius r > 0.
Output: The coordinate frame x,y, z ∈ S2, half the extent of the circle ∂D along each axis r ∈ R3,
the center of this circle c ∈ R3 and the location of one of the two tangent points t ∈ R3.
ωd := d

∥d ∥2
z := n
x := ωd − (zTωd )z, u := 1

∥x ∥2
, x := ux

y := z × x
ry := r

∥d ∥2
, rx := (zTωd )ry , rz := (xTωd )ry

v :=
√
1 − r 2y , cx := (xTωd )v , cz := (zTωd )v

tx := uv , ty :=
√
1 − t2x

Return x,y, z, (rx , ry , rz )T, (cx , 0, cz )T, (tx , ty , 0)T

x

y
tx

cx

2rx

2ry

AE
AD

tx cx
rx

 
A ′

E

tx
AD

Fig. 3. If the spherical cap intersects the horizon but has its center above it, we decompose the projected
spherical cap P into a cut ellipse and a cut unit disk. Through translation and scaling, they become two cut
unit disks.

cut version of the ellipse, whereas the right part is a cut unit disk. Scaling turns the cut ellipse into
another cut unit disk. Thus, we only need a method to sample a cut unit disk to sample P.

We sample the x-coordinate first using inverse function sampling. The area of a unit disk in the
strip between zero and X ∈ [0, 1] is given by

A (X ) :=
∫ X

0
2
√
1 − x2 dx = X

√
1 − X 2 + arcsinX .

To perform inverse function sampling, we need to evaluate this function and its inverse. The former
is trivial. For the inverse, we introduce an efficient approximation with high accuracy along with
the remainder of the sampling procedure in Section 3.6.

Now to sample the projected solid angle P, we first compute the areas of the two cutsAE ,AD > 0.
A threshold on the first random number ξ0 decides which of the two cuts needs to be sampled.
Then the appropriate cut disk is sampled and the result is transformed back to the local coordinate
frame. For Monte Carlo integration, we also need to compute the density of the sampled planar
probability distribution. Since we are sampling uniformly, it is (AE +AD )

−1. All of this is done by
Algorithm 2, which is constructed carefully to ensure a continuous dependence of the outputs on
all inputs.
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Algorithm 2 MostlyAbove (Case 2)
Input: r ,c, t from ComputeGeometry and random numbers ξ0, ξ1 ∈ [0, 1].
Output: Local sampled directionω ′

i and density p(ξ0, ξ1).

AD := π
2 −A (tx ), A′

E := π
2 +A

(
tx−cx
rx

)
, AE := rxryA′

E

p(ξ0, ξ1) := 1
AE+AD

If ξ0 < AE
AE+AD

: // Sample the cut ellipse
dx ,dy := SampleCutUnitDisk(ξ0

AE+AD
AE

A′
E,ξ1)

ωi ,x := rxdx + cx , ωi ,y := rydy
Else: // Sample the mirrored, cut unit disk

dx ,dy := SampleCutUnitDisk((AE +AD )(1 − ξ0),ξ1)
ωi ,x := −dx , ωi ,y := dy

Return
(
ωi ,x ,ωi ,y ,

√
1 − ω2

i ,x − ω2
i ,y

)T
, p(ξ0, ξ1)

Algorithm 3 EntirelyAbove (Case 1)
Input: r ,c from ComputeGeometry and random numbers ξ0, ξ1 ∈ [0, 1].
Output: Local sampled directionω ′

i and density p(ξ0, ξ1).
AE := rxryπ , p(ξ0, ξ1) := 1

AE
dx ,dy := SampleCutUnitDisk(πξ0,ξ1)
ωi ,x := rxdx + cx , ωi ,y := rydy

Return
(
ωi ,x ,ωi ,y ,

√
1 − ω2

i ,x − ω2
i ,y

)T
, p(ξ0, ξ1)

x

y

2rx

      tx = 1

(a) Tangent to the horizon (between Cases 1 and 2)

tx

  rx = 0

(b) Center on the horizon (between Cases 2 and 3)

Fig. 4. How our method achieves continuity across cases. If the spherical cap is tangent to the horizon,
sampling the entire ellipse gives the same result as sampling a full ellipse and an empty cut disk. If the center
is on the horizon, sampling an empty ellipse and a cut disk gives the same result as sampling the cut disk and
applying an identity warp.

