
High Performance Graphics (2016)
Ulf Assarsson and Warren Hunt (Editors)

Lightcut Interpolation
Hauke Rehfeld and Carsten Dachsbacher

Karlsruhe Institute of Technology

mi

mi

mi

mi

m0

m1

m2 p

m0

m1

m2

p

0 1 2 3 4 5 6 7 8
width

0

1

2

3
le

ve
l

C0,0

CI,0

C1,0 C1,1

C1,2

C1,3
CI,1

C0

C1

CI

Input cuts CCCin

Interpolated Cut CI

Leaf-root path

width

width

width

Figure 1: When using Lightcuts, computing the cuts through the hierarchy of lights makes up a large portion of the render time. Our technique
computes exact cuts only at a fraction of shading points and keeps them as cache records. For shading, we directly interpolate the nodes of
these cuts. Left: The lightcut for shading point p is interpolated from the lightcuts at cache records m0,m1,m2, which are selected from the
set of cache records RRR distributed in image space. Right: Lightcuts through the light hierarchy. Here, C0 and C1 are the input lightcuts CCCin to
our algorithm. We present an efficient interpolation scheme to obtain a plausible lightcut CI for the shading point p. It iterates over the input
cuts, and ensures that the output is a valid cut which has only one intersection for every leaf-root path (purple line).

Abstract
Many-light rendering methods replace multi-bounce light transport with direct lighting from many virtual point light sources
to allow for simple and efficient computation of global illumination. Lightcuts build a hierarchy over virtual lights, so that
surface points can be shaded with a sublinear number of lights while minimizing error. However, the original algorithm needs
to run on every shading point of the rendered image. It is well known that the performance of Lightcuts can be improved by
exploiting the coherence between individual cuts. We propose a novel approach where we invest into the initial lightcut creation
at representative cache records, and then directly interpolate the input lightcuts themselves as well as per-cluster visibility for
neighboring shading points. This allows us to improve upon the performance of the original Lightcuts algorithm by a factor of
4−8 compared to an optimized GPU-implementation of Lightcuts, while introducing only a small additional approximation error.
The GPU-implementation of our technique enables us to create previews of Lightcuts-based global illumination renderings.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

Physically-based rendering is key to computing photorealistic im-
ages and has been rapidly adopted in the feature-film and gaming in-
dustries in the past years. In this paper, we focus on rendering global
illumination with many-light methods [DKH∗13]. These methods
build on the idea of approximating the global light transport by
computing the direct illumination from many virtual point lights
(VPLs). While they do not handle all light transport components
without hassle, these methods enable scalable and robust rendering
algorithms, which typically have more predictable render times com-
pared to other techniques. The challenge with many-light methods

is to efficiently render up to millions of VPLs [WHY∗13a], which
are required for complex scenes and materials.

Lightcuts [WFA∗05], and several works in the same direction,
aims to alleviate this problem by clustering lights into a hierarchy,
so that multiple VPLs can be approximated with a single represen-
tative VPL per cluster. During rendering, for each shading point the
light hierarchy is traversed to find a cut (a set of clusters) whose
joint contribution approximates the lighting from all VPLs within
a certain error bound. The size of these cuts typically only weakly
depends on the number of VPLs and leads to sublinear shading cost.

In the Lightcuts algorithm the main computation costs are:

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

H. Rehfeld & C. Dachsbacher / Lightcut Interpolation

a) computing the cuts for each shading point, and b) test the visibil-
ity between the shading point and each cluster of the respective cut.
In this paper, we compute the lightcuts only for a sparse subsam-
pling of the image space and propose to interpolate the cuts directly
for all other shading points. This is a novel approach making use
of the observation that cuts of nearby shading points are typically
similar [WFA∗05, DBD08, WXW11, HPB07, OP11]. Interpolation
typically is much cheaper than recomputing (or refining) cuts. It
also avoids artifacts from clustering shading points, as each point is
shaded using a fully valid lightcut. And lastly, akin to (Ir-)Radiance
Caching [WRC88, KGPB05] we effectively interpolate incident ra-
diance, which carries more information than just interpolating shad-
ing and enables us to interpolate cluster visibility along with the
cuts, saving costly ray casting. In summary, our contributions are:

• An interpolation algorithm working directly on (light-) cuts
through (light) hierarchies.
• A rendering algorithm with subsampled lightcuts creation and

subsequent interpolation of the cuts and cluster visibilities.
• A fully GPU-based implementation that enables fast previews of

lightcuts-based many-light rendering.

2. Previous Work

Simulating global illumination is a challenging problem that has
been addressed by many researchers. In the following we review
the most related previous work.

(Ir-)Radiance Caching Ward et al. [WRC88] propose to cache ir-
radiance in diffuse scenes and interpolate it at every shading point
that finds nearby cache records. If no records are found, irradiance
is computed and a new record is created. The method was later
extended to also store irradiance gradients which are then used to
extrapolate irradiance [WH92]. Radiance Caching stores incoming
radiance in the records to allow for non-diffuse materials [KGPB05].
Later extensions acknowledge that on-the-fly record placement dur-
ing rendering can lead to suboptimal record distributions and try to
refine the cache completely before computing illumination for shad-
ing points [KBPZ06]. The error metric was further improved by us-
ing second order gradients including occlusion information [SJJ12].
Radiance gradients computed using Lightcuts deform the area of
influence of cache records anisotropically [HMS09].

Pre-convolved Radiance Caching [SNRS12] proposes to store
incident radiance in a texture with one texel per direction and pre-
convolve it—in essence creating a mip-map-pyramid of the radiance
texture with accumulated radiance in the higher levels. Additionally,
a low-resolution mip-map level is cosine folded to store irradiance.
Using these two textures, evaluating a radiance cache requires only
two texture lookups instead of re-evaluating the reflection functions.
Rehfeld et al. [RZD14] introduce an algorithm for interactive radi-
ance caching using pre-convolved radiance caching. They propose
an interactive, GPU-based radiance cache distribution scheme that
works in image space. To distribute the caches they use a clustering
approach akin to Clustered Deferred Shading [OBA12], and then
place one cache in each cluster. While the resulting distribution
does not miss high-frequency detail, it is clearly tailored for runtime
budgets of below 100ms. Recently, interactive methods that create
distributions that are more similar to traditional radiance caching

distributions have been proposed [Ulb15], see Sec. 3.1. Wang et
al. [WWZ∗09] place caches by first building a mip-map hierar-
chy over all shading points and then using a simplified split-sphere
model metric [WH92] to approximate the amount of coherence in
each quad of a mip-map level. Next, they distribute a fixed number
of caches proportionally to this approximated coherency top-down
onto the shading points. After this distribution, however, they re-
quire to run a few iterations of k-means clustering.

