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ABSTRACT
Believable immersive virtual environments require accurate sound
in addition to plausible graphics to be convincing to the user. We
present a practical and fast method to compute sound reflections
for moving sources and listeners in virtual scenes in realtime, even
on low end hardware. In a preprocessing step we compute transport
paths starting from possible source positions and store virtual dif-
fuse sources along the path. At runtime we connect these subpaths
to the actual source position and the virtual diffuse sources to the
microphone to compute the impulse response. Our method can be
implemented as a single pass GPU rendering process and requires
only a few milliseconds for each update.
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1 INTRODUCTION
Especially the recent revival of consumer virtual reality applications
has highlighted the need of convincing acoustics simulations for
immersive experiences. However, to avoid discomforting side effects
to the user, consistent high framerates are also required. This is
challenging even for modern high performance graphics hardware.
Therefore, few computational resources tend to be available for
other tasks, such as the simulation of sound propagation.

Fast simulation methods based on geometric acoustics, most
notably path tracing, have been developed during the recent years.
The room acoustic rendering equation [Siltanen et al. 2007], which
is conceptually similar to the rendering equation published by Ka-
jiya [1986], provides the theoretical basis for ray-based simulations
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of sound reflections. Methods based on geometric acoustics are es-
pecially suited to larger scale scenes. In contrast, wave propagation-
based methods (e.g. Boundary Element Method, Finite-Difference
Time-Domain with Adaptive Rectangular Decomposition [Mehra
et al. 2012], or Pseudo-Spectral Time Domain Methods) quickly be-
come infeasible for large and complex scenes due to their tendency
to scale polynomially, even though those methods model diffraction
effects directly.

In this paper, we present a practical approach to computing
believable high order impulse responses for arbitrary scenes on
a GPU in real time using ray acoustics. In a preprocessing step
it computes path sections along which sound can be reflected. At
runtime, the normal hardware rendering pipeline is used to connect
these sections to the source and microphone and to compute the
room impulse response. Our method allows sources and listeners to
move dynamically through a scene while the scene itself is assumed
to be static. It is computationally inexpensive and easy to implement.
We show that it is able to achieve real time performance in complex
environments even on low end hardware.

2 RELATEDWORK
Just as ray optics is a valid model of light behaviour when wave-
lengths can be considered small compared to the scene geometry,
the same holds for ray acoustics. Siltanen et al. [2007] use this fact to
derive a room acoustic rendering equation using only ray acoustics
and the requirement that reflections can be modelled using acous-
tic BRDFs. The result has the structure of the familiar rendering
equation with the addition of retardation due to the finite speed of
sound.

We make use of these similarities. Our method can be consid-
ered a variation of manylight methods, which have been used to
compute indirect illumination based on few virtual light sources
distributed in the scene by following paths from a light source.
Originally developed by Keller [1997], these methods have evolved
significantly [Dachsbacher et al. 2014]. As these methods trace
paths starting from the light sources in the scene they are inher-
ently related to Monte Carlo Light Tracing [Dutré et al. 1993]. We
exploit this concept to reuse acoustic transport paths.

Many methods have been proposed for interactively finding
purely specular paths through a scene. Both beam tracing and
path tracing based methods have been proposed. Funkhouser et
al. [2004] proposed an interactive beam tracing method based on
precomputing all possible propagation paths in a static scene. AD-
Frustum [Chandak et al. 2008] performs beam tracing with sim-
plified beam-geometry intersection to find potential paths to the
listener which are then validated by ray tracing. GSound [Schissler
and Manocha 2011] shoots stochastic paths from the source into
the scene. Lists of intersected primitives are stored for valid paths
for fast path re-validation after the source or listener moved. This
caching scheme was later extended to include diffuse paths and
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diffraction [Schissler et al. 2014]. Recently, a combination of dif-
fuse path caching and clustering of primary sources has been pro-
posed to compute room reverb for large numbers of sources inter-
actively [Schissler and Manocha 2016]. Bidirectional path tracing
combined with path caching can be used to obtain accurate near-
realtime diffuse impulse responses in complex scenes [Cao et al.
2016]. An error metric based iterative distribution of sample budgets
to reflection orders improves convergence of this method.

