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Figure 1: Our novel voxelization and rendering method used with a Smoothed Particle Hydrodynamics simulation computed
using 20 million particles. The view-adaptive voxelization comprises about 30 billion voxels but can be carried out and used
for interactive rendering on a single GPU due to our tiled-based voxelization and on-the-fly compression.

Abstract
In this paper we present a novel GPU-friendly real-time voxelization technique for rendering homogeneous me-
dia that is defined by particles, e.g. fluids obtained from particle-based simulations such as Smoothed Particle
Hydrodynamics (SPH). Our method computes view-adaptive binary voxelizations with on-the-fly compression of
a tiled perspective voxel grid, achieving higher resolutions than previous approaches. It allows for interactive
generation of realistic images, enabling advanced rendering techniques such as ray casting-based refraction and
reflection, light scattering and absorption, and ambient occlusion. In contrast to previous methods, it does not
rely on preprocessing such as expensive, and often coarse, scalar field conversion or mesh generation steps. Our
method directly takes unsorted particle data as input. It can be further accelerated by identifying fully populated
simulation cells during simulation. The extracted surface can be filtered to achieve smooth surface appearance.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Particle-based simulation is a versatile tool with numerous
applications. In computer graphics, for example, Smoothed
Particle Hydrodynamics (SPH) is used for simulating flu-
ids in movie productions and games; in molecular dynam-
ics, particle-based simulations investigate molecular struc-
ture, dynamics, and thermodynamical properties. In all these
cases, the simulation results in a (typically large) number of
particles which represent physical matter, e.g. a fluid. For
rendering, the surface of this body has to be extracted ei-
ther as a polygonal mesh or another representation that can
be used with image generation methods. In this paper we fo-
cus primarily on SPH simulation data from which we extract
surfaces. Nevertheless, our method is likewise applicable to
rendering of other particle-based simulation data.

SPH simulations nowadays comprise a large number (of-
ten tens of millions [IABT11]) of particles, and interestingly,
the rendering, in particular the extraction of a high-quality
surface, becomes the bottleneck. The classical approach to
this is using Marching Cubes (MC) [LC87] to obtain a
polygonal surface. Various approaches have been presented
to obtain the therefor required scalar field that implicitly de-
scribes the surface [ZB05,APKG07,SSP07,YT13,AIAT12].
This step takes up most of the computation time, but MC-
based approaches also struggle with mesh quality which
is strongly dependent on the MC grid size and the parti-
cles’ influence radii in the scalar field. Implicit surfaces can
also be rendered directly using ray casting [KSN08], splat-
ting [vdLGS09] and volumetric rendering [FAW10], how-
ever, this typically either limits rendering to only basic tech-
niques or requires additional preprocessing.
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In this paper we present a method which enables view-
adaptive high-resolution voxelization of SPH particle data,
i.e. the surfaces discriminating the fluid and the surround-
ing medium. It achieves interactive speed for millions of
particles on a single GPU and enables rendering with com-
plex illumination effects such as reflection and refraction or
translucency. We show results for voxelizations at 1920 ×
1080× 16000 (for interactive preview rendering) and at up
to 3840×2160×16000 (which would amount to 13.8 giga-
bytes uncompressed) for fast supersampled preview render-
ing, both on a single GPU. We address the problem of high-
resolution volumetric data exceeding the available memory
with a tiled voxelization that is instantaneously compressed
for later use in rendering and ray casting.

2. Related Work

Rendering the results of SPH simulations requires the recon-
struction of surfaces from the set of particles. The existing
techniques can be roughly classified into the following cat-
egories: (1) polygonization of an isosurface of a scalar field
defined by the particles, (2) mesh advection, (3) direct and
screen space rendering of the isosurface, and (4) volume ren-
dering approaches. A recent state-of-the-art report [IOS∗14]
provides a comprehensive overview of this topic and we thus
restrict ourselves to a brief discussion to provide context.