3.4 Caps Entirely Above the Horizon (Case 1)
If the spherical cap is entirely above the horizon, we only need to sample an ellipse uniformly. The
standard approach would be to sample the unit disk in polar coordinates and to scale the result to
an ellipse as is done in the radial approach of Ureña and Georgiev [2018]. In our case, this solution
would lead to a discontinuity when the spherical cap begins to intersect the horizon.
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x

y

tx

ty

(a) Top view of the cut disk

y

z tycz + rz

(b) Projected into the
yz-plane

y

z cz + rz

(c) Scaled uniformly
along z

y

z cz + rz

(d) Scaled non-uniformly
along y

Fig. 5. The steps used to warp the cut disk onto the projected spherical cap P. The warped, cut disk is shown
in blue, areas where it overlaps the projected spherical cap P are green. The cut disk is projected onto the
hemisphere and into the yz-plane (b), the resulting semicircle is scaled uniformly along the z-axis to make
its height match the spherical cap (c) and then scaled non-uniformly along the y-axis to bring it into full
agreement (d).

To avoid this discontinuity and to have fewer instructions that execute in one branch only, we
reuse our method to sample cut disks. The disk is not actually cut as it corresponds to the entire
ellipse (Fig. 4a). Algorithm 3 implements this method.
Sampling in terms of polar coordinates is slightly faster (see Section 4.4) but the difference is

small enough that we prefer to avoid the discontinuities as they may ruin stratification across
pixels and violate assumptions of some algorithms.

3.5 Caps Mostly Below the Horizon (Case 3)
Uniform sampling of the lune formed between the ellipse and the unit disk is a difficult problem.
Unlike the cut disk, the lune depends on two independent parameters cx and rx . Ureña and
Georgiev [2018] address this case by iterative inversion. We have not found an exact closed-form
solution either. Nonetheless, we avoid a compromise on efficiency since we target a real-time
setting. Instead we compromise quality to a small extent by allowing a bounded deviation from
perfectly uniform sampling.
We once more sample a cut disk and then we warp it onto the lune. This warp is carefully

designed to avoid unbalanced changes in area. Since the corresponding density is computed exactly,
it does not introduce bias but does increase the variance slightly.

We begin by sampling the cut disk given by the tangent points uniformly (Fig. 5a). To understand
the functioning of the warp, it is useful to project the sampled cut disk and the lune back onto the
hemisphere and then into the yz-plane. The cut disk maps to a semicircle while the lune is a cut
ellipse (Fig. 5b). We scale the cut disk uniformly along the z-axis such that it has the same height
as the lune (Fig. 5c). Then we scale y-coordinates dependent on z to bring the cut disk into full
agreement with the lune (Fig. 5d). Finally, we compute x such that the sampled direction has unit
length again.

Note that the cut disk agrees with the lune when the center of the spherical cap is exactly on the
horizon (Fig. 4b). In this case, the warp is the identity and the behavior across cases is continuous
once more. Algorithm 4 implements our strategy.

While the construction abovemay seem peculiar, it is the only one amongmany tested alternatives
that gives a bounded variation for the probability density function. In the supplementary document,
we prove that for a fixed spherical cap

maxξ0,ξ1∈[0,1] p(ξ0, ξ1)
minξ0,ξ1∈[0,1] p(ξ0, ξ1)

≤
cx − rx

tx

√
tx − (cx + rx )

−rx
.
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Algorithm 4 MostlyBelow (Case 3)
Input: r ,c, t from ComputeGeometry and random numbers ξ0, ξ1 ∈ [0, 1].
Output: Local sampled directionω ′

i and density p(ξ0, ξ1).
AD := π

2 −A (tx )
dx ,dy := SampleCutUnitDisk(AD (1 − ξ0),ξ1)

dz :=
√
1 − d2x − d2y

ωi ,z := cz+rz
ty

dz

sy := ry
√

r 2z−(ωi ,z−cz )2

r 2z (t 2y−d2
z )

, ωi ,y := sydy

ωi ,x :=
√
1 − ω2

i ,y − ω2
i ,z

p(ξ0, ξ1) := −
t 2y

(cz+rz )2AD

ωi ,x
dx sy

Return
(
ωi ,x ,ωi ,y ,ωi ,z

)T, p(ξ0, ξ1)

-1 0 1
X

-2

-4

0
4

2

A

A(X)

-2 -4 0 4 2
A

-1

0

1

X

X(A)

0 4 2
A

0

1

Scaling (2 A)2
3

0 4 2
A

5 10 5

0

5 10 5
Error in X(A) with a quintic fit

Fig. 6. The function A (X ), its inverse, the error of our approximation to the inverse and the non-polynomial
factor used in the approximation.