Antani et al. [2011] proposed precomputing the diffuse transfer
between sample points placed on scene surfaces. The full time-
dependent transfer between each pair of points is computed. To
store the resulting set of echograms in memory, they created a
lossy compression scheme. At runtime, these transfer echograms
are accumulated to form the late impulse response.

Raghuvanshi et al. [2014; 2010] extracted a parameterised shape
of the room reverb from wave based precomputations of the room
acoustics in a virtual scene with source positions throughout the
scene and reconstructed the reverb based on a fast parameter lookup
during runtime. Cheng [2014] presented an interactive acoustic
raytracer and auralization that is executed entirely on the GPU.

3 ROOM ACOUSTICS USING REUSABLE
TRANSPORT PATHS

We briefly recapitulate the room acoustic rendering equation [Silta-
nen et al. 2007]:

Lo (xi−1 ← xi ) = Le (xi−1 ← xi )+∫
M

f (xi−1 ← xi ← xi+1)G
′(xi ↔ xi+1)Li (xi ← xi+1)dAxi+1 .

(1)

The points x0...xn are path vertices. x0 is the microphone location
and xn is the source location xS . The other xi are points on surfaces.
This equation describes the radiance emitted from a point xi on a
surface towards a point xi−1 as the sum of the emission Le and the
reflection of all incoming radiance according the BRDF f . G ′ is an
extended geometry term containing a retardation operator Sr :

G ′(xi ↔ xi+1) = S |xi−xi+1 | G(xi ↔ xi+1) . (2)

The retardation operator represents the travel time of sound with
velocity c over a distance r :

Sr I (t) = I
(
t − r

c
)
. (3)

Multiple applications of this operator result in cumulative time
shifts:

Sr1Sr2 I (t) = Sr1+r2 I (t) = I
(
t −

r1 + r2
c

)
. (4)

We want to compute the reflected sound intensity IM from all
scene surfaces arriving at a microphoneM . A microphone registers
incoming sound according to its directional characteristics. This
results in the integral

IM (x0) =

∫
M

WM (x0 ← x1)L0(x0 ← x1) dAx0 , (5)

where the reflected sound is the result of multiple reflections of the
radiance LS emitted by a sound source:

L0 =
∞∑
n=1

∫
Mn−1

n−1∏
i=1

f (xi−1 ← xi ← xi+1)G
′(xi↔xi+1)

· LS (xn−1 ← xn ) dAx1 . . .dAxn−1 . (6)

This integral equation describes the sound propagating of all purely
reflective paths within the scene. The points x0...xn are path ver-
tices. x0 is the microphone location and xn is the source location
xS . The other xi are points on surfaces.

Denoting the sequence of points x0...xn as xn and using the
definitions

Ti = f (xi−1 ← xi ← xi+1)G
′(xi↔xi+1) (7)

and

T (xn ) =
n−1∏
i=1

f (xi−1 ← xi ← xi+1)G
′(xi↔xi+1) (8)

=

n−1∏
i=1

Ti (9)

we can rewrite equations 5 and 6 in the form

P(xn ) =

∫
M

· · ·

∫
M︸       ︷︷       ︸

n−1 times

Le (xn−1 ← xn )T (xn )dAx2 . . .dAxn−1 (10)

IM (xn ) =

∫
M

WM (x0 ← x1)P(xn )dAx1 (11)

with IM (x0) being the sum over all IM (xn ). For a path with two or
more intermediate vertices, we split the integrand into three factors:
the first reflection of sound at a surface, the last reflection before
reaching the microphone and the third part for all the remaining
reflections. Formally, we rewrite equation 9 thus as:

T (xn ) = T1 ·

(n−2∏
i=2

Ti

)
·Tn−1 (12)

Here, T1 corresponds to the last reflection before the microphone
(hereafter microphone segment, yellow segments in Fig. 1c), Tn−1
corresponds to the first reflection from the source (hereafter source
segment, green segment in Fig. 1c) and the product inbetween is
the transport path (red subpath in Fig. 1c). The transport path part
is naturally independent of the source and microphone locations
and can therefore be reused if either moves as long as visibility
along the path remains unchanged. This allows us to create trans-
port paths in a precomputation step and to only update the source
and microphone segments during runtime. This is central to our
algorithm.