Polygonization In SPH (and other particle-based) simula-
tions a scalar field can be obtained by superimposing ker-
nel functions of the individual particles. An isosurface of
this scalar field can be polygonized using Marching Cubes
(MC) [LC87] (or related approaches). The mesh quality and
smoothness depends on various aspects, such as the MC
grid resolution [AIAT12] and the computation of the scalar
field itself. The simplest way for the latter is to superimpose
Gaussian potentials [Bli82] which, however, may result in
distracting bumps with irregular particle distributions. More
elaborate approaches obtain smoother surfaces by comput-
ing the scalar field based on the weighted average of nearby
particles [ZB05, APKG07, SSP07, AIAT12], possibly using
anisotropic kernels [YT13]. The computation of the scalar
field is crucial for the performance of the overall rendering
and thus several optimizations have been developed, e.g. re-
constructing the scalar field only in the proximity of the fluid
surface [AIAT12], mesh decimation [AAIT12], and adaptiv-
ity using hierarchical grids [AAOT13]. Polygonization ap-
proaches typically require significant computation time and
memory, and often involve subsequent mesh decimation to
reduce the number of primitives and adapt the mesh resolu-
tion to the viewpoint.

Mesh Advection Instead of extracting meshes for isosur-
faces in each frame, another approach is to use explicit
meshes which are advected (updated) over time [PTB∗03,
HH09,YWTY12]. Note that these methods introduce signif-
icant overhead for maintaining the polygonal meshes.

Direct and Screen Space Rendering All aforementioned
approaches are typically not feasible for interactive render-
ing (without significant loss of quality). Screen space meth-
ods operate in 2D image space with the primary goal of ex-
tracting a depth map of the frontmost surface by rendering
the particles (e.g. as spheres), possibly followed by smooth-
ing using a (separated) bilateral filter [Gre10], according
to mean curvature [vdLGS09, BSW10], or using local fit-
ting [GRDE10]. Accounting for further surfaces (behind the
frontmost) requires depth peeling [KSN08]. Szécsi and Il-
lés raycast metaballs by storing them in per-pixel fragment
lists and computing the intersection afterwards [SI12]. Poly-
gonization can also be avoided when directly computing the
intersection of (view) rays and the isosurface [GSSP10] or
particle spheres [GIK∗07]. Our approach is related to screen
space approaches as we also compute a view-dependent rep-
resentation. However, we obtain a truly volumetric repre-
sentation which is able to handle large numbers of particles
without costly depth peeling.

Volume Rendering In order to use more elaborate light-
ing techniques (e.g. transmittance along light or shadow
rays), or to render mass flow inside fluids, volume ren-
dering techniques are required. SPH particle data is often
transformed into a volumetric representation using splatting-
slicing approaches [NMM∗06, vdLGS09, FAW10]. Simi-
lar to our method, Fraedrich et al. [FAW10] use a view-
dependent perspective grid for computing a voxelization of
SPH data. In contrast to our approach, they generate and im-
mediately render slabs of the grid, which enables storing
scalar data (while we assume homogeneous media). How-
ever, the resolution of their method is severely limited by the
available GPU memory and multi-layer information does not
remain accessible, disallowing secondary ray casting.

Compression This work makes use of a kind of run-
length encoding that is somewhat similar to the multi-
layer runlength-encoded orthogonal framebuffer used by Re-
ichl et al. [RCBW12] to enhance a coarse voxelization of
polygonal meshes with detail surface samples for acceler-
ated hybrid rendering. However, their encoding runs at pre-
processing time and uses depth peeling, which is impracti-
cable for large quantities of overlapping particles. With re-
spect to SPH visualization, Reichl et al. [RTW13] describe
an out-of-core octree data structure enhanced with wavelet
compression to allow for visualization of very large data sets
(billions of particles). However, they require hours of pre-
processing and cast only primary rays.

3. Algorithm

Our voxelization and rendering algorithms comprise distinct
stages which are all executed on the GPU and depicted in
Fig. 2. The first two steps operate in a tile-based mode which
enables us to voxelize at resolutions which would otherwise
not be possible with the nowadays available GPU memory.
The algorithm stages are:
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Figure 2: Our voxelization operates in three stages (from left to right): a) voxelization of particles from the simulation, b)
compression of contiguous voxels in voxel columns, c) determination of surfaces across voxel columns. Prior to rendering, d)
we apply an iterative filter to the interval depths and e) compute normals.

(a) Splat: Determine occupied voxels of a view-aligned per-
spective grid by projecting particle spheres onto the
screen tile, optionally accelerated with additional infor-
mation from the simulation grid.

(b) Compress: Scan each pixel’s voxels along the view di-
rection for occupied voxels, store distance to surfaces
(entries and exits).

(c) Surface Connection: Identify and connect overlapping
depth intervals in neighboring pixels to surfaces.

