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Figure 1: Omni-directionally integrated radiance (a), FTPD (b) and FTPD gradient (c) fields for a refracting glass sphere lit
by a small area light. Light paths used for radiance integration and radiance weighting were limited to a length of 6 segments.

1. Discussion of Details in the Results

This section provides additional details on some of the visu-
alizations shown in the paper.

1.1. Refraction

The radiance structure inside the glass sphere (Figure 1) re-
sults from total internal reflection that allows light to reach
points that are otherwise in shadow due to refraction perturb-
ing light paths towards the center. The hard boundaries of
these structures mark the narrow stripes where light travels
around the sphere several times by total internal reflection,
after it just managed to enter the sphere at extremely shallow
angles. The stripes leading of the sides of the sphere are also
caused by light traveling on such multiple total internal re-
flection paths before barely managing to exit the sphere. The
rest of the radiance field conforms with what is intuitively
expected of the caustics caused by glass spheres.

The FTPD field additionally puts its forward-directed
structure on top of the radiance structure. In particular, we
can see several separatrices on the back side of the sphere in-
duced by the transmitted light scattered off the diffuse wall.
The caustic in the center basically acts like another small
area light and introduces separatrices where its light is split
into light hitting the sphere and light missing the sphere.
The entire diffuse wall acts like another bigger, but less in-
tense area light that introduces similar separatrices. How-
ever, these are not tangential to the sphere as in this case,
total internal reflection sets in even before paths diverge due

to hitting or missing the sphere, already causing a high de-
gree of divergence before the tangent angle is reached.

1.2. 2D and 3D Example Scenes

Figures 2(b, e) depict the classic door crack Metropolis Light
Transport [Vea98] example scene, where light emitted by
a point light source in one room indirectly lights the other
room through the crack of an almost closed door. The walls
reflect the actual radiance. While the soft shadows do not
reveal much, the FTPD field reveals structure in the light
transport. As would be expected, the door crack introduces a
separatrix that splits points with higher energy flow through
the crack from points with lower energy flow through the
crack.

The gradient visualization in Figure 2(e) reveals addi-
tional separatrices. One is introduced by the change in vis-
ibility where view of the other room is completely blocked
by the door, co-linearly extending the door crack upwards.
Two more very subtle ones mark the changes in influence
of the diffuse indirect light on the dark room, scattered by
different walls adjacent to the upper right corner on either
side of the first-order discontinuities. In the dark room, cor-
responding separatrices can be found resulting from the ac-
tual soft shadow boundaries in the radiance field. Here, one
more separatrix is introduced by the geometric discontinu-
ity of the lower left corner, hit by the rather directed indirect
light as focused by the small crack.

The canal examples in Figure 2(c) show two more FTPD
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Figure 2: FTPD (a),(b),(c),(f) and FTPD gradient (d),(e) fields for more scenes, including 3D examples. (a),(b): U-shaped
room lit by an area light. (b),(d): Slice through the 3D ‘Metropolis Light Transport [Vea98] Door Scene’ lit by a point light.
The walls reflect the actual radiance. (c): FTPD for a slice of a 3D canal lit by a point light, unblocked (left) and blocked by an
obstacle (right). (f): 3D scene [Lla10] where the slice does not contain the point light above the pot plant in front of the column.
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Figure 3: FTPD on a slice of a 3D scene (red): If the light source is not contained in the slice plane (a), light rays hit different
points for each point on the slice. This creates unintuitive projections (blue) of the scene rather than revealing separatrices in
empty space. Moving the plane to contain the light (b), we can observe the separatrices known from our 2D analysis.

slices through 3D scenes. The FTPD field pretty much fol-
lows the intuition established by now, separatrices are intro-
duced by discontinuities in geometry and visibility.

