
Vision, Modeling, and Visualization (2014)
J. Bender, A. Kuijper, T. von Landesberger, and P. Urban (Eds.)

Interactive Appearance Editing in RGB-D Images

Stephan Bergmann1, Tobias Ritschel2, Carsten Dachsbacher1

1Karlsruhe Institute of Technology 2Max Planck Institute for Informatics

Abstract
The availability of increasingly powerful and affordable image and depth sensors in conjunction with the necessary
processing power creates novel possibilities for more sophisticated and powerful image editing tools. Along these
lines we present a method to alter the appearance of objects in RGB-D images by re-shading their surfaces
with arbitrary BRDF models and subsurface scattering using the dipole diffusion approximation. To evaluate
the incident light for re-shading we combine ray marching using the depth buffer as approximate geometry and
environment lighting. The environment map is built from information solely contained in the RGB-D input image
exploiting both the reflections on glossy surfaces as well as geometric information. Our CPU/GPU implementation
provides interactive feedback to facilitate intuitive editing. We compare and demonstrate our method with rendered
images and digital photographs.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing / Color, shading, shadowing, and texture

1. Introduction

Photo editing has evolved from manipulating individual
pixels to complex operations that enable powerful tools for
the user to alter and compose photographs that appear gen-
uine. In parallel, sensors have evolved from image sen-
sors with modest resolutions to dozens of mega-pixels. Also
depth sensors have recently become affordable and are a
valuable addition to 2d image sensors, extending the range
of possible editing applications.

We take advantage of the multimodal sensor data and the
available processing power to develop interactive high-level
image operations. These operations – altering the appear-
ance of objects by modifying the material properties – al-
low us to alter an image in a physically plausible way. Note
that many rendering methods take advantage of the fact that
it is not necessary to maintain strict physical correctness to
convey a convincing impression due to the properties of the
human visual system (e.g. see [FB05]).

Our method takes color images with a matching depth
buffer (henceforth referred to as RGB-D images) as input.
In this work we focus on changing the appearance of objects
in such RGB-D images, especially the impression of an ob-
ject’s glossiness and translucency. One important goal of our
work is to avoid elaborate scene and material reconstruction

or inverse rendering techniques, and instead maintain a flex-
ible yet easy to implement method.

2. Previous work

There is a substantial body of work concerning the manip-
ulation of digital images so we will limit ourselves to those
publications that are most closely related to our work.

Oh et al. [OCDD01] rely on the user to assign depth val-
ues to image regions using special user interfaces, and then
use this information to enable advanced cloning and relight-
ing operations. Fang and Hart [FH04] make use of shape-
from-shading and texture synthesis to replace the texture of
objects in digital images. Zelinka et al. [ZFGH05] improve
upon this by providing, among other things, interactive feed-
back of the texture synthesis.

Probably the most similar to our work is that of Khan et
al. [KRFB06]: Their method also allows the replacement of
an object’s BRDF and evaluate the incident light by first em-
ploying an inpainting algorithm to fill missing pixels behind
an object and then using image pixels to build an environ-
ment map (EM) for this purpose. Additionally they provide
a method to simulate translucency and transparency of ob-
jects. They rely on the “dark-is-deep” assumption to extract
depth and normals from the object of interest. Also in con-
trast to our method, the authors use image warping to build

c© The Eurographics Association 2014.

Stephan Bergmann, Tobias Ritschel, Carsten Dachsbacher / Interactive Appearance Editing in RGB-D Images

Data acquisition Back side
reconstruction

Reflectance
estimation

Scene EM
generation

Surface re-shading

Translucency

Figure 1: An overview of our method. The blue chevrons symbol preparatory processing steps, the two blocks on the right our
main editing steps.The data buffers (synthetic test scene) are connected with their processing step are by the blue background.

the EM and mirror image data to evaluate incident light from
directions not directly visible in the image.

Gutierrez et al. [GLMF∗08] show how certain properties
of the human visual system can be exploited to convincingly
add advanced lighting effects like caustics to a digital image.

Not only lighting effects can be added to images but also
synthetic objects. To appear credible these object need to be
subject to the same lighting conditions as those depicted in
the image [Deb98]. Karsch at al. [KHFH11] present a semi-
automatic system that relies on a combination of user anno-
tations as well as automatic estimation and refinement steps
to generate convincing results.

Changing indirect lighting effects like interreflections is
addressed by Caroll et al. [CRA11] who use intrinsic im-
ages and decompose the lighting to change the reflectance
of objects, taking interreflections into account. In contrast to
our work they do not propose evaluating arbitrary BRDFs.