(d) Filter: Apply smoothing on connected surfaces’ depth.
(e) Normal generation: Apply Sobel operator on connected

surface depths to obtain surface normals.
(f) Render: Render images (optionally with ray casting for

secondary rays) using the multi-layer depth and normal
information available in the voxelization.

3.1. Tiled Voxelization and Compression

We construct our view-adaptive perspective voxel grid at
full render resolution, typically using ∼ 16.000 depth lay-
ers (∼ 30 billion voxels at 1080p). To achieve a resolution
this high within GPU memory bounds, we split the screen
into smaller tiles whose subgrids comfortably fit into video
memory. We denote the voxels along the depth dimension
that belong to the same pixel as voxel column or simply col-
umn. For each voxel we store 1 bit (empty or occupied).

Splatting (Fig. 2a) takes a list of particles as input (in
any order) and renders one sphere for each particle, mark-
ing the overlapped voxels in the columns of overlapped pix-
els. When one tile has been voxelized, we extract the en-
try and exit surface depths of an imaginary eye ray through
each pixel, by iterating over all columns in parallel. We store
the resulting list of surface depths for every pixel (Fig. 2b).
Afterwards, the voxel subgrid is discarded and we continue
voxelization with the next tile. Note that this scheme would
trivially allow for work distribution across multiple GPUs.

If the number of layers exceeds the allocated memory, we
continuously update the last exit depth and additionally keep
track of the amount of empty space between encountered

layers. Thus, we obtain surfaces for the first k layers while
still allowing for correct volumetric absorption.

Additionally, we can take advantage of simulation con-
straints such as in the simulation of incompressible fluids:
Since particle simulations are typically grid-based, a maxi-
mum number of particles per grid cell allows us to quickly
determine full inner cells whose particles do not add infor-
mation. We leave these out of the input data, drastically re-
ducing the number of particles to be voxelized. As many
simulations keep their particles sorted, this is easily achieved
in a fast reduction and compaction step before voxelization.

3.2. Surface Extraction

In principle, whenever two successive bits in a voxel col-
umn differ, a boundary surface of the voxelized volume has
been found. However, there is a trade-off between minimiz-
ing particle size and minimizing gaps in the volume. To al-
low for smaller particles, we always keep track of the last
encountered set bit in each iterated column, and only insert
exit surface depths when a minimum (world-space) distance
between the last and the next set bit has been exceeded.

3.3. Connecting Depth Lists to Surfaces

After compression, we obtain a list of depth values that mark
the entry and exit points of the fluid along a voxel column.
We will subsequently refer to the depth intervals formed by
pairs of successive entry and exit depths in each column as
spans. The number of spans can be different for neighbor-
ing columns and at first, it is unclear which depth values in
neighboring columns belong to the same surfaces. To extract
connected surfaces, we start by identifying spans in neigh-
boring columns that overlap in depth, and which are there-
fore connected to the same part of the volume.

Figure 3 illustrates the possible configurations that need
to be considered. We connect the frontmost entry depths and
the backmost exit depths of overlapping neighbor spans to
form one surface (a). Connect means to store pointers for the
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Figure 3: Gray bars represent contiguous set voxels within
a voxel column. In order to extract surfaces, we search for
overlapping spans and store links connecting (a) entry and
exit locations of neighboring spans belonging together, and
exit and entry points of empty space (b) (e.g. bubbles in a
fluid) and (c) at boundary spans.

two connected entry or exit points to the respective other. In-
ner exit depths are connected to the subsequent entry depth
in their own column and inner entry depths to the preceding
exit depth (b), which effectively accounts for bubbles inside
the volume. When there is no overlapping neighbor span, en-
try and exit depths are linked to each other (c). See Listing 1
for the exact procedure of linking of a given (‘current’) span.

We save the resulting surface connection links for the
four direct neighbors of each pixel, packed into one machine
word and stored in parallel to the surface depth values. We
use two special link values to indicate links to subsequent or
preceding entries in the same column.

3.4. Filtering and Normal Generation

Given the surface links, we can now easily traverse the sur-
face from any given point. This allows for trivial application
of smoothing filters such as blurring kernels or iterative cur-
vature flow [vdLGS09,BSW10]. Due to the potentially com-
plex shape of the surface, iterative filters are a good choice
to ensure relatively even filter spread in all directions.

