
Supplemental document for selective guided sampling with complete
light transport paths

FLORIAN REIBOLD, JOHANNES HANIKA, ALISA JUNG, AND CARSTEN DACHSBACHER, KIT, Germany

guided PT - 0.1M sppguided PT - 0.1M spp guided PT - 0.5M sppguided PT - 0.5M spp

PT - 0.1M sppPT - 0.1M spp PT - 0.5M sppPT - 0.5M spp

Fig. 1. We show results of our method in the DiningRoom (left) and Pool (right) scene with a high sample count to illustrate that our method converges in
the limit and can produce clean results without visible artifacts. The comparison to PT (bottom row) shows that no overfitting is taking place, which would
potentially lead to infinite variance or missing contributions. No outlier removal (DBOR) or denoising was used on these images.

1 EXTRA COMPARISONS
In Figure 1 we show more converged results of our method in
the DiningRoom (left) and Pool (right) scene to illustrate that our
method converges in the limit and can produce clean results without
visible artifacts. See Figure 2 for frames of a progressive rendering
of our algorithm.

In Figure 4 we show a closeup of the DiningRoom scene focusing
on the caustic and reflected caustic. Our implementation can be
used with any path sampler for which we can compute the PDF
in closed form. While path tracing is a reasonable choice, we also
demonstrate guiding in combination with bidirectional path tracing
(BDPT) [Lafortune andWillems 1993; Veach and Guibas 1994] as the
unguided sampler. As expected, BDPT fails to resolve the reflected
caustics. In addition, the relatively large and bright exterior light

Author’s address: Florian Reibold, Johannes Hanika, Alisa Jung, and Carsten Dachs-
bacher, KIT, Am Fasanengarten 5, Karlsruhe, BW, 76131, Germany, florian.simon@kit.
edu.

source attracts most of the samples for the light tracing pass, mak-
ing this technique inefficient. The guided sampling versions both
used a learning phase of 30s out of 5min total render time (in both
cases about 17 iterations, resulting in approx. 5700 guide paths). We
also compare to Markov chain Monte Carlo methods which can be
used to render such (reflected) caustics efficiently. However, they
introduce correlated sampling artifacts throughout the image, not
only in the difficult regions. Note that both HSLT [Hanika et al.
2015; Kaplanyan et al. 2014] and KMLT [Kelemen et al. 2002] in this
figure use unidirectional path tracing only. In Figure 5 we show the
same experiment but without the area light (spotlight only). Meth-
ods using light tracing work much better in this setting because
the area light from the scene in the paper does not take up many
unimportant samples anymore.

The first scene in Figure 6 shows a hair strand that is partly inside
a glass sphere. This scene is difficult for many rendering algorithms:
BDPT fails at sampling important paths as the glass sphere prevents
next event estimation to the light source as well as to the camera.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 223. Publication date: November 2018.

223:2 • Reibold, Hanika, Jung and Dachsbacher

guided PT learning
1 spp1 spp 4 spp4 spp 16 spp16 spp 64 spp64 spp 256 spp256 spp 1k spp1k spp

guided PT rendering
1 spp1 spp 4 spp4 spp 16 spp16 spp 64 spp64 spp 256 spp256 spp 1k spp1k spp 4k spp4k spp 16k spp16k spp

Fig. 2. Some frames of a progressive rendering of our algorithm showing the learning phase (top) and the rendering phase (bottom) where the framebuffer is
cleared after learning.

DBOR cascade guided PT

DBOR cascade PT

Fig. 3. The cascade of DBOR buffers for the pool scene after 30min of render time using our guided PT (top) and PT (bottom). In this scene outlier removal
basically means ignoring the higher levels of the DBOR cascade. As can be seen, the higher levels of the guided PT cascade contain significantly less energy
compared to the PT cascade and the caustics are already resolved in the lower levels of the DBOR cascade. For better visibility the i-th cascade level (i = 0, . . . 9)
is scaled by 2i .