Richardt et al. [RSD∗12] also use a combination of 3d and
2d sensors to capture videos that can then be subjected to a
variety of effects like relighting or stylistic rendering. To this
end they developed a spatio-temporal filtering technique that
produces high quality depth maps. When dealing with noisy
depth sensor data their filtering methods can be applied as
part of the preprocessing step for our algorithm to improve
the quality of the results.

3. Interactive Appearance Editing

We will first provide an overview of our technique and de-
scribe the steps in our algorithm as outlined in Figure 1. The
process can be summarized as follows: We build an environ-
ment map (EM) of the scene in the input image which will
be used for re-shading surfaces or adding translucency. This

EM is needed when sampling incoming light from directions
where no geometry is present in the depth buffer.

The processing itself comprises the following steps:

Data acquisition The first step is to acquire and preprocess
input data, i.e. a color image with a matching depth buffer.
Depending on the method used, a filtering step may be
necessary to reduce noise. Additional preprocessing in-
cludes generating normals and segmenting the images.
Examples of the input data we expect can be seen in Fig-
ure 1 beneath the first step.

Back side reconstruction As the depth buffer only samples
the frontmost surface, we need to reconstruct the far sides
of the visible objects to plausibly re-shade surfaces, which
requires computing the incident light from other objects.
The reconstructed back sides are stored as a second layer
in the depth buffer.

Reflectance estimation The surface reflectance of visible
objects is estimated by comparing the incident illumina-
tion with the reflected light observed from these objects.

Scene environment map generation We reconstruct an
environment map for the scene which will subsequently
be used when re-shading objects.

Appearance editing We enable the user to interactively
manipulate the objects’ material parameters (BRDF,
translucency). To update the image, we use the recon-
structed environmental lighting as well as ray marching
in the two-layer depth buffer to account for local interac-
tions. Note that currently we do not support changing the
parameters of an existing translucency. However, we can
replace the BRDF and then re-add additional translucency
effects.

In order to keep our method simple we made some as-
sumptions which we summarize here: A color and a depth

c© The Eurographics Association 2014.

Stephan Bergmann, Tobias Ritschel, Carsten Dachsbacher / Interactive Appearance Editing in RGB-D Images

map are available along with a given segmentation of the
image. Segments representing glossy object are marked and
we assume Lambertian reflection for the objects in the scene
which are not marked as glossy. We discuss some of the con-
sequences of these assumptions in Section 5.

3.1. Data acquisition and pre-processing

There are numerous approaches to acquiring color plus
depth images, e.g. time-of-flight cameras, laser scanners
combined with a 2D camera, or multi-view photography.
There is also the possibility to extract depth information
from a 2D image by relying on certain assumptions, e.g. the
“dark-is-deep” assumption [LB00, KRFB06] or with user-
guided approaches [OCDD01, LGG14].

In particular depth information generated by consumer-
grade sensors needs to be filtered before the next process-
ing steps. As our method strives to reconstruct environment
lighting from the shading on glossy surfaces, it is sensitive
to incorrect or noisy normals. Because of this we filter the
depth values before generating normals using a joint bilat-
eral filter [TM98]. Note that more involved pre-processing
methods have been proposed, e.g. Yang et al. [YWLZ11] and
Han et al. [HLK13]. These might be necessary depending on
the quality of the raw data.

For the translucency calculation we use material proper-
ties based on physical distance units. To be able to use tab-
ulated or measured material parameters we need either the
sensor to directly output physical units or an additional cal-
ibration parameter that allows a conversion of sensor data
into a known unit.

Along with the filtered depth values and the normals we
store world space coordinates and a patch area: We treat each
pixel as the projection of a quadrilateral patch and back-
project it using the pin-hole camera model and known cali-
bration data of the sensors. We then store the coordinate of
the patch center and the surface area of the patch.

For the next steps, we require that the image has been
segmented into disjunct segments. The segmentation is as-
sumed to assign individual objects in the scene to differ-
ent segments, so we will use the terms object and (image)
segment interchangeably in the the following descriptions.
The problem of segmenting an image is facilitated due to
the additional depth information compared to pure color im-
ages. A survey on segmentation algorithms can be found in
Szeliski’s recent book [Sze10]. For simplicity, we used man-
ually created label maps in our examples.

3.2. Back side reconstruction

The sensor depth map obviously does not contain infor-
mation about the far sides of objects in the image. However,
we require at least an approximation thereof in order to in-
clude global lighting effects by ray marching. In this step we
reconstruct a plausible far side of the image objects. These

depth values are stored as a second layer in the depth buffer;
the first layer contains the (filtered) sensor depth values.