After filtering, we generate normals using the Sobel op-
erator to estimate derivatives in two directions. Just like the
surface links, we store the normals in parallel to the surface
depth array to allow easy access during rendering. In fact, we
reuse surface link storage and compute surface connectivity
on the fly, using the same logic as during surface connection.

3.5. Rendering and Ray Casting

Rendering the frontmost surface is now as easy as read-
ing the first depth and normal entry of every voxel column
(i.e. pixel). For translucency effects, it is sufficient to iterate
over all depth and normal entries and to apply a scattering
and absorption model using ray segment lengths computed
from the depth differences of adjacent entry and exit depths.

To implement more complex illumination effects such as

vi
ew

 d
ire

ct
io

n

Figure 4: Ray casting is performed by marching along the
ray’s projection onto the image plane. For every pixel we
determine the intervals (gray) from its voxel column whose
boundaries potentially intersect the ray (orange).

refractions, ray casting can be started after reading the first
surface entry, perturbing the ray direction accordingly. Ray
casting is performed in screen space: starting at the pixel
that contains the ray origin, we march pixel by pixel along
the projected ray direction. For each pixel we identify all en-
try and exit points that lie in-between the depths where our
ray enters and leaves the corresponding voxel column (illus-
trated in Figure 4). When entering the next pixel, the same
depth layer is usually a good guess where to start looking
for the next hit surface. Note that hits may also occur on
voxel column boundaries in-between stored surface values
(e.g. the third intersection in Figure 4). However, these cases
are easily detected by checking whether the ray changes its
state between inside and outside when entering a new col-
umn (LSB of layer index). Listing 2 provides pseudocode.

front_nb = first_neighbor_span(where .exit >= current_span.entry)

if (front_nb.entry <= current_span.exit) {

/ / i f neighbor not connected to previous span , l i n k e n t r i e s
if (front_nb.entry > previous_span.exit)

link(current_span.entry, front_nb.entry)

/ / e l s e : same neighbor as l a s t time , forming a bubble wall
else link(current_span.entry, previous_span.exit)

back_nb = last_neighbor_span(where .entry <= current_span.exit)

/ / i f neighbor not connected to next span , l i n k e x i t s
if (next_span.entry > back_nb.exit)

link(current_span.exit, back_nb.exit)

/ / e l s e : neighbor recurs next time , forming a bubble wall
else link(current_span.exit, next_span.entry)

}

Listing 1: Pseudocode for connected surface construction.

while (column = next_intersected(ray, column)) {

[entry, exit] = intersection_depths(ray, column)

layer = first_layer_after(entry, z_sgn, start_hint = layer)

layer_found = (z_sgn * layer <= exit * z_sgn)

entering = ((layer & 1) != (z_sgn > 0)) == layer_found

do {

if (entering != was_inside) handle_intersection(...)

if (layer_found) layer += z_sgn

entering = !entering

} while(z_sgn * layer <= exit * z_sgn)

} / / z_sgn = −1 i f ray marching agains t view d i r

Listing 2: Pseudocode for ray marching through columns.
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As we want to trace multiple refractions, we abort march-
ing whenever a surface is intersected. We compute the ray’s
contribution and then restart ray casting with a new per-
turbed ray. We can terminate ray marching when we have
reached the voxel grid boundary.

3.6. Ambient Occlusion

As the data structure stores multiple layers, it can also be
used to implement deep ambient occlusion. In our results,
we use a simple screen-space ambient occlusion approach
that computes the amount of occlusion for a given point by
sampling the occlusion from neighboring surface points in-
side a given radius [Mit07]. In contrast to traditional screen-
space ambient occlusion, we do not suffer from missing in-
formation behind the front-most surfaces, since we have full
knowledge of many layers of entry and exit surfaces.

4. Implementation

We have implemented our algorithm using CUDA 7.0 and
OpenGL. Using volume textures to store all our data allows
us to take advantage of GPU-internal memory layouts opti-
mized for cache-locality of spatially adjacent data.

4.1. Splatting and Voxelization

To render particles into the voxel grid, we render screen-
aligned bounding quads using an OpenGL geometry shader.
This shader projects particle spheres onto the screen. For
each generated fragment, the particle sphere is intersected
with the corresponding camera ray. All overlapped voxels in
the corresponding column are then marked, the atomic bit-
wise operations offered by modern GPUs make it easy to set
the bits of overlapped voxels concurrently.

