
Deferred Attribute Interpolation for Memory-Efficient Deferred Shading

Christoph Schied∗ Carsten Dachsbacher†

Karlsruhe Institute of Technology

4096 512 64 8 154321 6 7 80

Figure 1: Crop of an image rendered at a resolution of 3840 × 2160 with 8 times MSAA. Our method is able to compress the size of the
geometry buffer to 30% of the deferred shading G-Buffer using 20 bytes per sample. We store a visibility buffer which references triangles
stored in a triangle buffer. The image on the left shows the number of shader invocations per pixel. On the right side, the number of visibility
samples referencing the same triangle data is shown.

Abstract

In this work we present a novel approach to deferred shading suit-
able for high resolution displays and high visibility sampling rates.
We reduce the memory costs of deferred shading by substituting the
geometry buffer with a visibility buffer that stores references into a
triangle buffer. The triangle buffer is populated dynamically with
all visible triangles which is compatible with the use of tessellation.
Stored triangles are represented by a sample point and screen-space
partial derivatives. This representation allows for efficient attribute
interpolation during shading and gives shaders knowledge about
the partial derivatives of all attributes. We show that the size of the
visibility buffer can be further decreased by storing a linked list of
visibility samples per pixel. For high-resolution displays we propose
an extension of our algorithm to perform shading at reduced fre-
quency, allowing us to reduce the sampling rate for computationally
expensive, but low-frequency signals such as indirect illumination.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: deferred shading, real time rendering, anti aliasing

1 Introduction

A traditional rasterization-based rendering architecture shades sur-
face points directly when the visibility of a triangle for a certain
pixel is determined. This approach, however, has several drawbacks.
As visibility is determined sequentially per triangle, the previously

∗e-mail:schied@kit.edu
†e-mail:dachsbacher@kit.edu

computed shading for a pixel may be replaced by a triangle pro-
cessed later on. If several shading passes are needed, the geometry
needs to be processed multiple times. Deferred shading [Saito and
Takahashi 1990] splits the process into two passes where first the
data needed for the shading computation is stored in a buffer. In
the second pass, the shading is computed for every pixel using this
information. While deferred shading can be a solution for the afore-
mentioned problems, it has its drawbacks as well. Most importantly
with today’s screen resolutions, the geometry buffer (G-Buffer) uses
large amounts of memory.

Multi-sample anti-aliasing (MSAA) [Akeley 1993] decouples the
frequency used for visibility sampling from the shading frequency,
but it cannot be used to its full potential with deferred shading.
Since the shading stage does not know about the visibility samples,
it cannot determine which stored samples need to be shaded. The
shading therefore needs to be computed redundantly at the frequency
of the visibility sampling, thus mitigating the main performance
benefit of MSAA. In the G-Buffer each visibility sample comprises
all geometric attributes which results in a high storage overhead.

In this work, we improve deferred shading and, in the same spirit
as the method by Burns et al. [2013], break up the relation be-
tween geometry data and visibility samples. In contrast to classic
deferred shading, only a reference to a triangle is stored per visibility
sample. Since several visibility samples can reference the same
triangle, it is possible to have a more compact representation of the
G-Buffer, especially with high visibility sampling rates. Because
current rasterization hardware cannot handle small triangles effi-
ciently [Fatahalian et al. 2009], it is safe to assume that in practice
most projected triangles will cover several visibility samples and
even pixels on average. We store visible triangles represented using
a sample point and screen-space derivatives only (refer to Figure 2).
This allows for efficient interpolation of attributes during the shading
phase. Furthermore, we use two different storage formats for the
visibility buffer, the first using a multi-sampled render target whereas
the second one employs a linked list for the visibility samples, which
can reduce the storage costs even further. During shading we can use
the triangle references to identify visibility samples corresponding
to the same triangle and thereby avoid redundant shading.



2 Related Work

The storage and computational overhead of using high visibility
sampling rates in conjunction with deferred shading has been a
long-standing problem. Current practice is to use low visibility
sampling rates in combination with morphological anti-aliasing fil-
ters [Reshetov 2009; Jimenez et al. 2012] in a post-processing pass.
These filters, however, cannot reconstruct subpixel features that are
missed due to low visibility sampling rates.

Burns et al. [2013] proposed to replace the G-Buffer in deferred
shading by a visibility buffer which stores triangle and instance IDs
per visibility sample. Since the first render pass is solely for deter-
mining visibility, they can more clearly separate the geometry phase
from the shading phase. They show that the representation using
the visibility buffer can make use of caches very efficiently and thus
the required memory bandwidth can be reduced significantly. Since
the IDs stored in the visibility buffer reference untransformed trian-
gles they can support instancing very efficiently. Our work takes a
similar approach by storing triangle references per visibility sample.
However, we store transformed triangles in a buffer in contrast to ref-
erencing untransformed triangles. Storing the triangles creates more
memory traffic, but makes our method compatible with tessellation
and allows for a more efficient attribute interpolation, since referenc-
ing untransformed triangles requires the vertex transformations to
be performed at per pixel frequency.