Further analysis of this bound reveals that

maxξ0,ξ1∈[0,1] p(ξ0, ξ1)
minξ0,ξ1∈[0,1] p(ξ0, ξ1)

≤

{
2 if ∥d ∥2 ≥ 1.094r ,
√
2 if ∥d ∥2 ≥ 2r .

In consequence, for a shading point that is at least the sphere radius r away from the sphere surface,
the most frequently sampled region may only obtain a 42% greater sample density than the most
rarely sampled region. Even at a distance of 0.094r the sample density can only be 100% greater.
In stark contrast to that, solid angle sampling has unlimited oversampling near the horizon. Our
comparisons to the work of Ureña and Georgiev [2018] in Section 4.3 confirm that the resulting
reduction in quality is minimal.

3.6 Sampling Cut Disks
We now introduce the efficient method for sampling cut disks that is used in all three cases. The
key challenge is to find the inverse of the function A : [−1, 1] → [− π

2 ,
π
2 ] (Fig. 6) given by

A (X ) =

∫ X

0
2
√
1 − x2 dx = X

√
1 − X 2 + arcsinX .

Note that an inverse exists because the integrand is positive for all x ∈ (−1, 1). We could compute
the inverse numerically using Newton’s method but our goal is to avoid such iterative methods. It
is more efficient to compute the inverse for this single known function in one variable by crafting a
specialized fit.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 1. Publication date: May 2019.



1:10 Christoph Peters and Carsten Dachsbacher

Algorithm 5 SampleCutUnitDisk
Input: An offset area A ∈ [− π

2 ,
π
2 ] and a random number ξ1 ∈ [0, 1].

Output: A point dx ,dy in the unit disk. The area to the left of dx is exactly π
2 +A and a uniform ξ1

yields uniform dy across the height of the disk at dx .
д(|A|) := ((((−0.0079908617|A| + 0.0238255409)|A| − 0.0283903598)|A|

+0.0198450184)|A| − 0.0574433620)|A| + 0.7400712465
dx := signA

(
1 − g(|A|)

( π
2 − |A|

) 2
3
)

dy := (2ξ1 − 1)
√
1 − d2x

Return dx ,dy

Fig. 6 shows the inverse function X (A) := A−1(A). Since it is odd, the fit only has to deal with
positive inputs. The derivative of A (X ) (namely 2

√
1 − x2) is zero for X = 1 and thus the derivative

of X (A) approaches infinity asA → π
2 . This poses a challenge for fits with e.g. polynomials because

they can impossibly reproduce an infinite derivative. To overcome this problem, we introduce a
non-polynomial factor that has a similar asymptotic behavior at π

2 (Fig. 6). Then our fit takes the
form

X (A) ≈ 1 − д(A)
(π
2
−A

) 2
3

where A ∈ [0, π2 ] and д is a polynomial.
To determine the coefficients of the polynomial, we start from a weighted least squares fit and

use it as initialization for a generic nonlinear optimizer to minimize the maximal approximation
error

max
A∈[0, π2 ]

����X (A) −

(
1 − д(A)

(π
2
−A

) 2
3
)���� .

This optimization realizes a maximal error of 1.3 · 10−4 using a cubic polynomial, 4.6 · 10−5 using a
quintic polynomial and 3.0 · 10−5 using a sextic polynomial. We have settled for the quintic. Fig. 6
shows the resulting error distribution.

Algorithm 5 demonstrates how to use this inverse to sample a cut disk. It evaluates the polynomial
д using the Horner scheme.

3.7 The Complete Sampling Algorithm
Now that the last building block is available, Algorithm 6 combines all previous algorithms into a
single sampling procedure. Note that most of the work is done in all three cases such that branch
divergence is reasonably low. In particular, all three sampling procedures invoke Algorithm 5 once.
For high-quality results, a single light source needs to be sampled more than once per pixel. In

this case, Algorithm 6 should be split up to compute intermediate results that are independent of the
randomnumbers ξ0, ξ1 only once. An implementation should also eliminate common subexpressions,
which we kept in the pseudocode for the sake of readability. Algorithm 6 evaluates various square
roots and the arcsine. Since the exact inputs may be arbitrarily close to the boundary of the
respective domains, they should be clamped to avoid that rounding errors lead to not-a-number.
Our reference implementations in HLSL and C++ include all these optimizations.