Image segments are processed individually and a backside
is created for each one. Besides a depth offset and a simple
mirroring at a plane parallel to the image plane (as used for
example in [MES∗11]), we implemented a method that does
not require the object’s symmetry plane to be parallel to the
image plane but assumes planar symmetry nonetheless. The
basic idea is to select a mirror plane (represented by a normal
and a point r in this plane) by looking at the shape of the
object, then optimizing the position of that plane along the
plane’s normal (see Figure 2):

e1 = ê
e2

n

r

r

Figure 2: The steps of the backside reconstruction: Select-
ing a mirror plane normal (left). Optimizing the mirror plane
(center). Mirroring the front side;yellow dots are points that
are not changed by the mirroring (right).

We regard the segment’s set of patch center coordinates
P as a point cloud and then perform a principal component
analysis (PCA) on this point set, determining the eigenvec-
tors of the covariance matrix. Next, we choose the eigenvec-
tor ê most similar to the image plane normal n:

ê = argmin
i∈{1,2,3}

|ei ·n|,

and use ê as the normal of the symmetry plane. Initially we
chose the point r from the set P so that r maximizes (r−c)

||r−c|| · ê
with r ∈ P, c being the center of the set P and assuming
ê ·n > 0 (we flip the sign of ê otherwise).

In the next step, we optimize the position r of the as-
sumed symmetry plane by moving it along its normal ê:
For each position we calculate a penalty term E(r) =
max(C(r),O(r)), where C is the percentage of points that are
behind the mirror plane with respect to the camera position
(yellow dots in right image in Figure 2) and O is the percent-
age of points that would be projected outside the silhouette
of the segment when subjected to a pin-hole projection with
the camera’s calibration data.

Using a simple interval bisection, we search for the mini-
mum of E(r), assuming E(r) to be sufficiently smooth. The
search ends when either the change of E(r) from one iter-
ation to the next drops below a threshold or a predefined
maximum number of iterations is reached. Then we mirror
the front face and the front normals at the chosen plane. The
surface color on the back is also assumed to mirror that of
the front side. Figure 1 shows a top-down view of the re-
sult of this operation for the Stanford Dragon beneath the

c© The Eurographics Association 2014.

Stephan Bergmann, Tobias Ritschel, Carsten Dachsbacher / Interactive Appearance Editing in RGB-D Images

second step: The original depth data is shown in blue, the
reconstructed second layer in red.

To avoid issues with the ray marching later, we ensure a
minimal thickness (the difference between the first and the
second depth layer) for each pixel position when performing
the mirroring step. This minimal thickness is greater than the
ray marching step size and guarantees the we do not miss
geometry when ray marching.

3.3. Reflectance estimation

In the step following this one, we will build an environ-
ment map of the scene using reflected light on glossy ob-
jects. When generating an environment map from colored
glossy objects, we need to factor out the color of these ob-
jects. To determine this color we compute and compare two
directional maps for each of these objects: one containing
reflected light from the surface LS(ω) and one containing an
approximation of the incident light LG(ω). We tabulate as-
sumed values of these functions in a environment map-like
table but this is no environment map in the usual sense be-
cause it may contain already convolved data or violate the
distant object assumption.

LS(ω) is built from the appearance of the object’s surface.
For each surface pixel contained in the object’s segment, we
determine the reflected direction ωR of the camera ray on the
patch center. Next, we perform a ray marching in the depth
image from the patch center in the direction ωR.

If the ray hits geometry we check whether the pixel co-
ordinates of the hit point are inside the current segment. If
they are outside (case designated “B” in Figure 3 left) or the
ray reaches the depth buffer boundaries without intersecting
geometry (cases “A”), we use the color of the ray’s originat-
ing patch and store it as LS(ωR). We average pixel values in
the directional maps in case more than one ray contributes to
one direction bin.

If the ray hits geometry inside the same segment (case
“C”) we have to assume that the object’s surface reflects an-
other part of the same object. We discard the ray in this case
because we want our directional map to contain one one-
bounce reflections of the geometry surrounding the current
object.

At this stage the directional map for Ls(ω) contains only
scattered values. To close the gaps, we perform a scattered
data interpolation using Shepard’s method [She68]. Figure 4
shows the generated map for Stanford dragon in the image
shown below the first step in Figure 1.