With the goal of reusing shading in the context of stochastic rasteri-
zation with high visibility sampling rates, Ragan-Kelley et al. [2011]
proposed Decoupled Sampling. Shading reuse is implemented by
assigning a unique ID to shading samples using a shading grid
and storing the result in a memoization cache. Liktor et al. [2012]
adapted their approach for deferred shading. They break up the
coupling between visibility and shading samples by referencing a
shading sample in a compact G-Buffer per visibility sample and
showed that this approach can be used to compress the G-Buffer in
case of high visibility sampling rates. Furthermore, their approach
allows them to control the shading frequency per primitive and there-
fore to adjust it in areas of lower interest or stronger blur. They
propose a deduplication method using a memoization cache, suit-
able to be implemented on modern GPUs. We use this memoization
cache for storing triangles.

Clarberg et al. [2013] proposed a novel deferred shading architecture
for decoupled sampling. The pipeline is split into two phases. First,
all primitives are rasterized and shading samples are mapped into a
shading space. In the second phase the shading samples are sorted
inside of tiles by their IDs. The sorted list is used to reissue the vertex
shading pipeline once per triangle and finally to spawn shading
quads, which are evaluated using a work queue. In contrast to
our method, their pipeline requires only one rasterization pass, and
furthermore they only need to repeat the vertex shading for visible
triangles, whereas our pipeline requires a geometry pass. However
their pipeline cannot be implemented efficiently on current graphics
hardware.

To reduce the memory footprint of deferred shading with high vis-
ibility sampling rates, Kerzner et al. [2014] proposed a G-Buffer
compression algorithm. Their compressed G-Buffer stores a fixed
length array of surfaces and G-Buffer samples per pixel. During
rasterization they determine per pixel if newly inserted surfaces can
be merged with one of the previously stored surfaces by comparing
their depth and depth derivatives. Since our method stores those at-
tributes as well, their approach could be employed in our algorithm
to identify similar surfaces during shading. Aggregate G-Buffer
Anti-Aliasing [Crassin et al. 2015] follows a similar direction by
prefiltering the geometry into a statistical representation which is
stored per pixel. This allows them to keep the costs for shading

F (x′, y′)

∆y

∆x

F (x′ + ∆x, y
′ + ∆y)

F (x′ + ∆x, y
′ + ∆y) = F (x′, y′) + ∆x

∂F
∂x + ∆y

∂F
∂y

Figure 2: A triangle attribute F is interpolated at a shading posi-
tion (green) by using a sample point (red) and adding the partial
derivatives of the attributes weighted by their distance to the sample
point.

tr
ia

ng
le

bu
ff

er

1 1

1 1

1

2 2 2

2 2

vi
si

bi
lit

y
bu

ff
er

F (x′, y′)

∂F/∂y

∂F/∂x

yes

no

store address

Fragment Shader
ID in

memoization
cache?

allocate
triangle address

Geometry ShaderID

z prepass

compute derivatives for stored triangles

fill visibility buffer

store triangle,
add cache entry

Figure 3: Our pipeline for populating the visibility and triangle
buffer. The z-prepass ensures that only visible triangles will generate
fragment shader invocations. The geometry shader assigns each
triangle an ID. In the fragment shader, all invocations look up the
triangle ID and store the triangle address in the visibility buffer. If
the cache does not store the ID yet, a new slot is allocated in the
triangle buffer and one fragment shader invocation is selected to
store the triangle in the triangle buffer. Finally the derivatives are
computed for all stored triangles.

constant per pixel, independent of the underlying geometry. Further-
more their representation allows them to reduce the memory costs
by 30% in case of 8× MSAA.

Vaidyanathan et al. [2014] proposed a novel forward shading ar-
chitecture that decouples the sampling of visibility from shading,
targeting high-resolution displays. Besides reducing the overall
shading rate, they also support multi-rate shading by using different
shader stages, to sample low frequency shading on reduced sampling
rate. Furthermore they allow the vertex shader to control the shading
rate on a per- primitive base. Their approach needs modifications to
the current rendering pipeline and cannot be implemented on current
hardware.

3 Algorithm

Akin to deferred shading, our approach consists of two phases. First,
we populate the visibility buffer with visibility samples storing refer-
ences into the triangle buffer (refer to Figure 3). Section 3.1 explains
our method for sampling visibility and storing the triangles. In the
second phase, the shading is computed for each visibility sample. In
Section 3.2 we describe our algorithm to interpolate the attributes in
screen-space for shading.

3.1 Creating the Visibility and Triangle Buffers

To populate the triangle buffer, all visible triangles for the current
view have to be determined. Our algorithm uses two geometry passes.