Photon mapping struggles in this scene because photon density
estimation on hair is difficult: both the approximation of the area
as a disk (often used for surfaces) and the volume as a sphere will
result in visible errors. Our guiding approach works on hair fibers
out of the box, and improves the image quality compared to the
unguided version of PT significantly.
The second scene (VeachDoor) in Figure 6 is an example for a

scene that is unsuited for our guided sampling in its current form.
In this scene all paths are roughly equally hard to sample and there
is no isolated lighting effect that guiding could focus on. This means
that guiding will try to compute the whole multibounce diffuse light
transport which it struggles with due to the curse of dimensionality.
In this scene our guided PT therefore degenerates to PT, however,
with an increased overhead which results in only half of the samples
per pixel per time compared to regular PT.
In Figure 7 we show the rendering results with and without

outlier removal for all scenes in the paper as well as the part that
was filtered by the outlier removal in a post process.

2 GUIDED SAMPLING VISUALISATION
We used a simple blender visualisation for debugging the guided
sampler. In Figure 8 we show a guide path exemplar for two scenes
as well as its nearest neighbouring guide paths, Gaussians and some
stochastically sampled paths that result from the sampling process.

3 DENSITY-BASED OUTLIER REJECTION
We employ density-based outlier rejection (DBOR) [DeCoro et al.
2010] in two ways: to remove spurious residual outlier samples from
the final render, and to detect potential guide paths.

Outlier removal. Outliers can occur in areas where the learning
phase did not detect a path contribution yet, but during rendering
the unguided sampler created such a rare sample. For higher di-
mensional problems, it can also occur that the rare sample is on
the boundary of a learned area and its PDF is the product of many
Gaussian-shaped distributions where the value comes from the long
tail with low probability density. These can multiply to extremely
low values, resulting in outlier samples. Both indicate that the prob-
lem space has not yet been learned sufficiently. Since it may be
prohibitive to do so within a certain render budget, it may be useful
to remove outliers.

Our implementation follows the cascaded framebuffer scheme as
proposed by Zirr et al. [2018], i.e. we do not need to construct and
update a kd-tree and the outlier removal is strictly a post-process
and as such adjusts to progressive rendering. For an illustration of
the buffers, see Figure 3.

Guide path selection. The second application of DBOR is to se-
lect which paths to add to the guiding cache. This is in a sense the
reverse case of outlier removal: only paths causing high variance
in the estimator are admitted to the cache for further exploration

ACM Transactions on Graphics, Vol. 37, No. 6, Article 1. Publication date: November 2018, supplemental material.

Supplemental document for selective guided sampling with complete light transport paths • 223:3

guided PTguided PT 152 spp152 spp PTPT 212 spp212 spp HSLTHSLT 258 spp258 spp MMLTMMLT 439 spp439 spp

guided BDPTguided BDPT 201 spp201 spp BDPTBDPT 186 spp186 spp KMLTKMLT 271 spp271 spp VCMVCM 138 spp138 spp

Fig. 4. An equal-time comparison for a closeup view of the DiningRoom. The leftmost column shows guided sampling in conjunction with PT (top) and BDPT
(bottom). BDPT and light tracing in general perform very poorly in this scene because the bright area light outside the scene attracts most samples and leaves
very few for the prominent spot light which casts the caustic. Vertex connection and merging (VCM) [Georgiev et al. 2012] suffers from the same problem. The
selection phase of our guided sampling is able to focus on the caustic and especially the reflected caustic much better. Markov chain-based methods help here,
we show three versions: Half vector space light transport (HSLT) [Kaplanyan et al. 2014] with a relatively large step size results in evenly spaced samples but
relatively high noise level. Kelemen Metropolis (KMLT) [Kelemen et al. 2002] uses a small step size leading to blotchy appearance, especially in the blue inset
or the back wall. Multiplexed Metropolis (MMLT) [Hachisuka et al. 2014] looks more even since it uses larger steps and takes advantage of light tracing, but
shows scratch-like structures in the orange inset. We derive step sizes from neighbouring samples instead, leading to smoother results.

in subsequent iterations. For this, we keep a data structure simi-
lar to the bilateral grid [Chen et al. 2007]: a set of downsampled
framebuffers, one slice for every interval in a logarithmically spaced
contribution to the frame buffer. Our implementation reduces the
size of the DBOR grid by a factor of two, i.e. four image pixels
correspond to one DBOR pixel.

During rendering in the learning phase, every sample is splatted
into the DBOR grid using a Blackman-Harris filter with 4×4 pixels
support. We splat a constant one for each sample into the two
levels in the brightness cascade which are closest to the sample
contribution. This means the buffer is used to count the number of

samples with similar contribution. During evaluation, the grid is
simply accessed by reading out a single pixel for each of the two
neighbouring brightness levels of the sample (slicing), which are
interpolated to yield a single value. This value is used to count
the number of similar samples. Based on this we can decide with
a threshold whether this contribution is already sufficiently well
sampled or needs to be included as a new guide path.

A note on spectral rendering. Because our rendering engine is
spectral, we compute the sample contribution relevant for DBOR as
X+Y+Z in the CIE XYZ colour space. This distributes spectral power

ACM Transactions on Graphics, Vol. 37, No. 6, Article 1. Publication date: November 2018, supplemental material.

223:4 • Reibold, Hanika, Jung and Dachsbacher

guided PTguided PT 152 spp152 spp PTPT 212 spp212 spp HSLTHSLT 258 spp258 spp MMLTMMLT 439 spp439 spp

guided BDPTguided BDPT 201 spp201 spp BDPTBDPT 186 spp186 spp KMLTKMLT 271 spp271 spp VCMVCM 138 spp138 spp

Fig. 5. The same comparison as in Figure 4 but with the exterior light removed, only the spot light remains. This makes light tracing a lot more efficient as can
be seen for BDPT and VCM. Note that the Markov-chain based methods (HSLT, KMLT, MMLT) do not perform much differently.

evenly between the colour channels and thus results in much better
classification than using an RGB colour space such as rec709 for
this purpose.

4 RESULTS WITH AND WITHOUT OUTLIER REMOVAL
In Figure 7 we show the results of path tracing and guided path
tracing with and without outlier removal for additional scenes. The
images of the guided path tracer have clearly visible but isolated
bright outliers. Removing them results in a low noise image.

5 RENDERING ANIMATIONS AND TEMPORAL
STABILITY

We tested our guided sampling scheme for temporal stability. The
supplemental video shows an intricate caustic from a fluid splash
under rotating illumination in the Tumbler scene. This is rendered
by (unidirectional) path tracing, guided path tracing, and a variant

of guided path tracing that reuses the guiding cache from the last
frame of the animation, to explicitly increase temporal stability.
This time-dependent learning is in fact very similar to classic

sequential Monte Carlo methods. Because of this, we employ a
classic resampling step which starts with the guiding cache of the
previous frame.We draw samples from the old sampling distribution,
until a certain number of new guide paths is created this way (we
use 40% of the input cache size in our implementation). After this
step, we discard all paths that came straight from the input and
only keep the newly resampled paths, as those faithfully reflect the
updated geometric configuration of the scene. This step exploits
temporal coherence in a similar way as our learning phase exploits
spatial coherence between transport paths. After resampling, we
continue the regular learning phase as in the single-frame case.
In the supplemental video, we distribute the budget of learning

ACM Transactions on Graphics, Vol. 37, No. 6, Article 1. Publication date: November 2018, supplemental material.