4 RESULTS
We now evaluate our technique in several ways. First, we review the sample sets with regard to
their stratification. Then we describe the real-time renderer and the offline-renderer used for the
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Algorithm 6 SampleProjectedSphericalCap
Input: Surface normal n ∈ S2, vector to the center of a sphere d := q − p ∈ R3, radius r > 0 and
random numbers ξ0, ξ1 ∈ [0, 1].
Output: A sample of the spherical capωi and the corresponding density p(ξ0, ξ1) with respect to
projected solid angle.
x,y, z, r ,c, t := ComputeGeometry(n,d,r)
If rx ≥ 0 and tx ≥ 1:

ω ′
i ,p(ξ0, ξ1) := EntirelyAbove(r,c,ξ0,ξ1)

Else if rx ≥ 0:
ω ′
i ,p(ξ0, ξ1) := MostlyAbove(r,c,t,ξ0,ξ1)

Else if tx < 1:
ω ′
i ,p(ξ0, ξ1) := MostlyBelow(r,c,t,ξ0,ξ1)

Else:
The spherical cap is entirely below the horizon.

Return ωi ,xx + ωi ,yy + ωi ,zz, p(ξ0, ξ1)

(a) Ureña and Georgiev
parallel

(b) Ureña and Georgiev
radial

(c) Solid angle sampling
[Wang, 1992]

(d) Our projected solid
angle sampling

Fig. 7. Samples produced by various techniques for the projected spherical caps in Fig. 2. The random numbers
ξ0, ξ1 ∈ [0, 1] are taken from a blue noise point set with 1024 points. Samples below the horizon are shown in
red.

remainder of the evaluation. Finally, we discuss the quality improvement in the resulting images
and provide run time measurements.

4.1 Quality of the Samples
To assess the quality of the sample sets produced by our technique and related work, we input
random numbers with a high-quality blue noise spectrum1. Ideally, this blue noise spectrum is
preserved such that samples cover the entire projected solid angle well rather than lumping together.
Fig. 7 shows the results.

For all techniques, distortions are strongest where ξ0 is close to zero or one. The parallel approach
of Ureña and Georgiev [2018] uses ξ0 to determine the y-coordinate, so distortions are strongest
at the top and the bottom. With their radial approach, the largest distortions appear at the center
of the ellipse and at the boundary of the projected spherical cap. Our approach has the strongest
distortions in the left and right parts. When the center of the spherical cap is above the horizon,
1Specifically result 1 from the work of de Goes et al. [2012]:
geometry.caltech.edu/BlueNoise/figs/pointsets/ours_init_ps_1024pts_1.dat
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the parallel approach and our method tend to preserve the blue noise spectrum better than the
radial method. For Case 3, the three techniques give similar results. Solid angle sampling produces
far too many samples near and even below the horizon. Preservation of the blue noise spectrum is
similar to the radial approach. The supplementary video includes an animated version of Fig. 7.

4.2 Our Renderers
Our real-time renderer uses the Falcor rendering framework [Benty et al., 2018] and Direct3D 12
with the ray tracing API DXR. It is a basic deferred renderer that shades each diffuse pixel using all
spherical light sources in the scene with a fixed number of samples per light. Sampling of light
sources is done with our method, solid angle sampling [Wang, 1992] or the radial approach of
Ureña and Georgiev. Random numbers are taken from 256 independent 64 × 64 blue noise textures
generated with the void-and-cluster method [Ulichney, 1993]. This approach does not provide any
stratification for the random numbers used within one pixel but good stratification across pixels.
For each sample, one any-hit ray is traced to determine visibility of the light source. We found
that it is crucial for a good performance to unroll loops with ray tracing instructions, presumably
because it allows scheduling multiple rays for a single thread at once.

The renderer uses the Disney diffuse BRDF with a roughness of 0.5 for all surfaces [Burley, 2012].
Computing the shading for a spherical light with this BRDF in closed form would be challenging,
but our sampling produces an unbiased estimate with very low variance. We considered combining
our technique with joint importance sampling for specular BRDFs [Dupuy et al., 2017] but in their
work the authors found that simple uniform distributions lead to better approximations of specular
BRDFs than clamped cosines.