In the case of a path of length one, there is only a single reflection.
Then, P(x1) equals 1 and the integral in this case becomes:

IM (x0) =

∫
M

WM (x0 ← x1)f (x0 ← x1 ← x2)·

G ′(x1 ↔ x2)Le (x1 ← x2)dAx2dAx1 . (13)

Obviously, these paths cannot be segmented, but only require a sin-
gle BRDF evaluation. This is a trivial special case in our algorithm.
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4 REAL-TIME IMPULSE RESPONSE
COMPUTATION

We now present a simple and practical real-time algorithm that
exploits the fact that the transport paths described above can be
reused. In a preprocessing step, it computes a set of valid transport
paths throughout the scene. During runtime it iteratively connects
them to the current source and microphone position to compute
updated room impulse responses.

We pick a set of evenly distributed points on the scene surfaces
as starting points for the transport paths. Typically between 10000
and 100000 starting points are required, depending on the scene.
For each starting point, we then trace a random path through the
scene. The initial direction must be sampled uniformly regardless
of the BRDF as the incoming direction at this point is not known,
making importance sampling impossible. All further reflections
along the path use importance sampling, though. For each new
vertex that is appended to the path, we treat the resulting path as a
separate transport path that can be used during runtime and store
it. Specfically, we store:

• the path length,
• the starting point (location, normal, outgoing direction, ma-
terial),
• the intersection point (location, normal, incoming direction,
material),
• the value of the product

∏n−2
i=2 Ti .

The latter product does not exist for paths with only a single reflec-
tion. The contribution of these short paths can be determined solely
by the location and material properties of the single path vertex.
Thus, we mark these paths with a flag. These paths are connected
to the source and microphone at runtime.

We terminate the paths after they reach a predefined (geomet-
ric) length that corresponds to a user-specified impulse response
duration to avoid any bias in the result. Shorter paths would result
in missing contributions at the end of the impulse response if the
connections to the source and microphone are both so short that
the total possible path length is shorter than the desired impulse
response length. Conversely, precomputed paths need not be longer
because the connections to the source and microphone will always
add additional signal runtime and therefore move the transport
path contribution beyond the desired impulse response length.

After this path generation, we can iteratively generate an impulse
response from the stored paths for arbitrary source and microphone
positionswithin the scene.We recompute full paths by reconnecting
the transport paths to the current source and microphone positions.
This requires testing the visibility of the starting point from the
source location and the end point from the microphone location.
If both tests succeed, the completed path contributes to the room
impulse response and the contributions of the source segment and
microphone segment need to be computed. Otherwise, the path
does not contribute and is discarded. The final contribution of the
path is accumulated in a histogram of average contributions over
time (described in section 5). Both visibility checks for each path
are from the same fixed source or microphone position and can be
performed using shadowmapping. Due to this and the precomputed
path contribution, updating the impulse response is very fast.

Note that the explicit connections required in the source and
microphone segments contain the geometry term with an inverse
square distance to the source or microphone, respectively. It is
well known that these terms diverge for small distances, resulting
in paths with overly high contributions which distort the final
histogram and need to be suppressed [Dachsbacher et al. 2014].
We can achieve this easily by clamping the product of the squared
distances of source and microphone. We found that clamping each
geometry term individually is much less effective because it does
not cover the case where the source and microphone distances are
still in an acceptable range individually, but their combined product
is small enough to show divergent behaviour.

5 ALGORITHM IMPLEMENTATION
Our algorithm has an initialization phase that creates the transport
paths and uploads them to the GPU. At runtime, it uses the GPU’s
rendering pipeline to iteratively update a spectral room impulse re-
sponse histogram and downloads it to the host where it is processed
and convolved with the actual sound signal.