Many-light methods Many-light methods simulate global illumi-
nation by shooting photons from light sources and placing many
virtual point lights (VPLs) on the surfaces that are hit [Kel97]. This
is similar to a bi-directional path tracing with eye paths of length
one, where the high correlation between eye-light path connections
can be exploited for efficiency. We refer the reader to [DKH∗13] for
a recent review of many-light methods.

Lightcuts Walter et al. [WFA∗05] recognize that similar lights can
be clustered together into a light hierarchy, which can then be used
to find clusters that approximate sets of lights. The set of inner
nodes (clusters) and leaf nodes (VPLs) that do not need to be refined
further w.r.t. an error criterion form a cut through the light hierarchy,
a lightcut (cut). To create the lightcut, the light hierarchy is traversed
for each shading point starting at the root node. At each node the
geometric and material terms of the current shading point and the
current cluster are bounded to find the cluster’s bounded error. This
is the maximum error made if refinement would stop at this point
and the cluster would be evaluated.

Walter et al. [WFA∗05] also introduce a perception-based error
criterion, where clusters are refined if their error bound is larger than
a fraction (2%) of the total illumination estimate for the shading
point. This estimate is obtained by saving a heap of nodes sorted by
their error bounds during traversal; at each step the node with the
highest error bound is inspected. This criterion leads to large sizes
of the lightcuts in dark areas, which is why the authors limit the size
of a single lightcut to 1000 nodes.

Once a cut fulfills the error criterion, clusters are evaluated like
a VPL using their total intensity and representative light. Visibility
from the shading point to the representative light is checked, the
BRDF is evaluated and the contribution of the light is added to the
shading point’s radiance.

Originally, the authors suggest to use a greedy bottom-up ap-
proach to construct the light hierarchy, which is expected to be very
costly to compute, but also hint at using a simple top-down approach
with good results. Later they suggest to use agglomerative clustering
to build the hierarchy in reasonable time [WBKP08].

Effort has been made to leverage the parallel computing power
of the GPU to compute lightcuts. Davidovic et al. [DGS12] pro-
pose a consistent progressive algorithm to relax the VPL clamping
when computing lightcuts on the GPU, while maintaining a constant
memory footprint. Wang et al. [WHY∗13b] use a Lightcuts-based
approach for out-of-core rendering on the GPU.

Exploiting similarity of neighboring lightcuts Reconstruction
Cuts [WFA∗05] computes full lightcuts at the corners of image
space rectangles. Various strategies are required to ensure these

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

H. Rehfeld & C. Dachsbacher / Lightcut Interpolation

G-Buffer

create lightcuts
for cache records

select similar
cache records

interpolate
lightcuts

evaluate
lightcuts

difficult shading points fallback to Lightcuts

per cache record
per shading pointLightcut Interpolation

Cache record
distribution

resolve
visibility

resolve
visibility

Figure 2: Lightcut Interpolation algorithm overview.

rectangles do not miss high-frequency geometry. A hierarchy of di-
rectional impostor lights that mimic the radiance estimate from the
original clusters is then created for each reference lightcut. The orig-
inal Lightcuts refinement criterion is replaced by a comparison of
these impostors; nodes are evaluated using interpolated impostors,
but may fallback to a full cluster evaluation including shadow rays.
Coherent Lightcuts [DBD08] also uses bounding boxes on blocks of
the image to refine shading points in unison until a heuristic decides
that they are too incoherent. Wang et al. [WXW11] cluster shading
points and use the cluster’s common cut to start lightcut refinement.

In the context of Pre-computed Radiance Transfer [SKS02],
Cheslack et al. [CPWAP08] propose a merging algorithm for pre-
computed visibility cuts [AUW07]. They save visibility cuts for the
vertices of an input mesh and merge them during runtime using
barycentric coordinates. See the discussion in Sec. 5.

Matrix Interpretation The many-light problem can be interpreted
as a matrix that relates shading points to lights, which can be ana-
lyzed and subdivided into submatrices either globally for all shad-
ing points [HPB07], or for refined clusters of shading points [OP11].
Recent extensions use matrix separation techniques to numerically
recover the visibility in the submatrices so that fewer shadow rays
are required [HWJ∗15]. As the latter approaches do not rely on a
global clustering of lights as Lightcuts does, they can be very suc-
cessful to capture high-frequency illumination. However, they are
limited to offline rendering due to their long rendering times.

3. Lightcut Interpolation

The Lightcuts algorithm refines the lightcut for a given shading
point when certain clusters of VPLs of the light hierarchy are more
important (i.e. their contributions to this shading point are larger).
We exploit the similarity between lightcuts of geometrically close
shading points. For this, our algorithm examines the lightcuts of
close cache records distributed over the image space, and interpo-
lates the levels of their individual nodes to create a cut with plausible
refinement. This allows us to shade using valid lightcuts at all shad-
ing points while skipping light hierarchy traversal completely for all
interpolated shading points—one of the bottlenecks of the original
Lightcuts algorithm even in optimized GPU implementations.

First we create lightcuts using the original Lightcuts algorithm at
a set of cache records placed in image space and save them. Then for
each shading point we select the best cache records to use as input
lightcuts CCCin to our interpolation algorithm. In any cut, each path
from a leaf node to the root of the light hierarchy intersects exactly
one node of the cut (see Fig. 1 (right)). We exploit this property and
merge nodes from the input lightcuts by identifying which nodes
intersect which leaf-root paths. The interpolated lightcut will then
consist of nodes that cover the same leaf-root paths, but at the levels

of the light hierarchy that correspond to the weighted average of
input levels. This ensures that the output is always a valid lightcut.

Optionally, we sample the binary visibility for each lightcut node
at the cache records before interpolation and interpolate it with the
nodes. This gives us a visibility in [0,1] for each node in the interpo-
lated cut without further cost for tracing shadow rays. We evaluate
all steps of our algorithm in Sec. 6.

Our algorithm consists of these steps, which we detail in the follow-
ing sections (Fig. 2, see Fig. 3 for notation):

1. For each cache record r from a set of input cache records RRR:

a. Traverse light hierarchy to create lightcuts CCCRRR,
b. Shoot shadow rays for all nodes in the lightcuts CCCRRR.

2. Then, for each shading point p:

a. Select cache records {r j ∈ RRR} for interpolation,
b. Interpolate their lightcuts CCCin yielding the interpolated cut CI ,
c. Shade using interpolated lightcut CI with interpolated or ac-

curate visibility (tracing rays).