First, a z-prepass is performed. This ensures that in the second pass
that is used to populate the visibility buffer, only fragment shader
invocations for visible triangles will be generated. Since the number
of fragment shader invocations corresponding to the same triangle
is not known beforehand, we need to mediate access to the triangle
buffer and select one fragment shader invocation to store the triangle
and broadcast the buffer index to the other invocations. We assign a
unique ID to each triangle and use the memoization cache proposed
by Liktor et al. [2012] to store mappings between triangle IDs and
triangle buffer indices. Each fragment shader invocation performs a
lookup into the cache using the triangle ID. If the entry is not found,
the fragment shader invocation competes for exclusive write access
to the corresponding cache entry. If write access is granted, a slot
in the triangle buffer is allocated and the buffer index is stored in
the cache. Otherwise, the fragment shader invocation repeatedly
looks up in the cache and competes for write access until either
the entry is found or write access is granted. The triangle is stored
by the fragment shader invocation that was granted write access to
the cache. Finally, all invocations store the buffer position in the
visibility buffer.

3.2 Perspective-Correct Attribute Interpolation using
Partial Derivatives

Since the visibility buffer only stores references to triangles, the
vertex attributes need to be interpolated for the shading computation.
In the following we will briefly recapitulate the interpolation in a
triangle in 2D. With attributes defined over a triangle per vertex as ai,
screen-space 2D-interpolation can be performed using barycentric
weighting of all attributes. An interpolated attribute ã is computed
as ã(x, y) =

∑
λi(x, y)ai, where λi(x, y) are the barycentric

coordinates for a point (x, y) in relation to a 2D-triangle. Since
barycentric interpolation is linear in x and y, the partial derivatives
of the interpolant are constant. This allows us to reformulate the
interpolation as

ã(x, y) = ax′y′+(x−x′)
∑
i

∂λi
∂x

·ai+(y−y′)
∑
i

∂λi
∂y

·ai . (1)

For a triangle projected onto the screen, where each vertex is given
in 4D homogeneous coordinates (xi, yi, zi, wi), a perspective cor-
rection needs to be applied when interpolating the attributes. This
correction is done by first interpolating ai/wi and 1/wi separately
and a subsequent division, see e.g. [Davidovič et al. 2012]. The
perspective-correct interpolation is thus given as a =

∑
λiai/wi∑
λi/wi

.
We can reformulate this equation similar to Equation 1 as

a(x, y) =

ax′y′
wx′y′

+ (x− x′) ∂a/w
∂x

+ (y − y′) ∂a/w
∂y

1
wx′y′

+ (x− x′) ∂1/w
∂x

+ (y − y′) ∂1/w
∂y

. (2)

We store the partial derivatives of a/w and 1/w in the triangle
buffer, as well as the sample point. This interpolation scheme has
the benefit that the computationally expensive parts only need to be
computed once per triangle, whereas other interpolation schemes
that determine the barycentric coordinates, e.g. using ray-triangle
intersection tests, need to be carried out at a per-pixel frequency.

Note that the barycentric coordinates could be stored as one addi-
tional attribute, hence allowing to interpolate additional triangle data
resident in GPU memory, without explicitly storing this data in the
triangle buffer. However this approach only works for attributes that
are not affected by vertex transformations.

3.3 Multi-Rate Shading

Some shading signals, such as indirect diffuse illumination, are low-
frequency and therefore can be sampled with reduced shading rate.

1 // mask stores which samples need to be shaded
2 uint mask = (1 << NUM_VISIBILITY_SAMPLES) - 1;
3 vec3 accum = vec3(0.0);
4 while(mask > 0) {
5 int i = findLSB(mask); // next sample index to shade
6 uint vs = read_visibility_sample(i);
7 if(vs != ˜0) { // is there a triangle referenced?
8 uint sample_mask = vs >> 24; // extract coverage
9 uint t = vs & 0x00ffffff; // extract triangle idx

10 accum += bitCount(sample_mask) * compute_shading(t);
11 mask &= ˜sample_mask; // mark shaded samples
12 } else { // no triangle referenced
13 accum += background_color;
14 mask &= ˜(1 << i); // mark shaded sample
15 }
16 }
17 return accum / float(NUM_VISIBILITY_SAMPLES);

Listing 1: Shade-and-resolve pass for the multi-sampled visibility
buffer. A bitmask tracks the samples that need to be shaded (2).
In conjunction with the triangle ID (6), a coverage mask for the
triangle inside of the pixel is stored in the visibility buffer. The
sample coverage mask is used to determine the multiplicity of the
triangle sample (10). Whenever the shading is computed for a
triangle, the coverage bits are removed from the mask that holds the
samples that need to be shaded (11).

1

3

8

6

2

4

5

7

Coverage Mask:
1 2 3 4 5 6 7 8
0 0 1 0 1 0 1 0

Figure 4: Sample coverage mask. For each visibility sample inside
of one pixel, the coverage mask contains a bit indicating if the
visibility sample is inside of the primitive.

We create shading samples using the method as proposed by Liktor et
al. [2012]. In contrast to their method, i.e. storing G-Buffer samples,
our method creates shading samples storing a triangle reference as
well as its screen-space position. Each shading sample is assigned
a unique ID using a screen-space shading grid [Ragan-Kelley et al.
2011]. For deduplicating the shading samples across all visibility
samples, we make use of a memoization cache. The shading sample
address is stored in an additional visibility buffer. A compute pass
is performed that evaluates all shading samples. These samples are
then read during the shading phase and combined with the shading
computed at full shading rate.