We compute room impulse responses for multiple frequency
bands simultaneously. We allocate a two-dimensional single chan-
nel floating point texture in which the final result is accumulated.
There is one row in this texture for each frequency band and one
column for each histogram bin (time axis). The choice of time
resolution of the histogram is a tradeoff between resolution and
convergence speed. A higher number of narrower histogram bins
captures more details in the impulse response but also requires
more contributions to achieve convergence. We find that suitable
histogram bin sizes are between 1 and 5 milliseconds. We chose
to use 12 bands (every other band of the Bark scale) in our imple-
mentation. This scale has perceptually equally important frequency
bands [Zwicker 1961]. The layout of the histogram texture allows
us to accumulate path contributions by rendering vertical lines
across the histogram texture with additive blending enabled. This
design choice allows us to make use of the rendering pipeline with
only simple vertex and fragment shaders.

5.1 Initialization Phase
We use a simple path tracer to sample the transport paths as de-
scribed in section 4. We generate many transport paths with dif-
ferent end points from the same starting points and store the data
for each separately. Furthermore, as we need to render a line for
each transport path during runtime, both vertices must have ac-
cess to this information. To avoid needless data duplication in the
vertex buffer, we store most information in a set of textures that is
referenced by the vertex buffer by index instead.

As illustrated in Fig. 3, we store the position, normal, and outgo-
ing direction of the starting point in a three channel floating point
texture, and the position, normal, and incoming direction of the
end point in another. The throughput and time delay are stored in
separate single channel floating point textures. The vertex buffer
then only needs to contain indices referencing the starting points
and materials of each path for each vertex. The end points, however,
are arranged in the same order as the vertices in the vertex buffer.
The vertex shader can thus determine the endpoint index based on
the current vertex ID.
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(a) (b) (c)

Figure 1: Our algorithm selects uniformly distributed random starting points (a) from which it traces random transport paths
through the scene in a precomputation step (b) and iteratively connects them to the source and microphone at their current
locations during runtime to compute the corresponding impulse response contributions (c).

Precomputation (CPU)

sample starting 
points

trace transport
paths

vertex shader

connect paths compute path
travel time

compute spectral
contribution

fragment shader blending stage

accumulate
impulse response

Runtime (GPU)

Figure 2: Schematic overview over the processing steps of our algorithm: a precomputation step traces transport paths through
the scene. At runtime, the rendering pipeline is used to iteratively reconnect these paths to the source andmicrophone to form
full paths. Their contribution is added to an impulse response histogram.
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Figure 3: Data duplication on the GPU is reduced by storing
most data in textures and using the vertex buffer only for
indexing into these textures. The index for transport path
end points is derived from the current vertex ID, reducing
vertex buffer size further.

The material properties are stored in a separate texture and are
not duplicated. Our method is independent of the choice of BRDFs
which can have arbitrary parameters. However, our implementation
only contains a Phong BRDF with separate diffuse and specular co-
efficients for each frequency band, but a common exponent. While
simple, it is sufficient to explore the effects of BRDFs with varying
glossyness and is not a limitation of our method.

We assume the scene surfaces to be closed objects. Thus, only
the front faces are considered as starting points. Backfaces often
form the insides of walls or other relatively tight and enclosed
spaces. The tightness of these spaces result in an often excessive
number of reflections before the path reaches its target length and
is terminated. Due to the enclosed nature of the spaces these paths
are confined to, they can never contribute to the result, but would

consume a huge number of computational resources. While other
mitigations like manually tagging scene surfaces are conceiveable,
simply limiting transport path starting points to front faces suffi-
ciently reduces this problem in our example scenes.

5.2 Interactive Impulse Response Update
At runtime, the algorithm must determine for each transport path
whether a full path can be formed from it, and if so, compute its
contribution and add it to the histogram. The visibility tests towards
the source and microphone positions can be easily performed us-
ing shadow mapping. Thus, as the first step in each iteration, our
algorithm renders two omnidirectional shadow maps, one centered
around the source and one centered around the microphone.