We want our interpolation to be local to not miss higher-
frequency illumination details, and thus limit our interpolation to a
maximum of three input lightcuts. As we focus our algorithm on
preview rendering, we also impose the limit for performance rea-
sons. Note that our lightcut interpolation algorithm works for an
arbitrary number of input cuts.

3.1. Input Cache Records

The cache records are the locations where we compute and store ex-
act lightcuts. While the distribution of these cache records is mostly
orthogonal to our interpolation algorithm, the creation of the in-
put set of cache record locations is crucial for fast preview render-

Symbol Description
N(i, l) node at level l intersecting the leaf-root path from the

i-th leaf
N(0,0) root node of the light hierarchy
W (n) number of leaf nodes below node n
CCCin input cuts to the interpolation
w j interpolation weight of input cut C j

C j(i) node from cut C j above the i-th leaf
C j ,k k-th node from cut C j
L
(
C j ,k

)
level of the node C j ,k

p(C j) pointer to the current node of cut C j
W (0..p(C j)) sum of widths of nodes up to and including node p(C j)
sync pos. from the next nodes in the input cuts, more than one

extend over the fewest leaves

Figure 3: Notations and symbols used in our paper.

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

H. Rehfeld & C. Dachsbacher / Lightcut Interpolation

w0 p1p0

0 0

0

∞∞

0

w’2
w’1

w’0

w’1w’2

w’0

Figure 4: Top: Distribution of cache records over the image space.
Colors represent cache radius: red (small) to green (large).
Middle: Interpolation weights. Colors correspond to cache record
IDs and are then interpolated with each shading point’s weights.
Bottom: Best records are chosen by subtracting the n+1-th weight.

ings. Refining a set of cache records or letting it fully converge (as
in [KBPZ06,SJJ12]) is prohibitively expensive, and a direct, parallel
approach fits our needs better. Also, we need to decouple from the
tessellation of the geometry to not miss high-frequency details. We
use the tile-based radiance cache placement method suggested by
Ulbrich [Ulb15], which pre-computes the weights between shading
points within a image space tile, and iteratively chooses those with
the highest influence on others as cache records until all shading
points have found at least some usable records. Traditional radiance
cache weight functions (see Sec. 3.2) are supported, but no radiance
is taken into account while creating the distribution. Our algorithm
receives the list of coordinates of cache records and for each record
an approximate harmonic mean distance to the surrounding geome-
try (shown in Fig. 4 (top)), which is required for the weight function
used in cache record selection. For each cache record, we compute
its lightcut, shoot a shadow ray for each node in the cut, and store
both together for later interpolation.

3.2. Selecting Cache Records for Interpolation

Before interpolating lightcuts for a shading point, we determine
the set of input lightcuts from nearby cache records and the corre-
sponding weights, see Fig. 4 (middle). As cache records are dis-
tributed in image space, we cannot simply use barycentric inter-
polation (e.g. like [CPWAP08]). Instead, we select the best cache
records heuristically: we iterate over the cache records that are close
in image space, and evaluate a weighting function to favor cache
records with position and orientation similar to the current shading
point (see Fig. 1 (left, inset)).

We use Tabellion and Lamorlette’s [TL04] extension of the split-

0 1 2 3 4 5 6 7 8
width

0

1

2

3

le
ve

l

C0,0

C1,0

C2,0 C2,1

C2,2 C2,3

C1,1

C1,2
C2,4

C1,3
C2,5

C0

C1

C2

Input cuts CCCin

Sync pos.

ite
ra

tio
ns C0,0

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3 C2,4 C2,5

sync pos. sync pos. sync pos. sync pos. sync pos.

Figure 5: Finding sets of nodes that intersect the same leaf-root
paths and need to be interpolated. Our algorithm iterates over the
nodes of the input lightcuts CCCin, fetching nodes from the cut with
the smallest width W

(
0..p

(
C j
))

. Colored lines C0,C1,C2 are three
input cuts with their nodes, e.g. C0,0 is the first node of the input cut
C0. Nodes with two colors are members of two input cuts. Vertical
dashed lines denote sync positions (Sec. 3.3), where interpolation
(Fig. 6) is triggered to create nodes for the preceding input nodes.

sphere-model [WRC88] (ir-)radiance cache weighting function:

wT L(pp, pr,~np,~nr) = 1−max(dp(pp, pr),dn(~np,~nr))

dp(pp, pr) =
‖pp− pr‖

max
(
min

(R
2 ,R+

)
,R−

)
dn(~np,~nr) =

√
1−~np ·~nr

1− cos(α+)
, where

• pp, pr,~np and ~nr are the world-space positions and normals of
the shading point and the cache record,

• R is the harmonic mean distance of the cache record to the geom-
etry, which we receive as input from the cache record placement
(see Fig. 4 (top)),
• R− and R+ clamp R with multiples of the projected pixel area,

which we choose as 4 and 15 for slightly less dense cache records,
• α+ is a maximum angle which we use to reject cache records

completely if normals differ too much. Contrary to [TL04] it is
always chosen as 15°.

We also reject cache records that are in front of the current shading
point [WRC88], i.e. if (pp− pr) · (np +nr)< 0.

Best Three Caches and Interpolation Weights The metric en-
ables us to rank the cache records for similarity, but the weights
cannot be used directly for interpolation as they do not yield
C0-continuous interpolation. To this end, we first rank the four
best cache records by their weights wT L

0 , ...,wT L
3 , with wT L

i ≥ wT L
i+1.

We subtract the fourth weight wT L
3 from the other three, i.e. w′i =

wT L
i −wT L

3 to receive the three interpolation weights. As shown in
Fig. 4 (bottom), this ensures that the weights change smoothly, as
weights of the least important cache records will approach zero if

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

H. Rehfeld & C. Dachsbacher / Lightcut Interpolation

0 1 2 3 4 5 6 7 8
width

0

1

2

3

le
ve

l

C0,0

CI,0
C1,0

C2,0 C2,1

C2,2 C2,3

CI,1
C1,1

CI,2

C1,2
C2,4

C1,3
C2,5

C0

C1

C2

CI

Input cuts CCCin

Interpolated Cut CI

2 2 2 2

1 1 2 2

1

sync pos. sync pos. sync pos. sync pos. sync pos.