In contrast to bilateral upsampling [Kopf et al. 2007], our method
does not suffer from artifacts due to undersampling on high-
frequency geometry since the shading rate is controlled per primitive
and not uniformly for the whole frame buffer. However, undersam-
pling the shading signal can obviously result in temporal artifacts
when the assumption of a low-frequency shading signal is violated.

4 Implementation

In the following section we will discuss our GPU implementation
that uses OpenGL 4.5.

4.1 Visibility Buffer

For each triangle, we store the material ID, vertex normals, texture
coordinates, 1/w for one sample point, as well as the screen-space
partial derivatives of all attributes in x and y. From this sample point,
we extrapolate the attribute to the center of the screen, which allows
us to omit storing the actual sample position. Using the fragment
shader, we store all vertices of the triangle in the triangle buffer.
The derivatives are computed in a separate compute pass which
overwrites the vertices in the triangle buffer with their corresponding



derivatives. Since we do not store indices into the triangle buffer but
offsets, the storage format can be different for each of the triangles,
which may be needed for implementing different materials. We issue
draw calls sorted by material which ensures that triangles sharing
the same material are stored in compact ranges. A compute pass
is performed per material to compute the partial derivatives of all
attributes. In case that tessellation is used, triangle IDs are assigned
in the geometry shader by incrementing an atomic counter, otherwise
the builtin GLSL variable gl PrimitiveID is used.

We use a size of 213 entries for the memoization cache, which gives
us almost perfect hit rates, and low overhead due to low contention
between the fragment shader invocations. While lower cache sizes
are still sufficient for a good hit rate, the overhead due to contention
becomes larger. We did not measure any benefits for the hit rate
or the performance by further increasing the cache size. We use
a 1D-texture for the cache buckets storing two triangle IDs with
their corresponding triangle buffer offset. Write access to the mem-
oization cache is mediated using a spinlock per cache bucket. If a
fragment shader invocation does not find a cache entry for the given
triangle ID, it tries to gain exclusive write access by performing an
atomic exchange operation on the lock texture. If access is granted, a
slot in the triangle buffer is allocated, the cache entry is updated and
the lock is released. Otherwise the lock is polled repeatedly until it
is released, or a maximum number of iterations is exceeded. In the
rare event that neither the triangle ID is found in the cache, nor write
access to the cache is granted, the triangle is stored redundantly.

We implemented two visibility buffer storage formats which take
the coverage information into account. The coverage mask can be
accessed in the fragment shader and reports for the current primitive
which visibility samples are inside (refer to Figure 4). The z-prepass
allows us to compute precise coverage information per primitive
for each pixel, using a post-depth-test coverage mask, available in
OpenGL using the EXT post depth coverage extension.

Multi-sampled Visibility Buffer We use a multi-sampled buffer
that stores 32 bit per visibility sample in conjunction with the depth
buffer. We allocate 24 bit for the triangle reference, and furthermore
store a 8 bit coverage mask in the remaining bits. The coverage
information allows us to skip visibility samples during shading
(refer to Section 4.3).

Per Pixel Visibility Sample Linked Lists Employing a per-pixel
linked list, we can implement an even more compact storage scheme
for the visibility buffer. We use a multi-sampled depth buffer, but
only store one 32 bit pointer to the head of the list per pixel. Since the
z-prepass guarantees correct coverage information, we can identify
the number of visibility samples covered by the triangle per pixel
from the coverage mask and store the count alongside a triangle
reference in the linked list. Furthermore, this information allows
us to skip storing the linked list when full coverage is detected and
store the triangle address directly in the per-pixel visibility list head
pointer. We mark the storage of a triangle reference using a special
bit. Each node in the list stores the visibility count of the triangle, a
triangle address, as well as a pointer to the next node, using 64 bit
in total.

4.2 Computing Derivatives

The interpolation given in Equation 2, requires to compute the partial
derivatives in x and y for all vertex attributes. We tried to use the per-
fragment derivatives computed by the GPU, but we found numerical
issues when the derivatives are computed for fragments close to the
near clip plane since we need to divide the attributes by w. This
results in errors in the reconstruction of the attributes and causes

temporal instabilities. We therefore compute the partial derivatives
of the barycentric coordinates λi analytically in a separate compute
pass (refer to Figure 3) and deduce the partial derivatives for the
attributes thereof. Refer to Appendix A for the complete derivation.
We need to project the triangle onto the screen for this computation
and thus we need to ensure the triangle does not intersect the near
clip plane. We use homogeneous clipping [Blinn and Newell 1978],
but as we are only interested in computing the derivatives, we use
a simplified algorithm and only shrink the triangle to fit inside the
clipping volume instead of creating new triangles.