The second directional map should represent the uncon-
voluted irradiance LG(ω), so we cannot use the surface of
the object. To build it we trace rays from the world space
center of the object uniformly in all directions (Figure 3
right). When a ray in direction ωU hits geometry (cases “D”)
we store the color information of the geometry we hit in
LG(ωU), assuming diffuse reflection for this geometry.

Figure 3: We trace rays from the eye, reflect them at the sur-
face, then store the surface color in the environment map (us-
ing the reflection direction) when the ray did not hit the ob-
ject itself (left). We evaluate incoming light using ray march-
ing from the object center (right).

To leverage all the information present in the image itself,
we assume image pixels for which no valid depth informa-
tion is present (the sensors usually have a maximum range
for which they can capture valid depth values) to be distant.
Knowing the camera calibration, we can include the color in-
formation for these pixels in LG(ω), as they likely represent
distant geometry that is reflected on the object’s surface.

After all pixels have been processed, gaps in LG(ω) are
again filled by interpolation. Next, we calculate the mean
values L̄G(ω) and L̄S(ω) of both maps, then divide L̄G(ω) by
L̄S(ω) to get an estimate for the reflectance of the surface.

Note that this works and is used only for glossy objects.
For diffuse objects this is not needed as we do not use these
to build the scene environment map.

3.4. Scene environment map generation

To calculate the shading for given surface point in later
steps, we need to be able to evaluate the incoming radiance
Li(ω) for each direction ω.

To exploit information that might be contained in glossy
objects in the scene, we reconstruct an environment map for
the entire scene from these objects. When shading surfaces,
we can then use this environment map in cases where there
is no geometry in a direction ω.

We use the segmentation of the image, assuming glossy
objects are marked, either by user input or by an additional
previous classification step. These glossy segments are now
used to build an environment map of the scene.

The method is similar to what we used when generating
the LS(ω) in the previous section, but here we use only the
surface color of pixels whose reflection rays do not intersect
any geometry (so in the case “B” in Figure 3 nothing will
be stored in the EM). The rationale is that the pixels which
spawned these rays likely reflect local geometry instead of
distant parts of the scene. The surface color has been mod-
ulated by the object’s reflectance. To undo this, we divide
this color by the reflectance we estimated for that object (see
section 3.3) before storing it in the EM.

c© The Eurographics Association 2014.

Stephan Bergmann, Tobias Ritschel, Carsten Dachsbacher / Interactive Appearance Editing in RGB-D Images

Figure 4: Directional maps (latitude-longitude parameterization): The environment map used for rendering the scene as ref-
erence (left); scattered reconstructed values of the directional map LS(ω) before interpolation (center) and after interpolation
LS(ω) (right). The apparent structure on the right side is caused by storing the distant pixel values.

We continue in this fashion until all pixels in the glossy
segments have been processed. Depending on the geometry
and the chosen resolution of our environment map, multi-
ple rays will contribute to the same entry in the environment
map; again we then average these values.

Lastly we add the information from distant image pixels to
the environment map (as when generating LG(ω)) and per-
form a final interpolation step to obtain the scene EM.

3.5. Surface re-shading

After the preparatory steps, we now focus on our main
goal: modifying the appearance of objects in the image. This
section describes how we re-shade surfaces using user input
and information extracted from the input data.

Re-shading the reflectance (translucency will be discussed
in the next section) of an object’s surface requires evaluating
the well-known reflection integral for all its pixels:

Lo(x,ωo) =
∫

Ω+
fr(x,ωi→ ωo)Li(x,ωi)cosθidωi.

Here, x is the world position of the surface patch associated
with each pixel, ωo the view direction and fr(.) a BRDF. For
simplicity we only use the specular component of the Phong
model [Pho75] for our example images, however we make
no assumptions about the BRDF in general.

The integral is estimated using Monte-Carlo integration
with importance sampling and to evaluate Li(x,ωi) we use
ray marching in the depth buffer. If a ray originating at x in
direction ωi hits geometry, we use the value from the color
buffer at the hit point. This means we are assuming diffuse
reflection for the patch at the hit point. If the ray does not
hit any geometry before leaving the depth buffer or reaching
a maximum length, we perform a lookup in the generated
scene environment map (see Section 3.4) to determine Li.

The specular coefficient in the Phong model can either
be a user parameter or the estimated reflectance value from
Section 3.3 can be used which retains the object’s color.

In a post-processing step, we filter the obtained values in

image space to reduce the variance and blend the new pixel
values with the original ones with user-defined weights.