Lavg =
3

|CCCin|
= 1

L+ = L
(
C0,0

)
+ L
(
C1,0

)
+ L
(
C2,0

)
L+ = 0+ 1+ 2 = 3

Lavg =
L+

3
=

3

|CCCin|
= 1

L+ = L
(
C0,0

)
+ L
(
C1,1

)
+ L
(
C2,2

)
L+ = 0+ 2+ 3 = 5

Lavg =
L+

3
=

5

|CCCin|
= 1.66

L+ = L
(
C0,0

)
+ L
(
C1,2

)
+ L
(
C2,4

)
L+ = 0+ 3+ 3 = 6

Lavg =
L+

3
=

6

|CCCin|
= 2

Lavg =
5

|CCCin|
= 1.66

Figure 6: Lightcut Interpolation walks the hierarchy from left to
right. In this example and for brevity cut weights are 1

3 each and
are omitted. We iterate over the nodes at the lower edge of the input
lightcuts CCCin, at each step interpolating the levels of the current
nodes (bottom). When a sync position (see Fig. 5) is reached, a
node is appended to the interpolated cut CI if it does not reach
farther to the left or right than all current nodes (bottom).

they are about to swap their rank, or the least important one is ex-
changed with a different cache record. Before the w′i are used for
interpolation, the weights are normalized so that they sum to one.
Final weights are shown in Fig. 4 (middle).

Note that the interpolation also works if the shading point lies
outside the triangle of selected cache records or if it does not lie in
the same plane. If a shading point has no valid cache records, we
fall back to calculating a lightcut using the original algorithm, but
this happens only for a very negligible fraction of shading points.

3.3. Interpolation Algorithm

We have determined the set of input lightcuts CCCin and their associ-
ated weights for interpolation. Now, we iterate over them in unison
and find corresponding nodes that intersect the same leaf-root paths
(see Fig. 1 (right)). The heights of these nodes are then interpolated,
and a valid lightcut is constructed for the current shading point.

Terminology Note that for simplicity in the explanation we will
assume a full binary tree, i.e. all leaves are at the same level and all
nodes have two children—our algorithm works for arbitrary trees.
Depending on its level, a node spans over a number of leaf nodes in
the light hierarchy; we will refer to this number as the node’s width
W (n) (see Fig. 1 (right)). We require that the nodes of all input cuts
are iterable from left to right (as shown in our illustrations). We
further define the cut width W (0..p(C)) as the sum of the widths
of all nodes in a cut C up to the node at index p(C). Note that the
width of a complete cut at its last node equals the number of leaves
in the hierarchy, as a cut always spans the whole hierarchy.

0 1 2 3 4 5 6 7 8
width

0

1

2

3

4

le
ve

l

C0,0

CI,0

C1,0
C2,0

C1,1
C2,1

CI,1

C1,2
C2,2

C1,3
C2,3

C1,4
C2,4

C1,5
C2,5

C2,6
CI,2
C1,6

C2,7 C2,8

CI,3

C1,7
C2,9

C1,8
C2,10

C0

C1

C2

CI

Input cuts CCCin

Interpolated Cut CI

sync pos. sync pos. sync pos. sync pos. sync pos. sync pos.

3 3 3 3

2

3 3

1E 4

L+ = 0+ 4+ 4 = 8

Lavg =
8

|CCCin|
= 2.66

L+ = 0+ 2+ 2 = 4

Lavg =
4

|CCCin|
= 1.331 3

Figure 7: Special care needs to be taken to ensure that interpolated
lightcuts are always valid. The interpolation algorithm walks the
hierarchy from left to right, and would first append nodes at level
three to the interpolated cut CI . However, at node C1,4 a node of
level 1 would be appended, which would reach into the previously
handled subtree resulting in an invalid cut that violates Eq. 1.

Finding Corresponding Nodes To interpolate the levels of the
nodes of the input cuts CCCin, we need to find corresponding sets of
nodes from the input cuts. For this, we walk through the width of the
hierarchy once, from the leftmost to the rightmost leaf, with a step
size equal to the smallest node width from any of the input cuts cov-
ering the current leaf. This is equivalent to walking along the lowest
edge of the input cuts (nearest to the leaf nodes), see Fig. 1 (right).
As cut nodes are sorted from left to right, this can be achieved with
a single combined iteration over the input cuts, see List. 1.

During traversal we maintain for each input cut C j the pointer
p
(
C j
)

to the current node as well as the current width W
(
0..p

(
C j
))

.
To walk along the lowest edge we choose the cut CS with the small-
est (next) node, i.e. W (0..p(CS)) ≤W

(
0..p

(
C j
))
∀C j ∈ CCCin. Af-

ter each step, we test whether the current node of any other in-
put cut ends at the same width, i.e. ∃C j ∈ CCCin : W (0..p(CS)) =
W
(
0..p

(
C j
))

. This is a sync position, where the lowest input cut
CS can switch between input cuts. More importantly, at this point
we trigger interpolation (see below) for the nodes that were just
traversed. We iterate until all nodes in the input cuts have been
processed, i.e. the width of the interpolated cut equals that of the
hierarchy: W (0..p(CI)) =W (N(0,0)).

Interpolation Now we have to a) determine the interpolated levels
of the output nodes, and b) ensure that the output cut is valid. We
compute the average node level at every node of the lowest cut
(while finding corresponding nodes), and at sync positions we try
to emit new nodes of the interpolated cut.

Formally, the average level above a leaf node is computed from
the input cuts CCCin, where w j is the interpolation weight of C j, and

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

H. Rehfeld & C. Dachsbacher / Lightcut Interpolation

L
(
C j(i)

)
is the level of cut C j above the i-th leaf node:

Lavg(i) = ∑
C j∈CCCin

w j ·L
(
C j(i)

)
.

Naively, the interpolated, not yet valid cut CI then would be:

CI = {N(i,‖Lavg(i)‖) : i ∈ {0..W (N(0,0))}} ,

where N(i, l) is the node at width i and level l of the hierarchy. How-
ever, this cut can contain nodes whose subtrees overlap, whereas in
a valid cut each leaf-root path intersects exactly one node. Formally,
let CI(i) be the node from CI above the i-th leaf, then, in a valid cut:

∀i ∈ {0..W (N(0,0))} |CI(i)|= 1. (1)

Ensuring Validity of Cuts To avoid creating invalid cuts contain-
ing overlapping nodes using the naive interpolation scheme de-
scribed above (see also List. 1), at each sync position we perform
the following: we compute the average of the interpolated levels of
the nodes examined since the preceding sync position (weighted by
the number of corresponding leaves), see Fig. 6. This is the level
of the nodes we insert into the output cut. We defer the output of a
node if its width would exceed the current sync position; the output
level for this subtree could still change as it is not fully explored yet.
This can happen if one of the input cuts has a high level so that the
interpolated node is above the current node (see Fig. 6, far right).

Furthermore, we also must not insert nodes whose subtrees over-
lap with those of nodes written previously. Fig. 7 shows an example,
where the interpolation would result in such a node. In these cases,
we lower the level of the output nodes until no overlap happens.
This results in more refined cuts and thus is a conservative strategy
for rendering. The pseudo code is given in List. 2.