On an NVIDIA GTX Titan, speedups can be achieved
by rendering smaller particles (radius < 7 pixels) using a
simple splatting CUDA kernel for all particles in parallel.
This kernel also projects particles onto the screen and then
loops over all pixels in an axis-aligned bounding quad se-
quentially. (While CUDA does not yet expose atomics on
textures directly, they are accessible via the ’sured’ instruc-
tion using inline PTX code). Like most simulation data, our
particles were partially sorted by the simulation. Thus, splat-
ting happens in groups of approximately equal distance and
size, explaining SIMT efficiency. However, on a GTX 970,
pure OpenGL-based rendering is always faster.

4.2. Voxelization Layer Distribution

To ensure a continuous appearance in the final renders gen-
erated from the extracted boundary surface depths, we need
to enforce a minimum angle resolution for the resulting sur-
face normals. For this, we need more depth precision near
the camera than farther away during voxelization. The min-
imum angle step α between a reconstructed surface that is

coplanar to the viewer and an adjacent surface bent towards
the viewer is determined by the minimum depth step that can
be taken towards the viewer. In-between columns of width
cw, that minimum depth step is one cell depth cd :

α = tan
cd
cw

For perspective grids, the vertical cell width cw can be com-
puted as cw =

2 tan(θy/2)
Ry

d [OBA12], where d denotes the
depth of the cell, the vertical grid resolution is Ry and the
vertical field of view is θy. Setting cd = cw arctanα =: Kdd,
we can compute the depth di of layer i and vice versa as:

di = di−1 + c(i−1)
d = di−1 +Kddi−1 = (1+Kd)

id0

i =
⌊

logdi − logd0
log(1+Kd)

⌋
As we can see, the minimum angle α and the near plane
at d0 fully determine a logarithmic depth partitioning that
keeps cell extent ratios and thus α constant throughout the
perspective grid. Note that all but one logarithm can be pre-
computed. Most GPUs offer fast binary logarithm intrinsics.

4.3. Surface Extraction with the Simulation Grid

To accelerate the iteration over voxel columns, we iterate
over the packed machine words rather than single bits, using
bit counting intrinsics to quickly determine the next relevant
bits to be considered.

SPH simulations typically use regular grids to accelerate
the neighbor search [IOS∗14]. Furthermore, it is possible to
efficiently determine during the simulation whether a sim-
ulation grid cell is empty, full (e.g. filled entirely with par-
ticles of an incompressible fluid) or partly filled with parti-
cles. This information can be used in our method to skip over
empty and fully occupied regions during surface extraction.

To implement cell skipping, we employ standard ray
marching through the simulation grid. During extraction, we
march along the view ray corresponding to each voxel col-
umn. We keep marching through full or empty simulation
grid cells until we encounter a succession of partially filled
cells, after which we interrupt ray marching to iterate over
the corresponding voxels. When the iteration reaches the end
of the current set of connected partially filled cells, we re-
sume ray marching in the simulation grid. Note that in order
not to cut off detailed boundary surfaces potentially formed
by particles overlapping cell boundaries, we may not skip
cells that have partially filled neighbors, i.e., only inner full
and empty cells may be skipped.

4.4. Surface Extraction with Gap Bridging

To allow for smaller particle radii, we only assume two dis-
tinct surfaces (and insert separating entry and exit points)
when we detect contiguous empty voxels which span a
greater distance in world space than a threshold g. As the
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mapping of depth to voxels in a column is logarithmic, we
want to avoid computing the distances repetitively during
surface extraction. Instead we compute a lower bound of the
number of voxels that corresponds to g for each part of a
voxel column in a boundary region. Only when this lower
bound is exceeded by two successive set voxels we need to
compute their actual world-space distance to decide whether
to insert separating surfaces or to connect voxels.

Note that this gap bridging allows for further optimization
during splatting: instead of setting bits for all voxels inside
the particle spheres, it is now sufficient to mark only the vox-
els that overlap the surface of each particle sphere.

4.5. Data Structure and Compression

As outlined in Section 3, we need to store multiple layers
of depth, surface links, and normals for each pixel. We store
depth in 32-bit floating-point format. The links to the four
direct neighbors of each depth value are stored in one byte
each, adding up to another 32-bit word. We compress nor-
mals to another 32-bit word using an octahedron normal en-
coding [MSS∗10] with two 16-bit normalized integers.