4.3 Shading

With MSAA, a resolve pass needs to be performed per pixel that
weights shading samples by the number of corresponding visibility
samples. We combine the shading and resolving step by iterating
over all visibility samples and shading the corresponding samples as
needed. Each of the shaded samples is weighted with its multiplicity
in the visibility buffer. In case of the linked list visibility buffer, we
traverse the list and shade for each visibility sample. We also store
information about the number of covered samples in the linked list
and use this to correctly weight all shading samples. Our shading
algorithm for the visibility buffer without the linked list is shown
in Listing 1. We keep track of a set of visibility samples that still
need shading, and for each shaded visibility sample we remove all
corresponding covered bits.

This simple approach has the benefit that it does not create any over-
head for distributing the workload and for performing the resolve.
However, this comes at the cost of potential branch divergence when
neighboring pixels need to shade a different number of visibility
samples or different materials. We experimented with different ap-
proaches using compute shaders to distribute the workload more
uniformly per thread, but we were not able to achieve a speedup
compared to our simple method.

Our implementation uses bindless textures for accessing the textures
during shading and therefore does not require a common storage
format across different materials. We avoid storing the tangent frame
as an additional attribute by computing the tangent-space from the
screen-space derivatives of the world-space position and normal
[Schueler 2007], hence reducing the storage costs in the triangle
buffer.

This approach to shading requires that all shading is performed
using an uber-shader approach. However this is not an inherent
limitation in our method since different schemes of dispatching
shading computations may be used, such as the previous work by
Burns et al. [2013]. The materials used in our evaluation are very
similar and share a common triangle storage format which makes
the uber-shader approach a good fit.

4.4 Multi-rate Shading

By using a screen-space shading grid [Ragan-Kelley et al. 2011]
and deduplicating the shading sample using a memoization cache,
we are able to shade at arbitrary rates. For the special case of a
shading rate 1/2 used in our examples, we can skip the memoization
cache by communicating inside of a shading quad, employing the
NV shader thread group extension. If all fragments in the
shading quad are covered by the triangle, a common shading sample
is spawned, which is shaded at the center of the shading quad. In
this case, one of the fragment shader invocations is selected deter-
ministically to create and store the shading sample. Otherwise, for
each pixel where the triangle is visible, a sample is created that will
be shaded at the pixel center.



0
0.5

1
1.5

2
2.5

3
3.5

ge
om

et
ry

pa
ss

[m
s]

Sponza 1920 × 1080 × 8

0

2

4

6

8

10

12
Sponza 3840 × 2160 × 8

0
2
4
6
8

10
12
14
16
18

San Miguel 1920 × 1080 × 8

0
5

10
15
20
25
30
35

San Miguel 3840 × 2160 × 8

0
1
2
3
4
5
6
7
8

sh
ad

in
g

[m
s]

0

5

10

15

20

25

30

0
2
4
6
8

10
12
14

0
5

10
15
20
25
30
35
40

0
50

100
150
200
250
300
350

m
em

or
y

us
e

[M
B

]

animation time
0

200
400
600
800

1000
1200
1400

animation time
0

50
100
150
200
250
300
350

animation time
0

200
400
600
800

1000
1200
1400

animation time

DAIS
DAIS vis.-list

DAIS multi-rate
Deferred Shading

Figure 5: Timings and total memory usage for an animation in different scenes at different resolutions. We compare our technique, deferred
attribute interpolation shading (DAIS), to deferred shading. DAIS vis-list uses a linked list per pixel to store visibility samples. DAIS multi-rate
uses a shading rate of 1/2 for computing the indirect illumination. The geometry pass corresponds to the first phase of deferred shading
and includes the z-prepass for our method. Memory use includes all buffers needed for shading, i.e. triangle buffer, visibility sample list and
multi-rate shading samples. Additional 80 kB are used for the memoization cache during the geometry pass. Note the varying y-axis scaling.

Timings reported in ms Memory usage reported in MB
Scene Z-Prepass Compute Derivatives Fill Vis.-Buffer (incl. Z-Pre.) Shade Frame Triangle Buffer Vis.-Sample List Total

DAIS
Sponza 1.10 0.08 3.56 20.79 27.01 2.84 509.09
San Miguel 7.17 0.65 19.75 33.00 66.97 54.69 560.93

DAIS
with list

Sponza 1.09 0.08 4.26 20.80 28.18 2.84 5.89 293.50
San Miguel 7.13 0.64 23.67 33.63 71.81 54.69 34.80 374.25

DAIS
multirate

Sponza 1.18 0.08 5.59 8.28 16.51 2.84 782.00
San Miguel 7.34 0.64 23.65 17.87 55.76 54.69 858.86
Scene Fill G-Buffer Shade Frame Size G-Buffer

Deferred
Shading

Sponza 11.35 22.03 35.98 1265.62
San Miguel 26.87 36.07 77.14 1265.62

Table 1: Timings and total memory for a static viewport in different scenes at a resolution of 3840× 2160× 8. The viewports correspond to
the start of the animation in Figure 5. We compare our technique, deferred attribute interpolation shading (DAIS), to deferred shading. DAIS
vis-list uses a linked list per pixel to store visibility samples. DAIS multi-rate uses a shading rate of 1/2 for computing the indirect illumination.

As the result of shading is typically of high dynamic range, we
compress it into 4 bytes using the LogLuv representation [Larson
1998] to save memory bandwidth when reading back the shading
samples during the resolve phase.