Formally, the aforementioned algorithm leads to a different defi-
nition of the interpolated level: every node CI ,k in the interpolated
cut needs to be at the average level of all nodes from the input cuts
that it covers:

L
(
CI ,k

)
=

W (0..CI ,k)

∑
i=W (0..CI ,k−1)+1

Lavg(i)
W
(
0..CI ,k

)
−W

(
0..CI ,k−1

) .

4. Implementation

Our implementation of both the reference Lightcuts and our light-
cut interpolation is fully GPU-based. All significant parts of the
per-frame algorithm are implemented in CUDA, and we use Op-
tiX Prime for BVH building and raycasting. Because of these con-
straints, some parts of the Lightcuts algorithm on the GPU had to
be changed subtly. In this section we will highlight these and other
important implementation details.

Lightcuts Each lightcut can contain up to 1024 nodes, and one ray
per node per shading point needs to be traced. As OptiX Prime is
dispatched on lists of input rays only, and GPU memory is limited
(4 GB), we had to change the Lightcuts implementation scheduling
to work in tiles over the image space. We set the tile size as large
as possible within the memory constraints of our GPU (typically

p(CI) =−1; p(C j) =−1 ∀C j ∈CCCin

linter = 0; winterp = 0
CS =C0

while W (0..p(CI))≤W (N(0,0)):
advance all synced cuts
p(C j)+=1 ∀ C j ∈ {Ck : W (0..p(Ck)) =W (0..p(CS)),Ck ∈CCCin}
CS = argmin

C j∈CCCin

W (0..p(C j)) # smallest cut

CN = argmin
C j∈CCCin\CS

W (0..p(C j)) # next smallest cut

to next sync pos.
while W (0..p(CS)) <W (0..p(CN)):

winterp+=W (p(CS)) # covered width
linter+=∑C j∈CCCin

w j · l(p(C j)) # sum of levels
p(CS)+=1

interpolate once in any case
winterp+=W (p(CS))

linter+=∑C j∈CCCin
w j · l(p(C j))

trigger interpolation, see List. 2
interpolate(winterp, linter)

Listing 1: Finding corresponding nodes algorithm.

def interpolate(winterp, linter):
global l0 = 0
write nodes up to current sync pos.
while W (0..p(CI))≤W (0..p(CS)):

l = linter
winterp

l0 is either pointing at right child or start of next subtree
if level of next node is lower, then it must be a left node
lastleft = l > l0
if !lastleft:

l = l0
n = N(W (0..p(CI)), l)
do not interp. if CI would advance beyond current sync pos.
if W (0..p(CI))+W (CI ,i+1) >W (0..p(CS)):

break
CI ,i+1 = n; p(CI)+=1
evaluate(CI ,i)
if lastleft: l0 = linter

else: l0 =level_of_next_subtree(CI ,i)

Listing 2: Interpolation algorithm.

1282). Tiles are dispatched separately and we traverse the light hier-
archy for each shading point, write its lightcut and shadow rays to
pre-allocated memory. The rays are then traced using OptiX Prime
and the visibility is encoded into the first bit of the lightcuts nodes’
indices to reduce the number of memory reads when the lightcut is
evaluated for the shading point.

Building the Light Hierarchy Originally, a greedy bottom-up ap-
proach was suggested in Lightcuts [WFA∗05], but, as expected, we

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

H. Rehfeld & C. Dachsbacher / Lightcut Interpolation

found this to be very slow. Instead we use a simple top-down object-
median longest-axis approach [WFA∗05]. As with BVH-building,
many extensions to accelerate the building process exist (see 2),
however, these are orthogonal to our work.

Lightcut Interpolation After lightcuts creation for the cache
records and tracing shadow rays, we determine the most similar
cache records for each shading point. We examine nearby cache
records using a simple image space grid acceleration structure, ap-
ply the weight function (see Sec. 3.2), and write the indices and
weights of the best cache records to GPU memory. These tuples are
then sorted by the indices of the cache records, so that later kernels
run as coherent as possible. Next, another kernel starts to interpolate
and either immediately shades if visibility is interpolated, or else
outputs the cut for visibility resolving and subsequent shading. If
shading points did not find suitable cache records (weights below a
user-defined threshold, i.e. ε), we calculate full lightcuts for them
using the original Lightcuts algorithm.

5. Comparison to Other Methods

Our algorithm is related to Nonlinear Cut Approximation
(NCA) [CPWAP08], but we make several essential additions and
improvements. First, NCA is tailored for visibility cuts; it produces
an interpolated value for each node on the lowest edge of the input
cuts, i.e. the result contains overlapping nodes and further means
would be required to generate valid output cuts. As an input to their
algorithm they require indices in post order (hierarchy traversal or-
der), which might be problematic if other algorithms working on
the cuts (e.g. Lightcuts) are better suited for other traversal orders.

Our method reads only the level of each input node and thus
does not share this limitation. Also for each input node NCA re-
quires to load two indices in addition to the value that is to be
interpolated, which is at least twice the amount of data that needs
to be read from memory compared to our method (and which can
also be compressed much worse than the level alone). Generally,
traversal order and memory I/O is very important and we found that
the performance of our GPU-implementation scales approximately
linearly with the number of memory reads per interpolation step.
Lastly, NCA saves the input cuts at the vertices of the input geome-
try. Lightcut Interpolation works in image space only and does not
require any explicit mesh representation.

(Ir-)Radiance Caching (see Sec. 2) convolves contributions of
emitters (here VPLs) in the upper hemisphere of a cache record
with their visibility. Thus only directly visible emitters are repre-
sented in the record. In contrast a lightcut does not pre-convolve
with visibility and represents VPLs also from the lower hemisphere
(albeit not refined very much). We directly interpolate the nodes in
the cut, and then evaluate each node at a shading point (optionally
we interpolate visibility along with the nodes’ levels).

While Reconstruction Cuts (see Sec. 2) can discard nodes in the
input lightcuts quickly if a node’s contribution is zero, Lightcut In-
terpolation needs to create full, valid lightcuts that cover each leaf
of the hierarchy. Thus, we have to iterate once over all nodes in the
input cuts, even if they have no contribution. However, Reconstruc-
tion Cuts does traverse the hierarchy of directional lights for every

0 10 20 30 40

Fractalwall

Living Room

Museum (Stairs)

Buddha

Sponza (Lion)

Sponza (Overview)

Museum (T-Rex)

Museum (Both)

26.1

15.1

39.9

11

18.9

25.5

36.9

35.5

8.54

8.2

24.6

4.46

8.46

9.9

20.8

16.8

0.78

1.32

4.71

0.5

0.78

1.7

2.94

3.07

Time in s

Lightcuts Ours (full Vis.) Ours (interp. Vis.)

0 10 20 30 40
Fractalwall

Living Room
Museum (Stairs)

Buddha

Sponza (Lion)
Sponza (Overview)

Museum (T-Rex)
Museum (Both)

Time in s
Create lightcuts Find similar cache records Interpolate lightcuts

Resolve visibility for shading points Evaluate lightcuts

0 10 20 30 40
Fractalwall

Living Room
Museum (Stairs)

Buddha

Sponza (Lion)
Sponza (Overview)

Museum (T-Rex)
Museum (Both)

Time in s
Create lightcuts Resolve visibility for shading points Evaluate lightcuts

Figure 8: Top: Performance of our method compared to Lightcuts
in diffuse scenes. Lightcut Interpolation needs only 4.50-8.32% (in-
terp. Vis.) resp. 40.4-56.4% (full Vis.) of the time to compute an
image. Middle: Performance Breakdown of the individual stages
of Lightcut Interpolation with full visibility. Shooting rays for shad-
ing points dominates the costs. Bottom: Performance Breakdown
of the individual stages of Lightcuts. Hierarchy traversal makes for
approx. half the cost even in complex scenes.

shading point, and in general requires to read a lot of data from
memory. As GPUs are often memory-I/O-bound, this complicates
a fast GPU implementation.

When merging cuts conservatively, emitting the lowest nodes of
all input cuts, perceivable discontinuities arise where the influence
of cache records ends, due to an abrupt change between neighboring
cuts. Interpolation ensures that cuts always change smoothly.

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

H. Rehfeld & C. Dachsbacher / Lightcut Interpolation

Ours (interp. Vis.)

1.70 s

Ours (interp. Vis.)

vs
.V

PL
s

Lightcuts

1.70 s

Lightcuts

vs
.V

PL
s

1
8

Abs.

Err.

0
Ours (interp. Vis.)

0.84 s

Ours (interp. Vis.)

vs
.L

ig
ht

cu
ts

Reconstructioncuts

48.1 s

Reconstructioncuts

vs
.L

ig
ht

cu
ts

1
8

Abs.

Err.

0

Figure 9: Top: Original Lightcuts and Lightcut Interpolation (ours)
for the SPONZA (OVERVIEW) scene. The refinement threshold is
tuned to yield an equal-time comparison. Our method captures indi-
rect illumination with only minor artifacts. Lightcuts cannot refine
cuts sufficiently and indirect illumination is almost completely off.
Bottom: Lightcut Interpolation compared to Reconstruction Cuts
(no visibility or shadow rays in our prototype). Pixels where a
method cannot create a cut are marked in magenta, and are treated
as zero error in the difference image, see Sec. 6.

6. Results and Discussions

All images were rendered with 106 VPLs on an Nvidia GTX 980 (4
GB RAM), with a resolution of 10242 unless stated otherwise.

Fig. 10 shows the scenes we used for comparisons. Scenes ei-
ther use completely diffuse materials, or force a Phong exponent
of 150. We compare to both a naive VPL implementation [Kel97]
(far left) and Lightcuts [WFA∗05]; the latter is also compared to
VPLs (second and third columns). For Lightcuts, we use 1% of the
estimated contribution as the relative threshold. We show results of
Lightcut Interpolation (rightmost three columns) with full visibility
(shadow rays are shot for every node in a shading point’s lightcut,
top left of the images), and interpolated visibility (results of shadow
tests are interpolated from nodes of the input cuts, bottom right).
The comparison images show the absolute error in the output radi-
ance. The false-color mapping scale is the same for all images. We
also include timings, showing that our method with interpolation of
lightcuts and visibility is typically more than an order of magnitude
faster, while introducing little approximation error.

Full Visibility In diffuse scenes, Lightcut Interpolation (full Vis.)
introduces a minor bias compared to Lightcuts in areas with high-
frequency details and geometric discontinuities. This can be ob-
served in SPONZA (LION) on the small rounded discontinuities of
the lion head, or in MUSEUM (BOTH) where the back wall near the
windows has many small discontinuities.

In most scenes, Lightcuts itself introduces large errors com-
pared to VPLs, especially in bright areas where its cut refine-
ment allows for a large error per node (see Sec. 2). Other authors
have also observed that Lightcuts can introduce non-negligible er-
ror [OP11, HWJ∗15]. The additional bias of our method is compa-
rably insignificant.

With glossy materials, Lightcut Interpolation introduces slightly

larger bias, especially on strongly curved surfaces. FRACTALWALL

(highly tessellated and displaced wall of a Cornell box) is a patho-
logical case: here our method shows consistent bias on most curved
surfaces, but the resulting deviations are small and only apparent
in the difference images. The original Lightcuts shows less bias,
mostly in the glossy highlights.

In the MUSEUM (T-REX) scene the interpolation introduces
larger errors in the bright glossy highlights on the T-Rex head.
Lightcuts also consistently shows very large errors at these high-
lights. Compared to VPLs, it is hard to distinguish our method from
Lightcuts. This trend can be observed in all glossy results: Light-
cut Interpolation introduces artifacts where Lightcuts also seems to
introduce bias, especially at glossy highlights.

A performance and a timing breakdown is shown in Fig. 8. Light-
cut Interpolation takes only 40.4-56.4% (diffuse) resp. 40.5-57.6%
(glossy, not shown) of the time of original Lightcuts. It is obvious
that per shading point shadow ray casting dominates the rendering
costs. Even in the worst case, MUSEUM (STAIRS), all other steps
take less than 18% of total time—the actual interpolation itself
takes less than 2.5% of total render time. This shows the success of
our method in reducing lightcut creation cost.

Interpolated Visibility As an alternative to shadow ray casting,
we also evaluate interpolating visibility from the input cuts’ nodes.
Unsurprisingly, this introduces some bias where radiance changes
rapidly, e.g. near geometry discontinuities; sometimes to a lesser
degree also on almost planar spaces. The BUDDHA scene with full
visibility has almost no perceivable error. Compared to this, the
additional artifacts from interpolated visibility can be observed par-
ticularly at the breasts and the folds of the kimono. In SPONZA

(OVERVIEW) the bias is visible in the indirect shadow below the
banderoles and the curtains on the right. Insufficiently sampled
indirect shadows are most obvious in the LIVING ROOM scene,
where the shadows of the vase and pictures on the cupboard are
cast by indirect light. These artifacts can sometimes be perceived
even without comparison images. Also, the small trims on the cup-
boards and small detail of the accessories in the LIVING ROOM

scene seem to be missed completely, which might be caused by an
undersampling of the hemisphere of cache records for the cache
radius [TL04, Ulb15].