4.6. Surface Smoothing

To obtain a smooth surface from voxelized particle spheres,
we iteratively apply a 3×3 smoothing kernel to the recipro-
cal of the extracted depth values. Like Bagar et al. [BSW10],
we let the number of iterations depend on the distance of the
processed surface point to the camera. As a consequence, the
world-space radius of our filter is approximately constant.
Since the surface connection step already identified the right
connected surface points for each pixel’s neighborhood, we
can simply follow the stored surface links.

5. Results

We tested our algorithm using an SPH simulation data
set computed using the method described by Ihmsen et
al. [IABT11]. The data set features both relatively calm and
even water surfaces as well as highly turbulent water flow
with a lot of spray. The simulation was done with 20 million
particles, of which we extracted up to 7 million particles in
boundary cells for voxelization. To obtain boundary cells,
we excluded empty and full inner cells, i.e. cells that do not
have partially filled neighbors. The number of particles in
full cells is determined from simulation constraints.

Tile Size Splat Compress # Tiles
1282 546 ms 47 ms 135
2562 182 ms 32 ms 40
5122 80 ms 28 ms 12
1024×512 58 ms 28 ms 6
10242 76 ms 28 ms 4

Table 1: Voxelization splatting and compression perfor-
mance with different tile sizes on an NVIDIA GTX 970.

We ran tests on an NVIDIA GeForce GTX 970 and a GTX
Titan. We provide results for voxelization at 1920 × 1080
and at 3840×2160, and for two types of visualization: sim-
ple fully translucent surface rendering without refraction and
more elaborate translucent rendering with refraction and to-
tal internal reflection ray casting (two full paths per pixel).

5.1. Angle Resolution

With an angle resolution of 14◦, discontinuities in the nor-
mals become barely noticeable even without smoothing
(compare Figure 6). This corresponds to ∼16.000 layers be-
tween near and far plane; we allocate 16384 layers.

5.2. Memory Requirements

The memory taken up by the input data set is dominated by
the particle data, ranging from 40 to 110 megabytes com-
prised of 12-byte floating-point triplets that define the world-
space position of each particle.

The bit-packed perspective voxel grid used for a screen
tile of the voxelization has a resolution of 1024 × 512 ×
16384

/
32 , temporarily taking up 1024 megabytes. Note

that the temporary storage can be easily adapted by adjust-
ing the tile size. The surface information extracted from the
high-resolution voxelization is stored at full screen resolu-
tion in up to 7 spans, requiring 126 megabytes for depths
and normals; and totalling 252 megabytes at 1920 × 1080
for this setting. Surface links are replaced by normals.

5.3. Performance

In Table 2 we provide detailed timings for the steps of our
algorithm that were measured in six different viewpoints and
with two types of rendering, as shown in Figures 1, 5(f).
Translucency-only rendering simply iterates over all sur-
faces extracted from one voxel column and is therefore much
more efficient than casting perturbed refraction rays that po-
tentially traverse many columns.

Apart from complex ray casting-based rendering, most
of the time is taken up by surface extraction, comprised of
splatting and RLE compression. This is to be expected, since
up to 7 million particles need to be voxelized during splat-
ting and many layers of depth need to be scanned during
compression. Afterwards, surface connection, filtering and
normal generation are all rather simple operations.

The iterative filtering is dependent on the viewer distance,
as the projected filter radius and therefore the number of nec-
essary iterations (up to 20) both depend on this distance.

Table 1 shows that it is essential to choose a large enough
tile size during splatting and compression. With smaller tiles,
the overhead of repeated splatting grows, while too few
threads get launched during compression, leaving the GPU
under-occupied. On the GTX 970, a tile size of 1024× 512
is optimal, but within 20 ms of 5122 timings.

© The Eurographics Association 2015.



Tobias Zirr & Carsten Dachsbacher / Memory-Efficient On-The-Fly Voxelization of Particle Data

(f)

Figure 5: Close-up renderings of an SPH simulation computed with the method by Ihmsen et al. [IABT11] (20 Mio particles).