5 Results and Discussion

We evaluate three different versions of our algorithm deferred at-
tribute interpolation shading (DAIS). The version DAIS employs
a conventional multisampled framebuffer and stores 8 bytes per
sample, including the depth buffer. The multirate shading version
DAIS multirate additionally stores 4 bytes per sample to reference
the shading sample. The DAIS list version employing the linked
list visibility buffer uses a multisampled depth buffer and stores one
additional 4 bytes list-pointer per pixel. Per list element 8 bytes are
stored. All materials share the same triangle storage format using
80 bytes per triangle. Per triangle we store 1/w, normal and texture
coordinate as well as their partial derivatives. Furthermore we store
a material ID and 4 additional unused bytes for padding purposes.

We compare our method to conventional deferred shading and im-
plemented a deferred renderer with a G-Buffer format requiring
20 bytes per visibility sample, including the depth buffer, storing
surface albedo, a triangle ID, linear depth, quantized normal and
a material ID. We do not perform a z-prepass for deferred shading
since we found it to be detrimental for the performance. To identify
visibility samples that correspond to the same triangle the triangle ID
is stored as an additional attribute. We iterate over all samples and
cache the shaded results per triangle ID to avoid redundant shading.

Special care is taken to avoid branch divergence by first searching
for the next sample requiring shading and then computing shading
across the warp. In contrast to the method by Lauritzen [2010],
where either only one or all samples are shaded, we can decide on a
finer granularity to determine which samples require shading. This
allows us to compare the performance of shading using a geometry
buffer to shading using the triangle buffer, with the same shading
workload per pixel. To simulate costly computation of indirect illu-
mination we exemplarily use reflective shadow maps [Dachsbacher
and Stamminger 2005] with 64 RSM-samples per pixel.

We selected the scenes Sponza and San Miguel with 262 267 and
8 145 860 triangles respectively, to evaluate the effects of the num-
ber of triangles in terms of performance and memory savings. For
all measurements we used 8 visibility samples per pixel. We uncon-
ditionally draw all geometry in all scenes and do not use culling. All
benchmarks were performed using a NVIDIA Geforce GTX 980.

Figure 5 depicts timings and memory consumption for a camera
animation in two different scenes. The reported timings are for filling
the visibility buffer or geometry buffer, as well as for shading. Refer
to the supplemental material for a video showing the camera paths.
Our method is able to significantly reduce the memory cost, while
achieving faster render times in most cases. In the Sponza scene, our
method is able to outperform deferred shading at both resolutions,
while at the same time reducing the memory usage. In the San
Miguel scene, our method is slower than deferred shading using a
resolution of 1920 × 1080, but is still able to reduce the memory
usage significantly. With doubled screen resolution, the time needed



to render the visibility buffer only increases by about 40%, whereas
for deferred shading the time is more than doubled, leading to a
performance advantage for our method. This characteristic can be
explained by the two geometry passes we have to perform, leading to
a bigger overhead for highly tessellated scenes. In Table 1 we show
timings as well as memory statistics in more detail for rendering
one frame at the resolution of 3840× 2160 for both scenes. Using
our multi-rate shading technique, we are able to reduce the time
needed for shading significantly, however at the cost of increased
memory usage and runtime for creating the visibility buffer. In
total, the render time for one frame is significantly reduced. The
memory needed for the multi-rate shading is still significantly lower
compared to deferred shading, and can be reduced by combining it
with the linked list visibility buffer.

To evaluate the overhead of our method when tessellation shaders are
used, we implemented a simple tessellation shader which computes
the projected triangle size and sets the tessellation factor to obtain
approximately equally sized triangles in image space. Figure 7
shows timings for the geometry pass as well as the total memory
consumption for a flythrough animation. Note that we did not cull
triangles from the tessellation shader to generate a high geometric
workload. Our method is able to save space in both cases, however
our method is not able meet the performance of deferred shading in
case of the lower resolution. At the higher resolution our method is
able to compete performance-wise.

Figure 6 shows the difference between attributes interpolated by the
rasterizer and our method. The error increases for distant surfaces
and surfaces observed from a shallow angle, which is to be expected
since the magnitude of the derivatives increases in these regions.

Comparison to previous work Previous work [Kerzner and
Salvi 2014; Crassin et al. 2015] reduces shading computations by
merging surfaces and at the same time achieves a scene-independent
reduction in memory consumption. Our method captures all visible
surfaces per pixel and we therefore achieve the same image quality as
standard MSAA methods, but nevertheless we could achieve better
compression ratios in our experiments. Merging surfaces may lead
to noticeable artifacts, however this merging could be integrated into
our method as well to reduce shading costs. In contrast to our work,
the aforementioned algorithms cannot support multi-rate shading.