Supplemental document for selective guided sampling with complete light transport paths • 223:5

referencereference PT+DBORPT+DBOR guided PT+DBORguided PT+DBOR unguided contributionunguided contribution

guided contributionguided contribution

referencereference PT+DBORPT+DBOR guided PT+DBORguided PT+DBOR unguided contributionunguided contribution

guided contributionguided contribution

Fig. 6. A hair strand (top) inside a glass sphere is difficult for many rendering algorithms since no direct connection to the camera or the light source is
possible. Our guiding approach works on hair fibers out of the box, and improves the image quality compared to the unguided version of PT which for example
struggles to sample the indirect reflection of the light source on the glass sphere (top insets). In the VeachDoor scene (bottom) all paths are roughly equally
hard to sample and guiding struggles due to the curse of dimensionality. In this scene guided PT degenerates to PT with an 2× overhead. See Table 1 in the
paper for details.

iterations between resampling and learning, so the resampling step
does not incur extra cost.

The video also shows all three variants (path tracing, independent
guiding, and guiding with inter-frame cache reuse) with DBOR
outlier removal switched on. It can be seen that independent guiding
is stable only in the features that can be detected reliably during the
learning phase, and can introduce flickering for more difficult effects
such as small glints. The reuse and resampling approach alleviates
most of these issues. Note that the Tumbler is not an easy case for
any path tracing algorithm, as many small and potentially indirect
glints occur on the fine details of the fluid surface.

6 TRIDIAGONAL STRUCTURE AND SPARSE
COVARIANCE MATRICES

We employ a Gaussian distribution to sample the next path vertex
according to a guide path. For the surface case, this distribution is
the 2D conditional of a 4D Gaussian distribution which includes
not only the covariance around the next vertex, but also around the
current vertex.
This is motivated by the observation that the measurement con-

tribution function in the surface transport case mainly changes with
the half vector at path vertices. This half vector affects the main

factor of most BSDF models (the evaluation of the distribution of
microfacet orientations), while the other factors (Fresnel, shadow-
ing/masking, geometry terms) have less of an impact [Kaplanyan
et al. 2014].
Following this train of thought, the change in half vectors ∆h

of a transport path can be expressed in terms of change of vertex
locations ∆x, as a matrix [Jakob and Marschner 2012]

∆h = M · ∆x (1)

M =

©«
b1 c1
a2 b2 c2

a3 b3 c3
· · ·

ak bk

ª®®®®®®¬
, (2)

where ai ,bi , ci are blocks of 2 × 2 matrices. This matrix (employed
in manifold walks) formally reveals the structure of the transport
operator: the throughput of the path can be separated into blocks
of three consecutive vertices which fully determine the BSDF. In
the general case this is also true for transmittance, geometry terms,
and more general BSDF than plain microfacet models.

We want to find a local approximation of an ideal sampling PDF,
by assuming that in a sufficiently small region around a path, the

ACM Transactions on Graphics, Vol. 37, No. 6, Article 1. Publication date: November 2018, supplemental material.

223:6 • Reibold, Hanika, Jung and Dachsbacher

referencereference guided PTguided PT guided PT+DBORguided PT+DBOR removedremoved

DiningRoom
render time 30min
spp PT 608

guided 479
MAE PT 0.0155

guided 0.0151
MAE+DBOR PT 0.0187

guided 0.0142

PTPT PT+DBORPT+DBOR removedremoved

referencereference guided PTguided PT guided PT+DBORguided PT+DBOR removedremoved

Pool
render time 30min
spp PT 2184

guided 517
MAE PT 0.1599

guided 0.0868
MAE+DBOR PT 0.1215

guided 0.0558

PTPT PT+DBORPT+DBOR removedremoved

referencereference guided PTguided PT guided PT+DBORguided PT+DBOR removedremoved

Tumbler
render time 30min
spp PT 3902

guided 1448
MAE PT 0.1532

guided 0.0767
MAE+DBOR PT 0.1498

guided 0.0473

PTPT PT+DBORPT+DBOR removedremoved

Supplemental document for selective guided sampling with complete light transport paths • 223:7

referencereference guided PTguided PT guided PT+DBORguided PT+DBOR removedremoved