We have ported the CPU implementation2 of the radial approach of Ureña and Georgiev [2018] to
HLSL for use in our real-time renderer. This version occasionally produces not-a-number because
Direct3D does not support double precision for trigonometric functions and therefore we run the
entire technique in single precision.
To compare to their techniques in the environment they were designed for, we additionally

implemented our deferred shading pass in a simplistic offline renderer. It takes a G-buffer written
by the real-time renderer and shades all pixels in the same way as the real-time renderer but
without ray traced shadows. The implementation uses multithreading but no SIMD intrinsics. The
techniques of Ureña and Georgiev [2018] use double precision, while our technique uses single
precision. The supplementary material includes the full source code of both renderers.

4.3 VisualQuality
Fig. 8 shows results of our real-time renderer. The scene mostly consists of flat normal-mapped
surfaces. Since the light sources are mounted to the walls, the Lambert term falls off to zero.
Therefore, the variance obtained with solid angle sampling on the walls is high for the respective
light source. Samples close to the horizon have a minuscule contribution. On the other hand, our
projected solid angle sampling only exhibits minimal noise due to the deviations of the Disney
diffuse BRDF from a constant function. Both techniques lead to noisy penumbrae but in the case of
solid angle sampling this noise comes on top of the other noise. On the ground, both techniques
yield fine results since it is lit from above and the Lambert term is consistently high.

Fig. 1 demonstrates the behavior of solid angle sampling and our projected solid angle sampling
on curved surfaces. Naturally, any curved surface will be lit at grazing angles in some locations
such that the issues of solid angle sampling become visible. These areas grow as the light source

2github.com/carlos-urena/psc-sampler
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(a) Solid angle sampling,
1 sample

(b) Our projected solid
angle sampling, 1 sample

(c) Solid angle sampling,
16 samples

(d) Our projected solid
angle sampling, 16 samples

Fig. 8. An arcade lit by two spherical light sources that are mounted to the walls. With solid angle sampling,
noise is still noticeable at 16 samples per pixel per light. Results of our technique are practically noise-free at
one sample per pixel per light.

(a) Solid angle sampling [Wang, 1992]

(b) Our projected solid angle sampling

(c) Ureña and Georgiev parallel

(d) Ureña and Georgiev radial

Fig. 9. A plane at z = 0 lit by a sphere of radius r = 1 with center at qz ∈ {2, 0.1,−0.9}. The brightness has
been adjusted for each value of qz .

grows and they occur where spherical light sources offer more compelling shading than point
lights.

Fig. 9 shows renderings of our offline renderer for a simple plane using one sample per pixel. By
moving the light source up or down, we explicitly select different cases. The quality of solid angle
sampling declines quickly as the light source sinks into the plane. In the extreme case qz = −0.9,
there are only few non-zero samples remaining. The case qz = −0.9 also triggers the worst case of
our sampling. Shading points next to the light source sample through Case 3. This leads to moderate
noise, which is not present with the techniques of Ureña and Georgiev [2018]. As predicted, it
quickly falls off as we move away from the light source. Shading points next to the light source are
often overexposed such that this drawback is easy to tolerate. If the light center is above the plane,
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Table 1. The cost of shading in the real-time renderer for the scene in Fig. 9. Timings are given in picoseconds
per sample.

1 sample per light 500 samples per light
qz 2.0 0.1 -0.9 2.0 0.1 -0.1 -0.9

Baseline 5.1 5.2 5.0 5.0 5.2 5.2 5.0
Solid angle sampling [Wang, 1992] 10.3 10.5 8.8 8.3 8.5 8.4 6.5
Our projected solid angle sampling 15.8 21.5 19.9 9.6 10.0 10.8 10.8

Ureña and Georgiev radial 18.6 142.6 185.9 9.1 121.3 72.2 164.1
Radial−Baseline
Ours−Baseline 1.3 8.4 12.2 0.9 24.3 11.8 27.5

all three techniques for projected solid angle sampling give very similar results. Noise is only due
to deviations of the Disney diffuse BRDF from an ideal Lambertian BRDF.

The supplementary video features an example with moving light sources and demonstrates how
animated noise makes the artifacts in penumbrae less noticeable.