The geometry pass in the method proposed by Burns et al. [2013]
is cheaper compared to our method since it does neither require the
z-prepass nor store visible triangles. They reference static mesh
data which makes their method hard to use with tessellation, and
more costly during shading since they interpolate attributes using a
ray-triangle intersection that requires vertex transformations to be
computed per pixel. Their visibility buffer stores the same amount
of data as our method, but we additionally store the triangle buffer.
This overhead, however, is minor, and by employing the linked
list of visibility samples we can achieve even higher compression
ratios than their method. In comparison to the method by Liktor
et al. [2012] our method is more memory efficient because they
need to store one G-Buffer sample per shading sample, whereas in
our method the cost for storing triangles is amortized over several
shading samples which is especially beneficial in case of multi-
rate shading. Note that their method was designed for stochastic
rasterization which cannot be used with our method.

6 Limitations

Employing a visibility buffer instead of a G-Buffer poses several
challenges. Techniques that directly operate on the G-Buffer, for
example deferred decals, cannot be used without adding additional
buffers, thereby sacrificing storage benefits. Furthermore, since ma-

10−50

Figure 6: Numerical errors due to our attribute interpolation. In
the left part of the image the distance to the world-space position
computed by the rasterizer is shown. The scene is scaled to fit
into a [−1, 1]3 cube. On the right the absolute difference between
evaluated texture lookups is shown, amplified by 103.

0
2
4
6
8

10
12
14

ge
om

et
ry

pa
ss

[m
s]

Sponza 1920 × 1080 × 8

0
5

10
15
20
25
30

Sponza 3840 × 2160 × 8

0
50

100
150
200
250
300
350

m
em

or
y

us
e

[M
B

]

animation time
0

200
400
600
800

1000
1200
1400

animation time

DAIS
DAIS vis.-list

Deferred Shading

Figure 7: Timings and total memory use for the geometry pass
(including the z-prepass for DAIS) in the Sponza scene. A tessel-
lation shader is used to create triangles with approximately equal
screen-space size, generating up to 13 and 26 million triangles for a
resolution of 1920× 1080× 8 and 3840× 2160× 8 respectively.

terials are evaluated during shading, either a more elaborate dispatch
scheme must be employed for shading, or materials have to be eval-
uated using an uber-shader. For simplicity, we chose to employ an
uber-shader approach for this work, but it may not be suitable for
complex material shaders where potential branch divergence and
increased register pressure might degrade the performance.

Our method requires a geometry prepass which may impact the
performance in case of high geometry workloads and expensive
vertex shaders. We therefore advise to use effective means of culling
with our method. Highly tessellated scenes also pose a challenge,
as all visible triangles need to be stored, and the costs for the two
geometry passes are amplified. The storage costs of our algorithm
depend on the number of attributes since for each additional scalar
attribute we need to store three scalars in the triangle buffer. As
mentioned previously in Section 3.2, referencing triangles from the
original mesh can be beneficial in case of high attribute counts.

Multi-rate shading samples are spawned in the geometry pass. Be-
cause they are not generated directly by the rasterizer and shaded in a
separate compute pass, techniques based on the stencil buffer cannot
be used. Violating the assumption of a low-frequency shading signal
might lead to aliasing. Since we do not interpolate between shading
samples our technique might create blocky artifacts. Vaidyanathan
et al. [2014] evaluated the image quality for a similar multi-rate
shading approach.

7 Conclusion and Future Work

In this paper, we presented a novel approach to deferred shading suit-
able for high visibility sampling frequencies. We are able to improve
the performance compared to deferred shading, while at the same
time dramatically reducing memory costs. In contrast to deferred
shading, our approach enriches the shading phase with knowledge
about the partial derivatives of all stored attributes. Using triangle
references, we can identify duplicate visibility samples per pixel
and thereby avoid redundant shading. We do not require random



access to all triangles since we identify visible triangles using two
passes and store these triangles in a buffer, thereby enabling the use
of tessellation. Our method is sensitive to the number of drawn trian-
gles since it uses two geometry passes. We showed that the size of
the visibility buffer can be reduced even further by storing a linked
list of visibility samples per pixel, with moderate computational
overhead.

The visibility buffer is of low entropy, as many visibility samples
store the same reference. Our technique therefore works well with
memory compression, which is already applied transparently by
current GPUs [NVIDIA 2014], and can be beneficial for energy
efficiency. Furthermore, our method is much more cache friendly
than deferred shading since for many visibility samples, the same
triangle data is requested, in contrast to deferred shading where each
visibility sample corresponds to an individual block of memory.

Since geometric attributes can be evaluated during shading, our
method could improve or actually enable new screen-space tech-
niques. An interesting direction of future research is to eliminate the
z-prepass by using a dynamic memory allocation scheme that is able
to identify and free the memory for triangles that became completely
occluded. Our method might benefit from small changes to the
graphics pipeline. If the triangle setup performed by the rasterizer
was exposed in the fragment shader, our method would not need to
rely on the geometry shader to pass through the whole triangle, and
furthermore the compute pass for the derivatives of the attributes
would be superfluous.

Acknowledgements

The first author is supported by a LGF stipend of the State of Baden-
Württemberg. We would like to thank Crytek for the Sponza scene
and Guillermo M. Leal Llaguno for the San Miguel scene.

