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1. Additional Proof of the Track Length Estimator

In the following we will give an alternative way to show that the
track length estimator
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∫ ti

0
Łe(s) ds,

where ti is sampled proportional to transmittance, is an estimator for∫ ∞

0
Łe(t)τ(t) dt

First, we define a probabilistic estimator for the transmittance using
a random distance s with p(s)∝ τ(s) as

τ
′
s(t) =

{
1, if t ≤ s
0, otherwise.

This estimator is unbiased because
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and since the distances of the track length estimator are sampled
proportional to transmittance we can write
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Łe(t) τ(t) dt.

Note that this is only a special case of our line estimator and does not
work for different distance sampling for ti, for example equi-angular
sampling. Our approach with weight functions is more general and
independent of the distance sampling method.

2. Addional Results

To evaluate the different estimators (point, line and combined) we
tested three simple 1D volumes and numerically computed the inci-
dent radiance by integrating the volumetric emission along a ray as
seen in Fig. 1. The rows of the plot correspond to different volumes
where µt and Le are shown in the left column. We performed this
experiment for varying σt and plotted the root-mean-squared error
(RMSE) to a reference solution after 32 samples depending on the
total transmittance of the volume. For normalization we chose σe
such that the total incident radiance is one.
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Figure 1: The functions µt(s) and Le(s) shown in the left columns
are rasterized into a 1D volume (100 voxels). The point, line, and
combined estimators are evaluated with 32 samples for multiple den-
sity scales. The plots on the right show the RMSE of all estimators
depending on the transmittance through the whole volume.

From the plots we can see that the line and combined estimators
gain advantage over the traditional point estimator increasing trans-
mittance. However, for very dense volumes the point estimator is
better than the line estimator since the segment length introduces
additional variance. The combined estimator performs better than
the line estimator in this case, although it does not reach the quality
of the point estimator for dense volumes. We provide the code with
which these plots where generated, containing simple implementa-
tions for the estimators, as a Python script.
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FNEE: RMSE 1.74 FNEE: RMSE 1.34 NEE: RMSE 2.23 NEE: RMSE 1.68 Reference Reference

Figure 2: A non-linear motion blur test case to demonstrate compatibility of our method with requirements of contemporary rendering systems.
The images are equal-sample (64 spp) and the medium parameters are σt = 1.0, σs = 0.2, σe = 0.5. Here, FNEE took 12% longer to render
the image compared to NEE (31% in the static case).

Reference RR NEE FNEE

Figure 3: Equal-time comparison of the NEE with probabilistic transmittance sampling (RR), regular NEE (NEE) and our FNEE. In the thin
version (top row), RR has the same quality as NEE whereas in the dense version (bottom row) the larger sample count of RR leads to an
improvement compared to NEE. FNEE outperformes RR and NEE in both cases.

In Fig. 2 we show that our technique is also beneficial in scenes
with motion blur.

Fig. 4 shows larger images of the scalability test using a 30GB
volume.

Probabilistic Transmittance for NEE Fig. 3 shows an equal-time
comparison of the NEE with probabilistic transmittance sampling
(RR), regular NEE (NEE) and our FNEE. In the thin version (top
row, 10min), RR has the same quality as NEE whereas in the dense
version (bottom row, 30min) the larger sample count of RR leads
to an improvement compared to NEE. FNEE outperformes RR and
NEE in both cases.
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Wide Angle Overview Reference

FNEE: RMSE 36.8

128spp, 11.2 core hours

NEE: RMSE 52.6

128spp, 7.5 core hours

Figure 4: Scalability test on a 30GB volume. These images show equal sample counts, the time is given in core hours, i.e. the time one core
would need to create the image. Most of the light comes from the relatively thin loop – a case which works reasonably well with regular NEE.
Note that this is a difficult scenario for FNEE as it creates long segments through the thin medium, i.e. it has a higher cost per sample than
NEE. However, this is still amortized by collecting the emission along the path segment: the RMSEs for equal-time (60 core hours) are 14.9
FNEE (704spp) and 18.6 NEE (1024spp), respectively.
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