4.4 Run Time
We measure run times on a system with an Intel Core i7-8700K having 12 logical cores and an
NVIDIA RTX 2080 Ti, which features dedicated ray tracing cores. Although it is not the focus of
our work, Fig. 1 includes timings, which are dominated by the cost for tracing shadow rays. The
mesh has 71k triangles and 520k pixels require ray tracing. Even at 32 samples per pixel, shading
only takes 4.4 ms. While this scene is simple, it shows that new hardware has brought ray traced
real-time soft shadows into reach.
Table 1 lists timings of our real-time renderer with ray tracing disabled. They are full frame

times divided by the total number of samples. To ensure that the arithmetic work dominates, we
have used 500 light sources with one sample per pixel or one light source with 500 samples per
pixel. We also measure a baseline that evaluates the Disney diffuse BRDF using a meaningless
direction constructed from blue noise. The difference to timings for proper sampling techniques
approximates the cost of sampling itself.
With solid angle sampling the cost decreases as the light source sinks into the plane because

BRDF evaluation is skipped randomly when samples are below the horizon. Disregarding this
effect, solid angle sampling takes 5.2 ps for the first sample and 3.3 ps per additional sample. Our
technique becomes more expensive as it transitions from Case 1 to 2 or 2 to 3. In the worst case, it
takes 14.9 ps for the first sample and 5.8 ps per additional sample. In other words, it is roughly three
times more expensive than solid angle sampling with one sample per light and twice as expensive
with many samples. This relative increase is significant but the absolute numbers are low. Our
technique takes 0.21 ms to produce samples for 1920 · 1080 pixels with one light source and 16
samples in the worst case. The radial approach of Ureña and Georgiev [2018] performs similarly
when it only has to sample an ellipse (Case 1, qz ≥ 1) but is 8.4 to 27.5 times slower in the other
cases.
Table 2 provides timings of the offline renderer. Comparing our projected solid angle sampling

to solid angle sampling [Wang, 1992] leads to similar conclusions as in the real-time renderer. Note
however that our technique is roughly 800 times faster on GPU than on CPU. The parallel and
radial approaches of Ureña and Georgiev [2018] perform similar to each other. For Cases 2 and
3 (i.e. qz < 1), the radial approach tends to be slower but it is much faster in Case 1 because it
simply samples an ellipse in the usual way. This is why the authors prefer the radial approach. In
Case 1, the radial approach actually has a slightly lower cost per sample than our approach. As
explained in Section 3.4, we could sacrifice the continuous behavior across cases to implement the
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Table 2. The cost of shading in the offline renderer for the scene in Fig. 9. Timings are given in nanoseconds
per sample.

1 sample per light 500 samples per light
qz 2.0 0.1 -0.9 2.0 0.1 -0.1 -0.9

Baseline 2.1 2.1 2.2 2.0 2.1 2.0 2.1
Solid angle sampling [Wang, 1992] 8.2 7.4 6.3 4.8 4.0 3.8 3.1
Our projected solid angle sampling 10.1 12.9 15.1 6.3 6.4 8.4 8.4

Ureña and Georgiev radial 13.6 60.2 59.8 5.7 43.6 64.5 41.4
Ureña and Georgiev parallel 26.1 40.4 42.8 18.0 28.2 29.2 31.0

Radial−Baseline
Ours−Baseline 1.4 5.4 4.5 0.9 9.6 9.8 6.2

same fast solution but prefer not to do so for the sake of better stratification. In other cases, the
radial approach is on average almost ten times slower than our technique. The cost does not only
depend on the case but also on the specific value of qz and even on the random numbers. These
divergent branches lead to a greater disadvantage on the GPU in spite of the use of single-precision
arithmetic.

5 CONCLUSIONS
For the time being, our technique is the only real-time technique to sample the projected solid
angle of an area light. Given the great benefit for diffuse BRDFs and the negligible cost, this is a
substantial step towards physically based area lights with ray traced soft shadows. Furthermore, it
offers efficient shading for arbitrary diffuse BRDFs. Sampling techniques for specular BRDFs and
spherical light sources are already available [Dupuy et al., 2017]. Combined with sophisticated
reconstruction [Schied et al., 2017], accurate soft shadows in games and other real-time applications
are in reach.
We also believe that our technique will be attractive for offline renderers. As is, we already

demonstrate a significant reduction in cost with a minor reduction in quality compared to prior
work [Ureña and Georgiev, 2018]. Considering that our technique is designed to run well on GPUs,
it is also a good candidate to benefit from SIMD instruction sets on CPUs for further speedups.
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