LivingRoom
render time 3h
spp PT 3840

guided 2749
MAE PT 0.1063

guided 0.0789
MAE+DBOR PT 0.2459

guided 0.0824

PTPT PT+DBORPT+DBOR removedremoved

referencereference guided PTguided PT guided PT+DBORguided PT+DBOR removedremoved

Dragon
render time 1h
spp PT 8960

guided 8365
MAE PT 0.1167

guided 0.0880
MAE+DBOR PT 0.1467

guided 0.0930

PTPT PT+DBORPT+DBOR removedremoved

referencereference guided PTguided PT guided PT+DBORguided PT+DBOR removedremoved

HairStrand
render time 10min
spp PT 3475

guided 694
MAE PT 0.0281

guided 0.0219
MAE+DBOR PT 0.0279

guided 0.0158

PTPT PT+DBORPT+DBOR removedremoved

223:8 • Reibold, Hanika, Jung and Dachsbacher

referencereference guided PTguided PT guided PT+DBORguided PT+DBOR removedremoved

VeachDoor
render time 90min
spp PT 7921

guided 4405
MAE PT 0.4428

guided 0.6591
MAE+DBOR PT 0.7385

guided 0.9519

PTPT PT+DBORPT+DBOR removedremoved

Fig. 7. Applying density-based outlier rejection (DBOR) can remove residual fireflies. Doing so removes a lot of energy when the estimator is not able to
handle all features present in the scene. Our guided sampling uses a similar criterion as firefly detection to learn difficult paths, and thus running DBOR on a
guided estimator removes much less energy. In fact removing outliers on the guided estimator can lead to a lower error. Please see Table 1 in the main paper
for detailed run time, samples per pixel, and error statistics on these images. The limitations section in the main text discusses the poor performance in the
VeachDoor scene.

PDF can be represented by a unimodal Gaussian. If the path has 5
path vertices which are all surface events, the resulting covariance
matrix S of the local Gaussian distribution will be S ∈ R10×10.
Similar to the matrixM above, each 2×2 block in S encodes how the
distribution of vertex locations of one particular path vertex depends
on the distribution of a certain other path vertex (for instance the
first vertex in the scene and the vertex on the light).
Since we need to employ ray tracing to project vertices to the

surface and test for visibility, we construct the path incrementally,
i.e. the next vertex can only depend on the vertices sampled so
far (not the others yet to be sampled). Additionally inserting the
domain knowledge that the measurement contribution function
is a separable product of terms which at most depend on three
consecutive path vertices, we have the following structure in our
covariance matrix:

S =

©«
S11 S12
S21 S22 S23

S32 S33 S34
· · ·

Sk(k−1) Skk

ª®®®®®®¬
. (3)

As a consequence, sampling one additional vertex given a guide path
and an already sampled path prefix should depend on two previous
vertices. Strictly speaking we should thus form 6D covariance matri-
ces around neighbouring guide paths and take the conditional at the
current path prefix to compute a 2D covariance matrix and sample
a new vertex from that (in the surface case). Since we follow the full
path configuration from the start vertex, i.e. the current path prefix

and the neighbouring guide paths should be very similar, we opted
for a simplified variant which just takes 4D covariance matrices
around two consecutive vertices and computes the conditional by
only removing two dimensions instead of four. This was a big step
up from not performing any conditionalisation at all (since the con-
ditional is in general much sharper and more localised), but there
may be potential in using the full 6D version instead, especially for
short transport path segments.
In the setting we use in this work, we will need to compute a

4D covariance matrix for every guide path vertex. We do this with
the nearest neighbours of a guide path. That is, we compute 10
distinct entries in the symmetric matrix from 10 neighbouring paths
(which evaluates to 40 input dimensions, since we take two vertices
with two dimensional coordinates from every path). A high ratio of
input samples vs. output dimensions makes sure we arrive at useful
estimates of covariance matrices.
Note that for simplicity, in the above discussion we omitted po-

tential extra dimensions for vertices which lie in the volume. This
increases both the number of entries in the covariance matrices and
the input dimensions.

7 AN APPROXIMATE TRUNCATED GAUSSIAN
DISTRIBUTION

Gaussian distributions are omnipresent in statistics and in Monte
Carlo simulation. Often times when modelling distributions, how-
ever, one does not explicitly require it to be precisely Gaussian in
shape, but only have similar behaviour with respect to the shape

ACM Transactions on Graphics, Vol. 37, No. 6, Article 1. Publication date: November 2018, supplemental material.

Supplemental document for selective guided sampling with complete light transport paths • 223:9

Fig. 8. A visualisation of our guided sampling in blender for the scenes from Figure 7 of the paper. The top row shows a guide path exemplar and the second
row the corresponding 10 nearest guide paths in the cache. The black points show the path vertices of all guide paths in the cache. The third row shows a
bounding volume (rectangle for 2D surface vertices, box in 3D for volume vertices) of the Gaussians in orange. The Gaussians were conditionalised using the
guide path for visualisation purpose. The third row also shows 32 randomly sampled paths in yellow, including partial paths for which sampling fails during
construction.

of the peak and tails. We examine a similar distribution that can
be evaluated extremely quickly (34× speedup as compared to a
Gaussian). We also devise a sampling routine to be able to use it in
unbiased Monte Carlo simulations (sampling speedup is only about
2× as compared to sampling a Gaussian).

Mathematically, a Gaussian distribution has infinite support, but
drops to zero in 32-bit floating point arithmetic quite quickly. We ap-
proximate a truncated Gaussian probability distribution p(x) which
drops to zero exactly at p(4) = 0, which is also taken into account
by sampling.
Note that we will lose the rotational symmetry of a real mul-

tivariate Gaussian when using the approximation in a Cartesian
product.

7.1 A fast approximate Gaussian PDF
Our approach is motivated by fast approximate exponentials by
Paul Mineiro1 using bit tricks:
fasterpow2 (float p)
{

float clipp = (p < -126) ? -126.0f : p;
union { uint32_t i; float f; } v =
{ (uint32_t) ((1 << 23) * (clipp + 126.94269504f)) };
return v.f;

}

This exploits the encoding of floating point numbers by manipu-
lating the exponent bits directly. We use this trick to compute a fast
approximation of a Gaussian PDF:
float fake_gauss_pdf(const float x)
{

const int k = i1 - x*x * (i2 - i1);
return (*(const float *)&k)/norm;

}

Formally, the resulting PDF is a piecewise quadratic function on
intervals [

√
i,
√
i + 1):

p(x) = ai · x
2 + bi , (4)

where the coefficients of the parabola are determined for the i-th
interval as

ai = p
(√

i + 1
)
− p

(√
i
)
, (5)

bi = p
(√

i + 1
)
− ai · (i + 1), (6)

and the PDF at the boundaries of the interval is computed and
explicitly normalised as

p
(√

i
)
= 2−i/n, (7)

n =

∫ ∞

0
p′(x) dx , (8)

where p′(x) is the not normalised PDF. For 32-bit IEEE floating
point numbers, it turns out that i ∈ [0, 16] before the result is
numerically 0.0f. The resulting intervals

[√
i,
√
i + 1

)
are indicated

by the grey vertical lines in the following plot (where the PDF is not
1http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.
html

C1 continuous), showing the PDF and CDF of a Gaussian distribution
and our approximation:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

Gaussian PDF σ=0.833
Gaussian CDF σ=0.833

fake Gaussian PDF
fake Gaussian CDF

Since the way the approximation works is based on powers of
two instead of the natural exponential function, the PDF will ap-
proximate a Gaussian distribution with σ =

√
log 2 ≈ 0.833. This

means that our approximation of a standard normal distribution is
truncated at x = 4 ·

√
log 2 ≈ 3.330.

7.2 Sampling from the PDF
If we want to use this in a Monte Carlo simulation, we will have to
sample from the approximate distribution (instead of from a real
Gaussian), to ensure an unbiased estimator. The approximate Gauss-
ian CDF can be computed analytically by performing piecewise
integration of the intervals of same exponent [

√
i,
√
i + 1). Because

of the low number of intervals, we follow a pragmatic approach and
precompute the 16 values of the CDF and perform a search on the
resulting look up table. Since the intervals are exponentially spaced,
the first one covers more than 75% of the cases. We do not want
to hide that behind a search tree, and find that we can maximise
performance by exploiting branch prediction which facilitates early
out very efficiently for a simple linear search.

Inside each interval, we start by linear interpolation followed by
up to three Newton-Raphson iterations to approximate the inverse
CDF. We provide the full implementation in Section 7.3.

ACKNOWLEDGMENTS
We would like to thank Christoph Peters for a fast and robust code
snippet to perform a 3 × 3 eigenvalue decomposition which we use
for the regularisation of the truncated Gaussian kernels around our
guide paths.

REFERENCES
Jiawen Chen, Sylvain Paris, and Frédo Durand. 2007. Real-time Edge-aware Image

Processing with the Bilateral Grid. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3
(2007).

Christopher DeCoro, Tim Weyrich, and Szymon Rusinkiewicz. 2010. Density-based
Outlier Rejection in Monte Carlo Rendering. Computer Graphics Forum (Proc. Pacific
Graphics) 29, 7 (Sept. 2010), 2119–2125.

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light
Transport Simulation with Vertex Connection and Merging. ACM Trans. on Graphics
(Proc. SIGGRAPH Asia) 31, 6 (2012), 192:1–192:10.

Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed
Metropolis Light Transport. ACM Trans. on Graphics (Proc. SIGGRAPH) 33, 4, Article
100 (2014).

Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. 2015. Improved Half
Vector Space Light Transport. Computer Graphics Forum (Proc. Eurographics Sympo-
sium on Rendering) 34, 4 (June 2015), 65–74.

Supplemental document for selective guided sampling with complete light transport paths • 223:11

7.3 Implementation of the approximate truncated Gaussian distribution
// fake gaussian distribution, normalised to (-inf,inf) or, equivalently,
// [-4,4]. it also samples this domain. close to a real gaussian with
// sigma=0.833 (i.e. sqrt(log(2))).
static inline float fakegaussian_pdf(const float x)
{

const float norm_c1 = 2.0f * 0x1.1903a6p+0;
const int i1 = 0x3f800000u, i2 = 0x40000000u;
const int k0 = i1 - x*x * (i2 - i1);
const int k = k0 > 0 ? k0 : 0;
return (*(const float *)&k)/norm_c1;

}

static inline float fakegaussian_sample(float xi)
{

float sign = 1.0f;
if(xi >= 0.5f)
{
sign = -1.0f;
xi = 2.0f*(xi-0.5f);

}
else xi *= 2.0f;

const int i1 = 0x3f800000u, i2 = 0x40000000u;
const float norm_c1 = 0x1.1903a6p+0;
static const float cdf_lut[17] = {
0x0p+0, 0x1.84aff2p-1, 0x1.ce84acp-1, 0x1.eaa068p-1,
0x1.f66fcep-1, 0x1.fba148p-1, 0x1.fdf994p-1, 0x1.ff0d6p-1,
0x1.ff8da8p-1, 0x1.ffc9ep-1, 0x1.ffe658p-1, 0x1.fff3ep-1,
0x1.fffa56p-1, 0x1.fffd7p-1, 0x1.fffeeep-1, 0x1.ffffa6p-1, 0x1p+0,