References
AKELEY, K. 1993. Reality engine graphics. In Proc. of the 20th

Annual Conference on Computer Graphics and Interactive Tech-
niques, ACM, SIGGRAPH ’93, 109–116.

BLINN, J. F., AND NEWELL, M. E. 1978. Clipping using homoge-
neous coordinates. In Computer Graphics (Proc. SIGGRAPH),
vol. 12, 245–251.

BURNS, C. A., AND HUNT, W. A. 2013. The visibility buffer: A
cache-friendly approach to deferred shading. Journal of Computer
Graphics Techniques (JCGT) 2, 2, 55–69.

CLARBERG, P., TOTH, R., AND MUNKBERG, J. 2013. A sort-
based deferred shading architecture for decoupled sampling. ACM
Trans. on Graphics (Proc. SIGGRAPH) 32, 4, 141:1–141:10.

CRASSIN, C., MCGUIRE, M., FATAHALIAN, K., AND LEFOHN, A.
2015. Aggregate g-buffer anti-aliasing. In Proc. ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 109–119.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proc. ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games, I3D ’05, 203–231.

DAVIDOVIČ, T., ENGELHARDT, T., GEORGIEV, I., SLUSALLEK,
P., AND DACHSBACHER, C. 2012. 3D rasterization: a bridge
between rasterization and ray casting. In Proc. of Graphics Inter-
face, 201–208.

FATAHALIAN, K., LUONG, E., BOULOS, S., AKELEY, K., MARK,
W. R., AND HANRAHAN, P. 2009. Data-parallel rasterization of
micropolygons with defocus and motion blur. In Proc. of ACM
SIGGRAPH / Eurographics conference on High Performance
Graphics, 59–68.

JIMENEZ, J., ECHEVARRIA, J. I., SOUSA, T., AND GUTIERREZ,
D. 2012. SMAA: Enhanced subpixel morphological antialiasing.
Computer Graphics Forum 31, 355–364.

KERZNER, E., AND SALVI, M. 2014. Streaming g-buffer compres-
sion for multi-sample anti-aliasing. In Proc. of ACM SIGGRAPH
/ Eurographics conference on High Performance Graphics, 1–7.

KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE,
M. 2007. Joint bilateral upsampling. ACM Trans. on Graphics
26, 3.

LARSON, G. W. 1998. LogLuv encoding for full-gamut, high-
dynamic range images. Journal of Graphics Tools 3, 1, 15–31.

LAURITZEN, A. 2010. Deferred rendering for current and future
rendering pipelines. SIGGRAPH Course: Beyond Programmable
Shading.

LIKTOR, G., AND DACHSBACHER, C. 2012. Decoupled deferred
shading for hardware rasterization. In Proc. ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 143–150.

NVIDIA, 2014. White paper: NVIDIA GeForce GTX 980.
http://international.download.nvidia.com/geforce-com/

international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.

PDF.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled sampling for graphics
pipelines. ACM Trans. on Graphics 30, 3, 17:1–17:17.

RESHETOV, A. 2009. Morphological antialiasing. In Proc. of the
Conference on High Performance Graphics 2009, 109–116.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-D shapes. In Computer Graphics (Proc. SIGGRAPH), vol. 24,
197–206.

SCHUELER, C. 2007. Normal mapping without pre-computed
tangents. In ShaderX5: Advanced Rendering Techniques, W. F.
Engel, Ed. Charles River Media.

VAIDYANATHAN, K., SALVI, M., TOTH, R., FOLEY, T., AKENINE-
MÖLLER, T., NILSSON, J., MUNKBERG, J., HASSELGREN, J.,
SUGIHARA, M., CLARBERG, P., ET AL. 2014. Coarse pixel
shading. In Proc. of ACM SIGGRAPH / Eurographics conference
on High Performance Graphics, 9–18.

A Computing Partial Derivatives for Perspec-
tive Correct Attribute Interpolation

The barycentric coordinates λi of a point (x, y) in relation to a
triangle pi = (ui, vi) can be computed by

λ1(x, y) =
(v2 − v3)(x− u3) + (u3 − u2)(y − v3)

D
,

λ2(x, y) =
(v3 − v1)(x− u3) + (u1 − u3)(y − v3)

D
,

λ3(x, y) = 1− λ1(x, y)− λ2(x, y),

(3)

withD = det(p3−p2, p1−p2). From Eq. 3, the partial derivatives
of the barycentric coordinates with respect to x and y are derived as

∂λ1
∂x

=
y2 − y3
D

,
∂λ2

∂x
=
y3 − y1
D

,
∂λ3

∂x
=
y1 − y2
D

,

∂λ1

∂y
=
x3 − x2
D

,
∂λ2

∂y
=
x1 − x3
D

,
∂λ3

∂y
=
x2 − x1
D

.
(4)

Given the partial derivatives of the barycentric coordinates, we can
compute the partial derivatives of an attribute a/w using

∂a/w

∂x
=

∑
i

∂λi
∂x

· ai
wi
,

∂a/w

∂y
=

∑
i

∂λi
∂y

· ai
wi
. (5)

http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF

