

A Simple Diffuse Fluorescent BBRRDF Model

Alisa Jung, Johannes Hanika, Steve Marschner, Carsten Dachsbacher

What is fluorescence?

Visible Light

Jablonski Energy Diagram

Energy States & Levels of Molecules

Vibrational	
Energy Levels	
Ground State S ₀	

Jablonski Energy Diagram: Fluorescence

- Absorption 10⁻¹⁵ s
- \blacktriangleright Relax to S₁ 10⁻¹² s
- Fluorescence 10⁻⁸ s
- Non-radiative Relaxation
- Diffuse
- Instantaneous
- Emitted wavelength independent of absorbed wavelength, usually longer
- Not all absorbed photons get emitted

The Quantum Yield Φ

Not all absorbed photons get emitted:

 $\Phi = \frac{\text{emitted Photons}}{\text{absorbed Photons}}$

Wavelength independent

Absorption & Emission Spectrum

The **BBRRDF**

Bispectral Bidirectional Reflection and Reradiation Distribution Function (Hullin et al. 2010)

$$f_{r}(\omega_{in}, \lambda_{in}, x, \lambda_{out}, \omega_{out}) = \frac{d^{2}L_{r}(x, \omega_{out}, \lambda_{out})}{L_{i}(x, \omega_{in}, \lambda_{in}) \cos\theta_{in} d\omega_{in} d\lambda_{in}}$$

Wavelengths

The BBRRDF: Previous Work

- Reradiation Matrix (Glassner 1995, Wilkie 2001&2005, Hullin 2010)
- Discrete description of energy shifts
- Diagonal: non-fluorescent reflectance

Fluorescent red paint Hullin et al. 2010

Our BBRRDF

- Fluorescence is diffuse
 - We use a diffuse BBRRDF
- Fluorescent and non-fluorescent component
 - Light interacts either with fluorescent nor non-fluorescent molecule

Fluorescent

Full BBRRDF

Our BBRRDF: Parameters

- $\geq a(\lambda)$ absorption spectrum (scaled to 1)
- $\geq c$ concentration parameter
- Q energy quantum yield parameter
- $\ge e(\lambda)$ emission spectrum (normed to 1)
- $> r(\lambda)$ reflectance spectrum (less than 1)

 $\triangleright r(\lambda)$ reflectance spectrum (less than 1)

$$f(\omega_{in},\lambda_{in},\lambda_{out},\omega_{out}) = c \cdot a(\lambda_{in}) \quad Q \cdot e(\lambda_{out}) \cdot \pi^{-1}$$

Fraction of absorbed energy

$$f(\omega_{in},\lambda_{in},\lambda_{out},\omega_{out})=c\cdot a(\lambda_{in}) \cdot Q \cdot e(\lambda_{out}) \cdot \pi^{-1}$$

Fraction of emitted energy

a(λ) absorption spectrum (scaled to 1)
 c concentration parameter
 Q energy quantum yield parameter
 e(λ) emission spectrum (normed to 1)
 r(λ) reflectance spectrum (less than 1)

$$f(\omega_{in},\lambda_{in},\lambda_{out},\omega_{out})=c\cdot a(\lambda_{in})\cdot Q\cdot e(\lambda_{out})\cdot \pi^{-1}$$

Fraction of emitted energy at λ_{out}

$$f(\omega_{in},\lambda_{in},\lambda_{out},\omega_{out})=c\cdot a(\lambda_{in})\cdot Q\cdot e(\lambda_{out})\cdot \pi^{-1}$$

Perfectly diffuse lambert BRDF

Our BBRRDF: Non-fluorescent Reflectance

a(λ) absorption spectrum (scaled to 1)
 c concentration parameter
 Q energy quantum yield parameter
 e(λ) emission spectrum (normed to 1)
 r(λ) reflectance spectrum (less than 1)

$$f(\omega_{in},\lambda,\omega_{out}) = \left(1 - c \cdot a(\lambda)\right) \cdot r(\lambda) \cdot \pi^{-1}$$

remaining energy

Our BBRRDF: Non-fluorescent Reflectance

a(λ) absorption spectrum (scaled to 1)
 c concentration parameter
 Q energy quantum yield parameter
 e(λ) emission spectrum (normed to 1)
 r(λ) reflectance spectrum (less than 1)

$$f(\omega_{in},\lambda,\omega_{out}) = (1 - c \cdot a(\lambda)) \cdot r(\lambda) \pi^{-1}$$

reflected energy

Our BBRRDF

- $\geq a(\lambda)$ absorption spectrum (scaled to 1)
- $\geq c$ concentration parameter
- Q energy quantum yield parameter
- $\geq e(\lambda)$ emission spectrum (normed to 1)
- $> r(\lambda)$ reflectance spectrum (less than 1)

$$f(\omega_{in}, \lambda_{in}, \lambda_{out}, \omega_{out}) = \left[\delta_{\lambda_{in}, \lambda_{out}} \cdot \left(1 - c \cdot a(\lambda_{in})\right) \cdot r(\lambda_{in}) + c \cdot a(\lambda_{in}) \cdot Q \cdot e(\lambda_{out})\right] \cdot \pi^{-1}$$

Our BBRRDF: Wavelength Sampling

 \triangleright Delta component \rightarrow 2 Steps:

Sample if light interacts with fluorescent particle

 $P(\text{fluorescence}) = \frac{\text{fluorescently reflected energy}}{\text{total reflected energy}}$

If so, sample new wavelength
Camera path: $p(\lambda_{in}) \propto a$ Light path: $p(\lambda_{out}) \propto e$

Absorption Spectrum Spec

Different for camera and light paths!

Energy Conservation vs. Photon Conservation

Energy Conserving BRDF:

$$\forall \omega_{in} \in \Omega: \int_{\Omega} f(\omega_{in}, \omega_{out}) d\omega_{out}^{\perp} \leq 1$$

Energy Conservation vs. Photon Conservation

Energy Conserving BBRRDF:

$$\forall \omega_{in} \in \Omega, \lambda_{in} \in \Lambda: \int_{\Omega \times \Lambda} f(\omega_{in}, \lambda_{in}, \lambda_{out}, \omega_{out}) d(\omega_{out}^{\perp}, \lambda_{out}) \leq 1$$

- Our BBRRDF is energy conserving if
 - \triangleright a(λ), r(λ), Q, c ∈ [0,1]
 - $ightharpoonup \int e(\lambda)d\lambda = 1$
- But it is not yet photon conserving!

Energy Conservation vs. Photon Conservation

Example:

> Q = 1

▶ c = 1

 \triangleright Consider λ_{in} where $a(\lambda_{in}) = 1$