The impact of the visibility interpolation artifacts is amplified by
the cache record placement which ignores the actual radiance distri-
bution, and thus does not increase the density of cache records where
illumination changes rapidly [Ulb15]. Any cache record distribution
scheme that takes radiance into account (e.g. a fully converged radi-
ance cache distribution) could reduce the error significantly.

Lightcut Interpolation with interpolated visibility is almost inter-
active in moderately complex scenes, see Fig. 8 (top). Rendering an
image takes only 4.50-8.32% (diffuse), and 4.84-11.7% (glossy, not
shown) of the time of original Lightcuts. With reduced resolution,
it can be used interactively, e.g. to position the camera or to preview
material and shading. Interpolating visibility during lightcut node
level interpolation is very cheap, but of course shadow rays have to
be cast for the nodes in the lightcuts of the cache records, which can
take up to 2 seconds in complex scenes.

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

H. Rehfeld & C. Dachsbacher / Lightcut Interpolation

Diffuse Materials
VPLs

2.48 Hours

Lightcuts

35.5 s

Lightcuts

vs
.V

PL
s

Ours (full Vis.), 16.8 s

Ours (interp. Vis.), 3.07 s

vs
.L

ig
ht

cu
ts

Ours (full Vis.)

Ours (interp. Vis.)

vs
.V

PL
s

Ours (full Vis.)

Ours (interp. Vis.)

1
8

Abs.
Err.

0
VPLs

3.46 Hours

Lightcuts

36.9 s

Lightcuts

vs
.V

PL
s

Ours (full Vis.), 20.8 s

Ours (interp. Vis.), 2.94 s

vs
.L

ig
ht

cu
ts

Ours (full Vis.)

Ours (interp. Vis.)

vs
.V

PL
s

Ours (full Vis.)

Ours (interp. Vis.)

1
8

Abs.
Err.

0
VPLs

2.00 Hours

Lightcuts

25.5 s

Lightcuts
vs

.V
PL

s
Ours (full Vis.), 9.90 s

Ours (interp. Vis.), 1.70 s

vs
.L

ig
ht

cu
ts

Ours (full Vis.)

Ours (interp. Vis.)

vs
.V

PL
s

Ours (full Vis.)

Ours (interp. Vis.)

1
8

Abs.
Err.

0
VPLs

1.45 Hours

Lightcuts

18.9 s

Lightcuts

vs
.V

PL
s

Ours (full Vis.), 8.46 s

Ours (interp. Vis.), 0.78 s

vs
.L

ig
ht

cu
ts

Ours (full Vis.)

Ours (interp. Vis.)

vs
.V

PL
s

Ours (full Vis.)

Ours (interp. Vis.)

1
8

Abs.
Err.

0
VPLs

1.58 Hours

Lightcuts

11.0 s

Lightcuts

vs
.V

PL
s

Ours (full Vis.), 4.46 s

Ours (interp. Vis.), 0.50 s

vs
.L

ig
ht

cu
ts

Ours (full Vis.)

Ours (interp. Vis.)

vs
.V

PL
s

Ours (full Vis.)

Ours (interp. Vis.)

1
8

Abs.
Err.

0

Glossy Materials (Phong exponent 150)
VPLs

3.47 Hours

Lightcuts

40.0 s

Lightcuts

vs
.V

PL
s

Ours (full Vis.), 20.5 s

Ours (interp. Vis.), 3.15 s

vs
.L

ig
ht

cu
ts

Ours (full Vis.)

Ours (interp. Vis.)

vs
.V

PL
s

Ours (full Vis.)

Ours (interp. Vis.)

1
8

Abs.
Err.

0
VPLs

4.47 Hours

Lightcuts

42.1 s

Lightcuts

vs
.V

PL
s

Ours (full Vis.), 24.3 s

Ours (interp. Vis.), 4.92 s

vs
.L

ig
ht

cu
ts

Ours (full Vis.)

Ours (interp. Vis.)

vs
.V

PL
s

Ours (full Vis.)

Ours (interp. Vis.)

1
8

Abs.
Err.

0
VPLs

1.66 Hours

Lightcuts

16.9 s

Lightcuts

vs
.V

PL
s

Ours (full Vis.), 6.85 s

Ours (interp. Vis.), 1.51 s

vs
.L

ig
ht

cu
ts

Ours (full Vis.)

Ours (interp. Vis.)

vs
.V

PL
s

Ours (full Vis.)

Ours (interp. Vis.)

1
8

Abs.
Err.

0
VPLs

2.01 Hours

Lightcuts

26.5 s

Lightcuts

vs
.V

PL
s

Ours (full Vis.), 8.02 s

Ours (interp. Vis.), 0.82 s

vs
.L

ig
ht

cu
ts

Ours (full Vis.)

Ours (interp. Vis.)

vs
.V

PL
s

Ours (full Vis.)

Ours (interp. Vis.)

1
8

Abs.
Err.

0

Figure 10: Lightcut Interpolation (ours) compared to VPLs and Lightcuts in both diffuse and glossy (Phong exponent 150) scenes. False
color images show absolute error compared to VPLs and/or Lightcuts. From top to bottom: MUSEUM (BOTH), MUSEUM (T-REX), SPONZA

(OVERVIEW), SPONZA (LION), BUDDHA, MUSEUM (T-REX), MUSEUM (STAIRS), LIVING ROOM, FRACTALWALL.
© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

H. Rehfeld & C. Dachsbacher / Lightcut Interpolation

Equal Time Fig. 9 shows an equal time comparison between Light-
cut Interpolation (interp. Vis.) and Lightcuts, where its refinement
threshold is tuned to yield an equal-time comparison. It is obvious
that even for previews Lightcuts cannot capture illumination con-
vincingly with these extreme settings, while our method produces
an image that represents the lighting in the SPONZA (OVERVIEW)
scene well, despite some artifacts below the curtains.

Lightcut Interpolation vs. Reconstruction Cuts We imple-
mented a prototype of Reconstruction Cuts (see Sec. 2) for experi-
ments and comparisons. Our prototype runs on the GPU, but does
not support visibility interpolation and omits some of the strategies
to adapt to high-frequency geometry, but instead simply masks dif-
ficult pixels. These are then ignored in difference images. In Fig. 9
we can see that Lightcut Interpolation has less bias than Reconstruc-
tion Cuts in all regions, and is more than 50× faster than our proto-
typical Reconstruction Cuts implementation. This is not surprising,
as Reconstruction Cuts does not eliminate hierarchy traversal and
requires many memory reads per shading point, see Sec. 5.