1.2.1. Discontinuity Analysis

Many separatrices in the FTPD fields in Figure 2 are rather
subtle. Discontinuities in the gradient visualization separate
coherent regions more clearly. This complies with our exem-
plary analytic consideration of light transport in Section 4.3
of the paper that demonstrates how separatrices are marked
by first-order discontinuities. In the gradient visualization of
the U-shaped room, the subtle light-independent discontinu-
ities leading off the inner corners are caused by change in
the visibility of the respective corridors. Another first-order
discontinuity can be observed along the light-induced sep-
aratrix leading towards the lower inner corner. This separa-
trix follows the illustration in Figure 1(b) of the paper. The

remaining light-induced separatrices in the example of the
U-shaped room follow the established intuition. Besides, the
gradient field reflects the soft shadow of the area light below
the lower inner corner.

1.2.2. 3D Slice Projection Issues

As briefly discussed in the paper and shown in Figure 2(f),
inconsiderate slice placement can lead to unintuitive planar
projections. Figure 3 illustrates how if the slices do not con-
tain the light sources, light rays only penetrate the plane and
hit geometry on the other side, which results in visible pro-
jections of this geometry onto the slice. The resulting visual-
izations reveal less to little information about the light trans-
port, as they do not contain the linear structures known from
the 2D case. In contrast, if the light source is contained by
the slice, light rays through points of the slice are also con-
tained in the slice plane, restoring the expected structures.
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2. Measuring the Enhanced Path Space Ω̄
t
∗

The PWPD moments and thus the FTPD are defined in terms
of an integration over an enhanced set of paths. In this sec-
tion we highlight the important properties and differences to
the path space used for standard light transport simulation in
computer graphics [Vea98]. Normally, the path space only
contains complete paths that connect light sources to a sen-
sor. In contrast, our enhanced path space Ω̄

t
∗ contains paths

that may start anywhere in space and have a fixed Euclidean
run length of t.

2.1. Fixed Run Length

Since Ω̄
t
∗ enforces a particular length, paths are not required

to end on surfaces, but rather are cut off anywhere in space.
This does not break the classic path-space area-product mea-
sure [Vea98], since it corresponds to ‘virtual’ spherical sur-
faces around the respective penultimate points. These ‘vir-
tual’ surfaces are measured by the differential area corre-
sponding to the endpoint of each path.

2.2. Arbitrary Starting Points

However, note that the arbitrary starting point breaks the
classic path-space area-product measure dµ, as it introduces
a whole new unmeasured dimension that is orthogonal to
surface patches, and thus breaks convergence of the integral.
We must therefore use a modified measure dµ∗(x̄) = dµ(x̄)dl
that includes a differential distance dl in-between parallel
planes of starting points. Each of these planes then corre-
sponds to a ‘virtual’ surface that can be measured by the
differential area corresponding to the starting point in the
classic area-product measure.

Thus, Ω̄
t
∗ is actually a union of all path spaces where paths

start on parallel planes ⊥(point,normal):

Ω̄
t
∗ =

+∞⋃
l=−∞

Ω̄
t
⊥(lω,ω). (1)

3. Relationship between the FTPD and Light Transport

We have already used the path integral formulation, intro-
duced by Veach [Vea98] for the problem of light trans-
port, to define the FTPD in terms of a probability distribu-
tion of light transport paths. The product probability density
p(x,ω)× (x̄, ȳ) = px,ω(x̄) px,ω(ȳ) used in Eqn. (10) in the pa-
per weights all pairwise path deviations according to their
paths’ share in the light transport going through a given
point x (≈ x1), i.e., their contribution:

px,ω(x̄)∝W (x,ω)
−e (x1→x2)G(x1↔x2)

fs(x1→x2→x3)G(x2↔x3) . . .

. . . fs(xk−2→xk−1→xk)G(xk−1↔xk).

(2)

Since in our context, paths do not end on surfaces, we al-
ways define the differential patches at the end points to be
orthogonal to the last segment in the corresponding geome-
try term. Note that the reversed emitted importance function
W−e emits importance in the direction of light propagation,
i.e., reversed to what one is accustomed to in rendering.