# Particles Splat RLE Connect Filter Normals Translucent (∑) Refract (∑)

(a) 6.7 Mio 70 52 1.2 14 8 10 (158) 359 (507)
(b) 7.1 Mio 76 49 2.0 16 11 15 (174) 800 (640)
(c) 5.9 Mio 70 44 1.9 16 11 13 (160) 552 (700)
(d) 4.7 Mio 60 28 1.7 15 8 12 (131) 710 (832)
(e) 3.4 Mio 56 57 0.7 13 6 10 (146) 452 (589)
(f) 3.4 Mio 62 38 0.9 21 7 58 (190) 2195 (2326)
(a) NV Titan 78 18 1.5 42 13 10 (165) 753 (907)
(b) NV Titan 82 23 2.6 48 17 14 (187) 1303 (1477)
(a) at 4K 232 138 4.5 207 31 66 (686) 2316 (2935)
(b) at 4K 239 128 7.8 377 43 105 (910) 3948 (4752)

Table 2: Timings (in ms) of voxelization and rendering for the views in Figs. 1, 5(f),
measured on a GeForce GTX 970 (top) and a GTX Titan (middle). The last two
columns denote rendering with translucency only versus refraction and reflection
tracing (compare Fig. 7). The resolution is 1920×1080×16384, except 4K rows.

Figure 6: The impact of angle resolu-
tion with no smoothing applied.

Figure 7: Translucency vs. refraction.

Figure 8: Synthetic data sets featuring more layers than can be stored: 24 Layers (left) and a 3D checkerboard pattern (right).

In all cases, even with unaccelerated ray casting-based re-
fraction rendering, our total render time stays well below the
time it currently takes to simulate one step in simulations of
comparable particle count, as presented in [IABT11]. Thus,
rendering is no longer a bottleneck.

5.4. Synthetic Data Sets

Figure 8 shows renderings of two synthetic data sets with 10
million particles each. The layer data set features 24 layers
of particles. While we only store 7 spans for each pixel, the
translucency-only renderings still fully reproduce all layers,
since we always keep track of the actual number of layers as
well as the amount of empty space inside the extended last
span. In renderings with refraction ray casting, on the other
hand, refraction usually makes it impossible to clearly dis-
cern even the first four layers. In the refracting 3D checker-
board data set, even less layers are discernible.

5.5. Comparison to Related Work

Using a factor of 3 [RTW13] to compare [FAW10] to our Ti-
tan experiments, we compare viewport (b) with its 7.1 Mio
particles and a total frame time of 187 ms for translucency
rendering to their SNIaEjecta dataset with its 8.7 Mio parti-
cles and an upscaled, compensated frame time of 7543 ms / 3
= 2514 ms, suggesting our method is 10 times faster. More-

over, their method requires a preprocessing phase of unspec-
ified time, whereas our method directly renders simulation
data and is therefore suitable for ad-hoc visualization.

Compared to [RTW13], we are about two times faster.
However, the focus of their work is out-of-core rendering of
billions of particles, and requires 35 hours of preprocessing,
making it a rather asymmetric comparison.

6. Discussion, Limitations and Future Work

The view-adaptivity of our voxelization has pros and cons.
The advantages of this approach are an exact resolution
match for the actual viewport and thus an optimal utilization
of memory. Conversely, casting rays whose direction devi-
ates from the camera rays is more expensive than with non-
view-dependent data structures. Note that for shadow map-
ping or other approaches where a further from-point view is
required, we can still compute a second voxelization.

Currently our approach is limited to homogeneous me-
dia as we only detect entry and exit points. An extension
to heterogeneous media with particles of different types or
with scalar attributes would be interesting future work. With-
out noteworthy modifications, our method could still detect
boundaries between different regions without large changes,
but it would also need to store scalar values either explicitly
or compressed, e.g. akin to Salvi et al. [SVLL10].

© The Eurographics Association 2015.
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Lastly, ray casting can be accelerated using a hierarchical
representation of the spans akin to mipmapping. For exam-
ple, the boundary surfaces of four neighboring columns can
be conservatively bounded in one column of a coarser grid.

7. Conclusion

In this paper we presented a view-adaptive voxelization for
homogeneous particle-based (in particular SPH) simulation
data. Our method efficiently handles millions of particles
and computes voxelizations – compressed during construc-
tion – at resolutions which would exceed available GPU
memory otherwise. The view-dependent voxelization repre-
sents a compromise between truly volumetric representation
of the particle data (with all the benefits such as ray casting,
rendering with translucency etc.) and the efficiency of image
space techniques in terms of memory and performance. We
believe that our method serves as a basis for rendering and
visualization of diverse particle-based simulations.
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