7. Conclusion and Future Work

In this paper we presented a novel method for exploiting the co-
herence in lightcuts [WFA∗05]. In contrast to previous work, our
method is not based on clustering shading points, but instead com-
putes lightcuts at image space cache records and interpolates the
levels of their nodes for all shading points. This enables an efficient,
GPU-friendly preview rendering of global illumination computed
from a large number of (virtual) light sources.

There is strong potential to accelerate Lightcut Interpolation fur-
ther. During cut interpolation, it is easy to check where the input
lightcuts differ too much. Then, it would be possible to simply refine
one of the input lightcuts for these nodes using a partial hierarchy
traversal, yielding reference lightcuts. If radiance of cache records
differs too much, additional shadow rays could be shot where the
input nodes’ visibility differs. Lastly, with a temporally stable dis-
tribution of cache records, lightcuts for the cache records could be
saved and reused across frames to save the substantial cost of creat-
ing the cache records’ lightcuts.

References
[AUW07] AKERLUND O., UNGER M., WANG R.: Precomputed visibil-

ity cuts for interactive relighting with dynamic BRDFs. In Computer
Graphics Forum (Proc. Pacific Graphics) (2007), pp. 161–170.

[CPWAP08] CHESLACK-POSTAVA E., WANG R., AKERLUND O., PEL-
LACINI F.: Fast, realistic lighting and material design using nonlinear cut
approximation. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 27, 5
(2008), 128:1–128:10.

[DBD08] DE BODT T., DUTRÉ P.: Coherent Lightcuts. Tech. rep.,
Katholieke Universiteit Leuven, 2008.

[DGS12] DAVIDOVIČ T., GEORGIEV I., SLUSALLEK P.: Progressive
lightcuts for GPU. In ACM SIGGRAPH 2012 Talks (2012), p. 1.

[DKH∗13] DACHSBACHER C., KRIVÁNEK J., HASAN M., ARBREE A.,
WALTER B., NOVÁK J.: Scalable realistic rendering with many-light
methods. Computer Graphics Forum (2013).

[HMS09] HERZOG R., MYSZKOWSKI K., SEIDEL H.-P.: Anisotropic
radiance-cache splatting for efficiently computing high-quality global
illumination with lightcuts. Computer Graphics Forum (Proc. of Euro-
graphics) 28, 2 (2009), 259–268.

[HPB07] HAŠAN M., PELLACINI F., BALA K.: Matrix row-column sam-
pling for the many-light problem. ACM Trans. on Graphics 26, 3 (2007),
26.

[HWJ∗15] HUO Y., WANG R., JIN S., LIU X., BAO H.: A matrix
sampling-and-recovery approach for many-lights rendering. ACM Trans.
on Graphics (2015).

[KBPZ06] KRIVÁNEK J., BOUATOUCH K., PATTANAIK S. N., ZARA
J.: Making radiance and irradiance caching practical: Adaptive caching
and neighbor clamping. Proc. Eurographics Symposium on Rendering
(2006), 127–138.

[Kel97] KELLER A.: Instant radiosity. In SIGGRAPH ’97 (1997), pp. 49–
56.

[KGPB05] KRIVÁNEK J., GAUTRON P., PATTANAIK S., BOUATOUCH
K.: Radiance caching for efficient global illumination computation. IEEE
Trans. on Visualization and Computer Graphics 11, 5 (2005), 550–61.

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Clustered de-
ferred and forward shading. InProc. of ACM SIGGRAPH / Eurographics
conference on High Performance Graphics (2012), pp. 87–96.

[OP11] OU J., PELLACINI F.: Lightslice: matrix slice sampling for the
many-lights problem. ACM Trans. on Graphics (Proc. SIGGRAPH Asia)
30, 6 (2011), 179.

[RZD14] REHFELD H., ZIRR T., DACHSBACHER C.: Clustered pre-
convolved radiance caching. In Proc. of Eurographics Symposium on
Parallel Graphics and Visualization (2014).

[SJJ12] SCHWARZHAUPT J., JENSEN H. W., JAROSZ W.: Practical
hessian-based error control for irradiance caching. ACM Trans. on Graph-
ics (Proc. SIGGRAPH Asia) 31, 6 (2012), 193.

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting envi-
ronments. ACM Trans. on Graphics 21, 3 (2002), 527–536.

[SNRS12] SCHERZER D., NGUYEN C. H., RITSCHEL T., SEIDEL H.-
P.: Pre-convolved radiance caching. Computer Graphics Forum (Proc.
Eurographics Symposium on Rendering) 4, 31 (2012).

[TL04] TABELLION E., LAMORLETTE A.: An approximate global illu-
mination system for computer generated films. ACM Trans. on Graphics
23, 3 (2004), 469–476.

[Ulb15] ULBRICH J.: Efficient Screenspace Distribution of Irradiance
Cache Records by Analyzing and Evaluating Existing Error Metrics. Mas-
ter’s thesis, Karlsruhe Institute of Technology, Germany, 2015.

[WBKP08] WALTER B., BALA K., KULKARNI M., PINGALI K.: Fast ag-
glomerative clustering for rendering. In IEEE Symposium on Interactive
Ray Tracing (2008), pp. 81–86.

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: a scalable approach to
illumination. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3 (2005),
1098–1107.

[WH92] WARD G. J., HECKBERT P.: Irradiance gradients. In Proc.
Eurographics Workshop on Rendering (1992), pp. 85–98.

[WHY∗13a] WANG R., HUO Y., YUAN Y., ZHOU K., HUA W., BAO H.:
GPU-based out-of-core many-lights rendering. ACM Trans. on Graphics
(Proc. SIGGRAPH Asia) 32, 6 (2013), 210:1–210:10.

[WHY∗13b] WANG R., HUO Y., YUAN Y., ZHOU K., HUA W., BAO H.:
GPU-based out-of-core many-lights rendering. ACM Trans. on Graphics
(Proc. SIGGRAPH Asia) 32, 6 (2013), 210:1–210:10.

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray trac-
ing solution for diffuse interreflection. Computer Graphics (Proc. SIG-
GRAPH) 22, 4 (1988), 85–92.

[WWZ∗09] WANG R., WANG R., ZHOU K., PAN M., BAO H.: An
efficient GPU-based approach for interactive global illumination. ACM
Trans. on Graphics 28, 3 (2009), 91:1–91:8.

[WXW11] WANG G., XIE G., WANG W.: Efficient search of lightcuts
by spatial clustering. In SIGGRAPH Asia Sketches (2011), p. 26.

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