To compute the actual impulse response, we chose to render a
line primitive for each transport path using vertex and fragment
shaders that perform the remaining steps of computing the impulse
response histogram. The vertex shader first tests the starting point
and the end point for visibilty against the source and microphone
using the rendered shadow maps. If either test is unsuccessful, the
path is discarded by moving the output vertices outside the coordi-
nate space of the histogram texture. If both are successful, the total
path length and travel time is computed, and from that the coordi-
nates of the output vertices so that they match the corresponding
histogram bin. Finally, the vertex shader computes the required
geometry terms and other terms common to all frequency bands
and passes the result on to the fragment shader.

Since the histogram texture has one row of texels for each spec-
tral band, the rasterizer invokes the fragment shader once for each
band within the histogram bin to which the path contributes. The
shader determines the current band from the fragment position
within the texture and computes the contribution to the specific
spectral band. For this, it evaluates the BRDFs associated with the
transport path endpoints based on the BRDF parameters for the
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specific frequency band and reuses the geometry term computed
in the vertex shader.

The resulting lines are rendered with additive blending enabled
to accumulate the path contributions in the histogram texture. Ex-
ploiting the OpenGL blending stage in this way allows the his-
togram generation pass to be simple and have very high perfor-
mance.

Finally, the spectral histogram texture is downloaded from the
GPU to create an impulse response for audio processing. While
our implementation performs this transfer synchronously, it could
easily be made asynchronous at the cost of some added latency
until the updated room impulse response becomes audible.

5.3 Audio Processing
Our algorithm generates one histogram per frequency band, re-
sulting in a mix of information in the time and spectral domains.
We need to convert this to a pure time domain impulse response
upsampled to the sample rate of the source signal. To achieve this,
we first upsample each band of the histogram individually to the
target sample rate. These upsampled histograms are implicitly band
limited by the time resolution of the input histogram. They would
act as a low pass filter on the audio signal if they were applied as
they are, which is undesirable. However, this can be mitigated by
multiplying the histograms with white noise [Lentz et al. 2007]. In
other words, the histogram acts an envelope for a band-unlimited
equal energy signal. Then, we perform a DFT on each resulting par-
tial impulse response and merge them by combining the relevant
frequency band of each response spectrum into a single spectrum.
An inverse Fourier transformation of the resulting spectrum pro-
duces the final impulse response. Finally, the actual audio signal is
convolved with the impulse response within the audio engine in
real time, switching to an updated impulse response whenever it
becomes available.

Due to the reuse of precomputed paths, the impulse responses
are stable and vary slowly with source and listener movement. For
this reason, our method does not require averaging or filtering the
impulse responses over multiple iterations of the algorithm.

To guarantee fast execution times, all Fourier transformations
involved should have lengths of powers of two exclusively. Thus,
we choose the number of samples of the resulting impulse response
length to be an exact power of two and adjust the number of his-
togram bins accordingly.

6 RESULTS
We implemented the algorithm using OpenGL 3.0. Our implemen-
tation uses cube shadow maps for visibility testing on the GPU.
We tested it on one older and one new newer hardware platform
listed in Tab. 1 to assess performance across a wider range of target
platforms. We refer to this table for each result.

6.1 Accuracy and Performance
We compare our method to a multithreaded path tracer based on
Embree. We use the same number of paths for our method and
the path tracer. Our reference path tracer uses all available CPU
cores on each system. We have used the scenes in Tab. 2 for our
evaluation. The measured execution times are listed in Tab. 4.

Table 1: Hardware used for performance evaluation.

System CPU GPU
System 1 Intel Core i7-6800K, 3.4GHz nVidia GeForce GTX 1080
System 2 Intel Core i7-3770, 3.4GHz nVidia GeForce GTX 670

Performance. Our method consistently performs much faster
than our reference path tracer. Shadow map rendering performance
naturally depends on the geometric complexity of the scene. The
runtime of the histogram generation step, however, is completely
decoupled from scene complexity and depends only on the number
of transport paths. Even on older hardware, our method clearly pro-
vides interactive update rates for most scenes. The only exception
is the Bistro scene which contains extremely detailed geometry,
slowing down shadow map rendering. However, since the actual
layout of this large scene is rather simple, the number of transport
paths required to achieve acceptable convergence remains reason-
ably small and thus the histogram rendering step still remains very
fast.

Accuracy. Tab. 2 shows that the path traced impulse response is
sometimes more accurate. The reason for this is that the path tracer
starts its paths always from the microphone while our method tries
to connect the microphone to fixed points on surfaces, which may
or may not be occluded. This may reduce the number of usable
transport paths, depending on the scene and the current location
of the source and microphone. Also, transport paths starting and
terminating on glossy surfaces can challenge the accuracy of our
method if the density of endpoints is not high enough. For a faithful
sampling of a glossy reflection, at least one end point must exist on
the surface where the reflection occurs with a suitable incoming or
outgoing ray direction. Otherwise, that reflection is missed entirely.
This is analogous to the well known drawback of many lights
methods in rendering [Dachsbacher et al. 2014].

Memory usage. Our method consumes a moderate amount of
GPU memory as shown in Tab. 3. While the memory required to
store position, normal and incoming directions for end points is
comparatively high, sharing the equivalent data for starting points
between paths keeps the related memory usage small. This shows
that memory usage is strongly related to the number of endpoints.
Also, the number of endpoints scales inversely with mean free path
length in the scene: the smaller the mean distance between scene
surfaces, the more reflections occur and the more endpoints are
generated. Our choice of 12 distinct frequency bands results in a
high memory usage for path contributions. As the number of fre-
quency bands is arbitrary, memory requirements for contributions
is thus adjustable. We use full 32 bit precision for all floating point
values, although some values, for example, direction vectors could
probably be stored with less precision without noticable impact
on the final result. However, we did not experiment with more
compact encodings, as our test systems were able to handle the
generated amount of data without any problems.
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Table 2: Scenes used for evaluation. “Paths” is the number of path starting points and “Endpoints” denotes the number of valid
path end points generated from them in the preprocessing step. GPUmemory is the sum of vertex buffer and texture memory
used.

Scene Screenshot Impulse Response Paths Endpoints

Sponza
0 0.1 0.2 0.3 0.4

time	[s]

0.01

0.1

1

re
la
tiv
e	
in
te
ns
ity

Transport
Reference

80000 915758

Sibenik
0 0.1 0.2 0.3 0.4

time	[s]

0.001

0.01

0.1

1

re
la
tiv
e	
in
te
ns
ity

Transport
Reference

20000 213392

Tradeshow
0 0.1 0.2 0.3 0.4

time	[s]

0.01

0.1

1

re
la
tiv
e	
in
te
ns
ity

Transport
Reference

100000 787026

Door
0 0.1 0.2 0.3 0.4

time	[s]

0.001

0.01

0.1

1

re
la
tiv
e	
in
te
ns
ity

Transport
Reference

10000 433891

Bistro
0 0.1 0.2 0.3 0.4

time	[s]

0.0001

0.001

0.01

0.1

1

re
la
tiv
e	
in
te
ns
ity

Transport
Reference

250000 1522656

Table 3: GPUmemory usage breakdown for different scenes
in MB.

Scene VBO starting
points

end
points contributions time

delays total

Sponza 10.5 2.7 31.4 41.9 3.5 90.1
Sibenik 2.4 0.7 7.3 9.8 0.8 21.0
Tradeshow 9.0 3.4 27.0 36.0 3.0 78.5
Door 5.0 0.3 14.9 19.9 1.7 41.7
Bistro 17.4 8.6 52.3 69.7 5.8 153.8

6.2 Extensions
Directional Microphone, HRTF. So far, we have only demonstrated

a perfectly omnidirectional single channel microphone. Alterna-
tively, we can easily simulate an array of several narrowly direc-
tional microphones at the listener position and simulate the im-
pression of the room reverb reaching the listener from different
directions by applying the appropriate directional HRTF to each
individual response [Embrechts 2007]. To achieve this, we extend
the histogram texture to multiple histograms side by side, one for
each directional microphone. The vertex shader then determines
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Table 4: Measured execution times. Times for shadow maps and histograms were taken using OpenGL timer queries. CPU
total denotes total time spent on GPU from the start of shadow map rendering to the end of histogram download.

Scene Hardware Cube Shadow
Maps [ms]

Impulse
Response [ms] CPU [ms] PT [ms]

Sponza System 1 1.10 0.62 2.00 366
System 2 4.09 2.21 6.75 612

Sibenik System 1 0.37 0.17 0.82 49.2
System 2 1.45 0.64 2.52 85.2

Tradeshow System 1 0.76 0.57 1.61 77.1
System 2 2.68 1.91 5.02 137

Door System 1 0.15 0.31 0.73 53.0
System 2 0.57 1.38 2.37 91.7

Bistro System 1 13.3 0.95 14.8 414
System 2 56.0 3.56 60.3 674

the directional microphone that registers the path contribution
based on the incoming ray direction and emits the corresponding
vertex positions. The individual histograms are then processed sep-
arately as outlined above, convolved with appropriate HRTFs for
the microphone’s direction, and accumulated separtely for each
channel in a binaural setup.

Our implementation uses 24 directional channels (3 vertical di-
visions, 8 horizontal divisons). We find that this has a negligible
impact on the GPU part of our method. However, the creation of
the final impulse response is much more expensive, as the upsam-
pling and spectral merging have to be done for each directional
separately. It takes 65ms in a single thread on system 1 compared
to 3ms in the omnidirectional case.

Large Scenes. To scale our method to very large scenes, the limit
on the computed room impulse response length could be exploited
to implement a dynamic streaming method to only load the cur-
rently relevant subset of the precomputed transport paths onto the
GPU. The impulse response length naturally limits the distance that
sound can travel in that time. Consider a transport path consist-
ing of only a single vertex. This vertex must lie within a spheroid
with the source and microphone in the focal points and the surface
defined by the maximum possible travelling distance of the sound.
Only then, sound reflected from that vertex can reach the micro-
phone within the time span covered by the impulse response. If the
vertex is outside the spheroid, this is never possible. Longer paths
will naturally have tighter limits because of the additional travel
time along the path. Thus, we can safely discard any path start or
end points outside of this bounding volume without introducing
any errors. This would allow us to spatially sort all paths by their
endpoints and dynamically upload only those paths to the GPU
that have endpoints within the current spheroid. We leave this
implementation to future work.

7 CONCLUSION
We demonstrated a novel, and easy to implement method to com-
pute room reflections for interactive reverb computation on the
GPU. We showed that it is very fast and uses a moderate amount
of resources on the GPU in scenes of realistic size and complex-
ity. We achieved this by adapting the concept of instant radiosity.
The resource usage is decoupled from the geometric complexity of
the scene. If required, more sophisticated data structures reduce

resource usage further, at the cost of an increase in the complexity
of the implementation.

The main limitation of our method is that it does not simulate
the effects of edge diffraction. In future work, we would like to
investigate the inclusion of the Biot-Tolstoy-Medwin model in our
approach [Siltanen and Lokki 2008].

Since the shadowmap rendering is themost expensive part of our
method, we would like to explore other methods for determining
visibility, for example imperfect shadow maps [Ritschel et al. 2008]
or distance field shadows [Wright 2015]. This would allow our
method to scale to a higher number of sound sources.

In addition to the streaming implementation outlined above, we
would like ot extend our method to update the transport paths
at runtime. This would allow fully dynamic scenes as well as the
dynamic generation of transport paths for streaming instead of
reading them from a larger database of precomputed paths. Ideally,
we would also find ways to automatically tune the algorithm’s
parameters to a scene without the need for user input.

We have shown that the concept of virtual point lights can be
applied to room acoustics. This opens up new possibilities. For
example, scalability of our method could be improved by a suitable
clustering scheme for path end points.
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