The function W (x,ω)
−e is close to a direct delta centered at a

given point x and a given direction ω. As we intend to com-
pute pairwise path deviations for pairs of slightly different
paths, in practice W (x,ω)

−e needs to leave room for some small
variation and may therefore not be singular.

Intuitively, rather than computing the radiance transported
by paths as in the simulation of light transport, we compute
the pairwise deviation transported by pairs of paths. Still,
computation of the FTPD is closely related to the computa-
tion of radiance in that they share the same integral rendering
framework. Particularly, both have the rendering equation at
their core, imposing the same constraints on their results.

3.1. Mathematical Relationship

The remainder of this section mathematically relates the
FTPD to light transport. These paragraphs provide a short
summary of what is to follow.

3.1.1. Relating Influence to PWPD Moments

While the definitions of the influence-based topology anal-
ogy and the FTPD-based structural analysis appear to be
quite different, Section 3.3 demonstrates that the influence I
and the PWPD moments m∆i can be brought into a form
where the only difference is the pairwise path deviation ∆.
Based on that, a comparison of the directional change in in-
fluence Dh with the directional derivative of the PWPD mo-
ments reveals the similarity between the separatrix criteria
of light transport and the FTPD field.

3.1.2. Interpretation of Coherent Structures as
Continuous Contribution Transfer

Intuitively, we expect adjacent points to be coherent when
the paths starting at their respective locations are similar in
geometry and contribution. In particular, we expect the sets
of these paths and their contribution functions to be identical
in the limit as we move from one point infinitesimally close
to another. Mathematically, this means that we expect contri-
bution to be transferred continuously from the paths starting
at one point to the paths starting at a coherent point.

Section 3.4 shows that the existence of such a mapping F
that continuously maps paths at one point to paths at adjacent
points while also maintaining continuity of their contribution
is sufficient for these points to fall into the same coherent
region with respect to some separatrix threshold τ.

c© 2015 The Author(s)
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3.2. Radiance Transfer Path Integral

We start by rewriting the radiance transfer function that lies at the heart of our light field analysis as a path integral. Introducing
a (non-reversed) emitted importance factor W (y,ν)

e , we can measure the flux incoming at point y from direction ν using the
measurement equation. From that, we can compute the corresponding radiance as follows:

I(y,ν) =
∫

Ω̄

Lo(x1,
−−→x1 x2)

px,ω(x̄)

W (x,ω)
−e

W (y,ν)
e (xk−1→xk)dµ(x̄), (3)

Li(y,ν) =
d2

dA(y)dν
I(y,ν) = lim

We→δ

∫
Ω̄

Lo(x1,
−−→x1 x2)

px,ω(x̄)

W (x,ω)
−e

W (y,ν)
e (xk−1→xk)dµ(x̄). (4)

As W (y,ν)
e approaches the delta function centered around point y and direction ν, the measured flux I(y,ν) per area and per solid

angle incoming at point y from direction ν approaches the corresponding incoming radiance Li in the light field. Now, fixing
source point x and source direction ω by reintroducing W (x,ω)

−e , differentiation yields the incoming radiance transfer function:

d2

dA(x)dω
Li(y,ν) = lim

W±e→δ

∫
Ω̄

Lo(x1,
−−→x1 x2)px,ω(x̄)W

(y,ν)
e (xk−1→xk)dµ(x̄) (5)

= Lo(x,ω) lim
W±e→δ

∫
Ω̄

px,ω(x̄)W
(y,ν)
e (xk−1→xk)dµ(x̄), (6)

d3

dLo(x,ω)dA(x)dω
Li(y,ν) =

d
dLo(x,ω)

Lo(x,ω) lim
W±e→δ

∫
Ω̄

px,ω(x̄)W
(y,ν)
e (xk−1→xk)dµ(x̄) (7)

= lim
W±e→δ

∫
Ω̄

px,ω(x̄)W
(y,ν)
e (xk−1→xk)dµ(x̄). (8)

Note that in Section 3.3 of the paper, we defined the radiance transfer function in terms of outgoing radiance Lo rather than
incoming radiance Li. To account for that, we introduce an enhanced set of paths Ω̄

+ that respectively appends end points on an
infinitesimal sphere around each end point of the original paths in Ω̄. Integrating over this enhanced set of paths, we can adjust
the radiance transfer function to yield outgoing radiance:

To(x,ω→ y,ν) = d3

dLo(x,ω)dA(x)dω
Lo(y,ν) = lim

W−e→δ

∫
Ω̄+

px,ω(x̄)W
(y,ν)
−e (xk−1→xk)dµ(x̄). (9)

3.3. Relating Influence to PWPD moments

Now that we have rewritten the radiance transfer function in terms of a path integral, we can directly compare the light transport
formalism to the formalism of the FTPD. Writing the influence I in terms of the derived radiance transfer function, we get:

I(x→ y) =
∫

S2
J(x,ω)

∫
S2

∫
Ω̄+

px,ω(x̄)W
(y,ν)
−e (xk−1→xk)dµ(x̄)dνdω (10)

=
∫

S2
J(x,ω)

∫
S2

∫
Ω̄+

W (y,ν)
−e (xk−1→xk) px,ω(x̄)

[∫
Ω̄

px,ω(ȳ)dµ(ȳ)
]

dµ(x̄)dνdω (11)

=
∫

S2
J(x,ω)

∫
S2

∫
Ω̄+×Ω̄+

W (y,ν)
−e (xk−1→xk) p(x,ω)× (x̄, ȳ)dµ×(x̄, ȳ)dνdω. (12)

Note that the integral inserted in the second line simply evaluates to 1. We can rearrange the PWPD moment path integral to
obtain a comparable integrand over I:

m[t0,t1]
∆i (x) =

∫
S2

w(x,ω) m[t0,t1]
∆i (x,ω) dω =

∫
S2

w(x,ω)
∫
[t0,t1]×Ω̄+×Ω̄+

∆(x̄, ȳ)i p(x,ω)× (x̄, ȳ)dµ×(t, x̄, ȳ) dω (13)

=
∫
I

∫
S2

w(x,ω)
∫
[t0,t1]×Ω̄+×Ω̄+

∆(x̄, ȳ)i
[∫

S2
W (y,ν)
−e (xk−1→xk)dν

]
p(x,ω)× (x̄, ȳ)dµ×(t, x̄, ȳ)dω dA(y) (14)

=
∫
I

∫
S2

w(x,ω)
∫

S2

∫
[t0,t1]×Ω̄+×Ω̄+

∆(x̄, ȳ)i W (y,ν)
−e (xk−1→xk) p(x,ω)× (x̄, ȳ)dµ×(t, x̄, ȳ)dνdω dA(y) (15)

=:
∫
I

M[t0,t1]
∆i (x→y) dA(y). (16)

Here, we locked the penultimate point of one path in each deviation pair to one interaction point y and collapsed the integrand

c© 2015 The Author(s)
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into a fraction of the PWPD moment M[t0,t1]
∆i (x→y) specific to that point. Associating the paths in Ω̄

+ with the paths in Ω̄
t
∗ by

matching points x1 . . .xk−1 (all but the last) and associating the weight functions J = w, we can now see a direct correspondence
between the definition of influence I and fractional PWPD moment M∆i . Thus, M∆i(x→ y) directly accounts for the influence
I(x→ y) of point x on point y.

In contrast to I, M∆i additionally convolves the pairwise path deviation ∆ with path contribution. We can see why this is
necessary by comparing the way the influence and the fractional PWPD moment are integrated over interaction points. We
defined the change in influence on interaction points as:

Dh(x) =
∫
I

∣∣∣∣h · ∂

∂x
I(x→ y)

∣∣∣∣dA(y). (17)

In an actual computation using a progressive numerical method such as Monte Carlo integration, however, we have no way of
differentiating the pointwise integrands that are likewise integrals that cannot be solved analytically. Therefore, we are restricted
to differentiating the integral values that are the PWPD moments:

|∇hm[t0,t1]
∆i (x)|=

∣∣∣∇hm[t0,t1]
∆i (x)

∣∣∣ (18)

=

∣∣∣∣h · ∂

∂x

∫
I

M[t0,t1]
∆i (x1→y) dA(y)

∣∣∣∣ (19)

=

∣∣∣∣∫I h · ∂

∂x
M[t0,t1]

∆i (x1→y) dA(y)
∣∣∣∣ . (20)

As we see now, the fundamental difference between the theoretical light field formalism and the FTPD formalism is the point
of taking the absolute value. Whereas the former relies on the ability to differentiate the integrand, the latter is based on a
differentiation of integrals — relying on the FTPD to ‘always’ yield different values for different scenarios while retaining the
same properties with respect to continuity and curvature. It is this difference that makes the FTPD directly computable, whereas
it would be impossible to compute the point-wise differences in influence without first settling on either a discretization over
interaction points or a fixed-time approximation of point-to-point radiance transfer.

Note that while in practice, we differentiate the FTPD values σ
[t0,t1] rather than the PWPD moments m[t0,t1]

∆i , the FTPD values
inherit the same relevant behavior as a composition of continuous elementary operations.

Coming back to the convolution with the PWPD ∆ in M[t0,t1]
∆i , we note that without ∆, integrating M∆i over all interaction

points would always evaluate to the integral of w. In this case, it is obvious that any FTPD derivative would be constantly 0.

3.4. Interpretation of Coherent Structures as Continuous Contribution Transfer

The function of ∆(x̄, ȳ) in that convolution is to assign each path contribution a different weight. Thus, it creates a gradient
between different paths, making changes in the contribution of different paths detectable in different changes of the FTPD,
while continuous transfer of contribution between similar paths of adjacent points still translates to continuous change of the
total FTPD value. In that way, the pairwise path deviation can be seen as a continuous hashing mechanism of path geometry, that
in turn represents the constraints imposed by scene geometry. The resulting contribution-weighted fractional and total PWPD
moments can be seen as a continuous hash of the influence on distinct and all interaction points, respectively, representing all
constraints imposed on radiance transfer by BRDFs, rendering equations, and geometry.

Intuitively, we expect adjacent points to be coherent when the paths starting at their respective locations are similar in
geometry and contribution. In particular, we expect the sets of these paths and their contribution functions to be identical in
the limit as we move one point infinitesimally close to another. Mathematically, this means that we expect contribution to be
transferred continuously from the paths starting at one point to the paths starting at adjacent coherent points.

In order to analyze transfer of contribution between similar paths as a point of interest p is moved, we now merge contributions
and weights into a weighted contribution value pw

p,ν(x̄) =
√

w(p,ν) pp,ν(x̄). In terms of this contribution, the PWPD moment
becomes:

m[t0,t1]
∆i (x) =

∫
Ω̄

[t0 ,t1 ]
∗

∫
Ω̄

t(ȳ)
∗

∆(x̄, ȳ)i
∫

S2
pw

x,ν(x̄)pw
x,ν(ȳ)dν dµ∗(x̄)dµ[t0,t1]∗ (ȳ). (21)

As we move the point of interest (POI) p, we can describe continuous transfer of contribution between adjacent paths by a con-
tinuous mapping from paths starting at point p to similarly contributing paths starting at the moved point p+hω. We denote such
a mapping by F(h, x̄). To formalize the idea of continuous contribution transfer, we require the mappings F(h,∗) to be injective

c© 2015 The Author(s)
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Figure 4: The mapping F C1-continuously maps paths x̄0 at h = 0 to paths x̄h such that paths associated by F(∗, x̄) have C1-
continuous contribution pw

p,νh in h. (a) The mapping F can handle continuous visibility changes by changing the path density.
Continuity of the geometry term ensures that new paths to newly visible points occur with continuously changing contribution
so long as BRDF and lighting conditions are continuous. The mapping F simply maps corner paths to new corner paths and
spreads out the paths in-between. (b) Abrupt changes in visible area cannot be handled by F since the vanishing paths cannot be
mapped to new paths while maintaining C1-continuity of path density and contribution. The same is true the other way round,
in this case there is no set of paths that can be continuously mapped to the newly appearing paths. (c) Singular BRDFs are also
handled by F, since reflection segments can be continuously mapped to adjusted reflection segments, so long as continuity on
the remaining subpaths following the segment can be maintained. Thus, singular BRDFs propagate indirect visibility change.

and the relative path density dµ∗(F(h,x̄))
dµ∗(x̄)

to be C1 in h and continuous in x̄ almost everywhere. Moreover, we require the contri-

bution pw
p+hω,F(h,ν)(F(h, x̄)) of h-associated paths to be C1 in h for all ν ∈ S2 and an injective F(h,ν) that is C1 in ν a.e.

Figure 4 gives an intuition for the meaning of the mapping F . In fact, this mapping generically describes the ge-
ometric constraints that arise from BRDFs and scene geometry, such as imposed by specular reflection and refrac-
tion: For a perfect mirror reflecting a small cube (Figure 4,c), it would simply map ‘valid’ (contributing) reflec-
tion paths connecting the POI p with the cube to valid reflection paths connecting the moved POI p + hω with
the cube. As such, it is comparable to the mappings that algorithms such as Manifold Exploration [JM12] and the
Half Vector Space Mutation [KHD14] try to predict based on local assumptions on BRDFs and geometry in order to
find paths with similar contribution to previously constructed paths in scenarios constrained by specular interactions.
However, we will not require knowledge of a concrete mapping. Rather, we will now show that the existence of such a mapping
implies C1-continuity of the FTPD.

Given a set of paths Ω̄0 and an interval [0,ε] for which we can find such a continuous path contribution transfer mapping F
to Ω̄h = F(h,Ω̄0), we can see that:

m[t0,t1]
∆i

∣∣∣
Ω̄0,F

(p+hω) =
∫

F(h,Ω̄[t0 ,t1 ]
0 )

∫
F(h,Ω̄t(ȳ)

0 )
∆(x̄, ȳ)i

∫
S2

pw
p+hω,ν(x̄)pw

p+hω,ν(ȳ)dν dµ∗(x̄)dµ[t0,t1]∗ (ȳ) (22)

=
∫

Ω̄
[t0 ,t1 ]
0

∫
Ω̄

t(ȳ)
0

∆(F(h, x̄),F(h, ȳ))i
∫

S2
pw

p+hω,F(h,ν)(F(h, x̄))pw
p+hω,F(h,ν)(F(h, ȳ))

∣∣∣∣∂F(h,ν)
∂ν

∣∣∣∣dν

dµ∗(F(h, x̄))
dµ∗(x̄)

dµ∗(x̄)
dµ∗(F(h, ȳ))

dµ∗(ȳ)
dµ[t0,t1]∗ (ȳ).

(23)

Now assume the pairwise path deviation ∆(x̄, ȳ) to be C1-continuous in all points of both paths x̄, ȳ as a C1-composition of
C1-continuous operations. Then, deriving m[t0,t1]

∆i |Ω̄0,F (p+hω) with respect to h clearly yields a continuous derivative (chain
rule, composition of continuous functions and derivatives). In particular, if we find such a mapping F on Ω̄0 = Ω̄h = Ω̄, then all
PWPD moments are C1-continuous functions on [h = 0,ε] and it follows that the FTPD is also C1-continuous on that interval.
Consequently, adjacent points of interest p for which we can find such mappings over the entire path space for any differentiation
direction ω are part of the same coherent region (for some threshold τ, we ignore second-order curvature).

In practice, our regularized pairwise path deviation ∆(x̄, ȳ) is C1-continuous almost everywhere, therefore after integration,
the argumentation still holds.

c© 2015 The Author(s)
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4. Discussion of the FTPD

While we have now seen that the FTPD fulfills our expec-
tations in many cases, there are a few caveats. Its hash-like
function principally makes it prone to collisions, which may
result in undetectably subtle separatrices or even loss of sep-
aratrices. In some of the examples, we have seen that such
subtlety — as compared to the noise resulting from the high
variance of FTPD fields, even more amplified by differenti-
ation — can be a practical problem.

4.1. Run Length Variation

The question may arise why we sample pairwise path de-
flection for paths of a large interval of run lengths rather
than of one fixed run length. Reformulation of the PWPD
moment integral in terms of interaction points showed that
the PWPD moments for paths of specific lengths more or
less correspond to the influence on the interaction point that
lies at their penultimate vertex. Therefore, fixed-length paths
would insufficiently capture interactions with closer interac-
tion points. In practice, this can be seen in that limiting sam-
pling to very long paths, discontinuities fade out, whereas
short paths naturally fail to incorporate the influence on far-
ther interaction points.

4.2. Many Samples

As to sampling many pairs of paths per outgoing light direc-
tion, it is clear that these are necessary in order to capture
non-singular scattering of light in all directions such as by
diffuse surfaces.

4.3. Angle vs. Space Variation

Since our pairwise sampling is naturally related to partial
differentiation with finite differences, the question may arise
as to why we always perturb ray directions rather than ray
origins in order to generate pairs, when we could perturb
(“differentiate with respect to”) ray origins as well. For flow
maps, Weinkauf and Theisel [WT10] found that differenti-
ation with respect to all variables allows to extract streak
lines and surfaces in the same way as stream and path lines,
thus opening these up to the same kinds of analysis meth-
ods. However, so far, we did not find a corresponding utility
of full differentation in our analysis of light transport. There
are several reasons why we chose directions:

For one, we can expect very similar results when perturb-
ing ray origins rather than ray directions: The effect of per-
turbing directions and perturbing origins are basically the
same, both result in pairwise hit points that are slightly apart.
However, since we have to work with finite differences, per-
turbing origins near surfaces breaks meaningful results when
they end up on different sides of scene geometry.

Moreover, in its provided intuitive definition, the pairwise

path deviation works better with respect to directional per-
turbation, since the expected distance always grows with run
length. Thus, the ratio smoothly handles deviation from the
original directions on interaction with curved surfaces. For
origin perturbation, however, the expected distance is con-
stant with respect to run length, easily resulting in large
PWPD values on the slightest divergence after the first inter-
action. Of course, the definition can be adapted to addition-
ally divide by run length to get back to the original behav-
ior. Still, we did not find an advantage in perturbing origins
rather than directions warranting the additional error cases.

4.4. Alternative Operations

While it might seem interesting to look at the structures re-
vealed by a continuous minimum and maximum of the di-
rectional FTPD over all outgoing light directions, this would
require a very fine discretization of the sphere of outgoing
light directions in order to first accumulate the directional
FTPD by seperate Monte Carlo integration for each direc-
tion and then apply the minimum/maximum. We have not
tried that since it would likely lead to impracticable com-
putation times. Additionally, we do not expect the resulting
visualizations to be more informative. Changes would still
be continuous, making structures similarly hard to detect in
first-order discontinuities. Besides, such selective operators
naturally limit the data at each point to correspond to one
direction only, which might even reveal less structure. In
contrast, the weighted integration of the FTPD is straight-
forward to compute using one single and fully progressive
Monte Carlo integration per point of interest.
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Figure 5: FTPD (a) and FTPD gradient (b) fields for a moderately complex point-lit scene with several mirroring objects, a
refractive object (lower left) and specularity-textured object (lower right).
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