};
static const float sqrti_lut[17] = {
0x0p+0, 0x1p+0, 0x1.6a09e6p+0, 0x1.bb67aep+0, 0x1p+1,
0x1.1e377ap+1, 0x1.3988e2p+1, 0x1.52a7fap+1, 0x1.6a09e6p+1,
0x1.8p+1, 0x1.94c584p+1, 0x1.a8872ap+1, 0x1.bb67aep+1,
0x1.cd82b4p+1, 0x1.deeea2p+1, 0x1.efbdecp+1, 0x1p+2,

};
static const float slope_lut[17] = {
0x1.513794p+0, 0x1.6fad2ap+1, 0x1.7286d6p+2, 0x1.73b866p+3,
0x1.74614p+4, 0x1.74cc88p+5, 0x1.7516c2p+6, 0x1.754d32p+7,
0x1.7576d2p+8, 0x1.7597bp+9, 0x1.75b24ep+10, 0x1.75c84ap+11,
0x1.75dac4p+12, 0x1.75ea8p+13, 0x1.75f814p+14, 0x1.7603e6p+15,
0x1.760e48p+16 };

static const float a3_lut[17] = {
-0x1.555556p-3, -0x1.555556p-4, -0x1.555556p-5, -0x1.555556p-6,
-0x1.555556p-7, -0x1.555556p-8, -0x1.555556p-9, -0x1.555556p-10,
-0x1.555556p-11, -0x1.555556p-12, -0x1.555556p-13, -0x1.555556p-14,
-0x1.555556p-15, -0x1.555556p-16, -0x1.555556p-17, -0x1.555556p-18,
-0x1.555556p-19

};
static const float b_lut[17] = {
0x1p+0, 0x1.8p-1, 0x1p-1, 0x1.4p-2,
0x1.8p-3, 0x1.cp-4, 0x1p-4, 0x1.2p-5,
0x1.4p-6, 0x1.6p-7, 0x1.8p-8, 0x1.ap-9,
0x1.cp-10, 0x1.ep-11, 0x1p-11, 0x1.1p-12, 0x1.2p-13,

};

int i=0;
for(;i<16;i++) if(__builtin_expect(cdf_lut[i+1] >= xi, 1)) break;

const float cdfm = cdf_lut[i];
const float sqrti = sqrti_lut[i];
const float x0 = sqrti + (xi-cdfm) * slope_lut[i];
if(i > 3) return sign*x0; // sometimes shaves off a couple % run time, but not much.

const float a = a3_lut[i];
const float b = b_lut[i];
const int k0 = i1 - x0*x0 * (i2 - i1);
const float pdf_x0 = 1.0f/ *(const float *)&k0;
const float bound = (cdfm - xi)*norm_c1 - (a*i + b)*sqrti;
const float x1 = x0
- (a*x0*x0*x0 + b*x0 + bound)*pdf_x0;

if(i) return sign*x1;
const float x2 = x1
- (a*x1*x1*x1 + b*x1 + bound)*pdf_x0;

return sign*x2;
}

223:12 • Reibold, Hanika, Jung and Dachsbacher

Wenzel Jakob and Steve Marschner. 2012. Manifold Exploration: A Markov Chain
Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport.
ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4 (July 2012), 58:1–58:13.

Anton Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The Natural-
Constraint Representation of the Path Space for Efficient Light Transport Simulation.
ACM Trans. on Graphics (Proc. SIGGRAPH) 33, 4 (2014), 1–13.

Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A
Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm.
Computer Graphics Forum 21, 3 (2002), 531–540.

Eric Lafortune and Yves Willems. 1993. Bi-Directional Path Tracing. In Proc. of COM-
PUGRAPHICS. 145–153.

Eric Veach and Leonidas Guibas. 1994. Bidirectional Estimators for Light Transport. In
Proc. Eurographics Workshop on Rendering. 147–162.

Tobias Zirr, Johannes Hanika, and Carsten Dachsbacher. 2018. Reweighting firefly
samples for improved finite-sample Monte Carlo estimates. Computer Graphics
Forum 37, 6 (2018), 410–421.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 1. Publication date: November 2018, supplemental material.