3.6. Translucency rendering

Our system also supports simulating subsurface light
transport effects. We follow the technique of Dachsbacher
and Stamminger [DS03], using the dipole diffusion approx-
imation [JMLH01]. As in their work, we restrict ourselves
to multiple scattering effects to reduce the computational
effort knowing that this decision affects the range of ma-
terials we can simulate. Although the assumptions of the
dipole approximation are not necessarily valid for our appli-
cation, they yield a plausible image within interactive feed-
back times. Ultimately we evaluate an integral over the sur-
face on an object using Monte Carlo-Integration:

Lo(p,ωo) =
1
π

Ft(ωo)
Ã
|S|∑S

Ê(si)Rd(||p− si||), (1)

where Ft is the transmissive Fresnel term, Ã is an estimate
for the total surface area of the object, S is a set of sample
points on the object’s surface with Ê(si) being the approxi-
mated irradiance at sample point si, and Rd is the diffuse re-
flectance [JMLH01]. Simliar to [MES∗11] we use a formu-
lation where Rd depends only on the distance between two
surface points. Like Jensen and Buhler [JB02] we evaluate
the diffusion approximation in two steps, first evaluating the
irradiance at all sample points, then iterating over all visible
surface points.

We first select a set S of sample points si on the surface
of the edited object. We want to sample the surface of the
object uniformly, so we need to sample the image pixels
proportional to the area of their associated surface patches.
To achieve this, we first uniformly generate positions in the
image plane (rejecting those outside the segment), then ac-
cept samples with a probability proportional to the size of
the area of the surface they represent. Note that we need to
distribute samples on both front and back side of the object.
For each sample point we determine the approximate irra-
diance Ê(si) by performing a Monte-Carlo integration over

c© The Eurographics Association 2014.

Stephan Bergmann, Tobias Ritschel, Carsten Dachsbacher / Interactive Appearance Editing in RGB-D Images

the hemisphere:

Ê(si) =
π

N

N

∑
j=1

Ft(θ j)Li(si,ω j)

The sample directions ω j are drawn from cosine-weighted
distribution over the hemisphere. Marching a ray in the sam-
ple direction yields a radiance value Li(si,ω j), either from
hitting geometry or accessing the scene EM.

Next, we iterate over all pixels of the object and for each
we sum over all the set of samples S evaluating equation 1.
Ã is the sum of the patch areas of the segment’s pixels. This
sum is doubled to account for the back side.

4. Implementation and Results

We implemented our method using both CPU and GPU
processing, using the GPU mainly for performance critical
and inherently parallel tasks like interpolation, sampling and
filtering. The first steps of our method (up to and including
scene EM generation) are performed once per input image
and take a few seconds.

One of our goals was to provide interactive feedback to
the user when changing material parameters where possi-
ble. To keep the feedback latency low, results are updated
progressively (for both surface shading and translucency) as
a compromise between response times and image quality.
While the image quality improves over time, even early out-
puts allow a user to intuitively grasp the result of an editing
operation and to adjust the parameters if necessary. For the
Dragon image shown in the paper, the GPU needed 45ms
for every 5 rays sampled per surface pixel when re-shading
the Dragon. When rendering translucency effects, the GPU
runtime was 60ms to update the object for every 10k of sur-
face samples. We collected these performance figures on an
Nvidia GTX 760. The image size was 10242.

4.1. Synthetic data

To evaluate our method we compared it against images
rendered with LuxRender [Lux]. Figure 5 shows an example
of a re-shaded surface. The left image (with depth) is used
as input data. The image in the middle shows the scene with
a re-shaded dragon surface, the Phong exponent has been set
to n = 10 for this image, the reflectance has been estimated
and reused for evaluation. The surface was rendered using
150 samples per pixel. For comparison, we show the same
scene rendered with LuxRender with n = 10 on the right.
Contrary to our approach LuxRender uses multiple bounces
so the object’s reflectance is more pronounced.

Figure 6 shows that even starting from a diffuse surface
we can create the impression of a highly specular material,
although the high frequencies of the irradiance function have
been smoothed away by the surface’s BRDF in the input. As
long as there is nearby geometry in the depth buffer, high
frequencies created by reflections of this geometry create a

plausible impression of a specular surface. However, note
the lack of reflected detail in areas where the EM is used to
evaluate the incoming light.

The rendering of translucency effects is shown in Fig-
ure 7. We used 40k surface samples on the dragon, estimat-
ing the irradiance with 100 directions per sample (see [JB02]
for a way to relate sample density to surface area and mate-
rial parameters). The calculated radiance was simply added
to the original image values.

4.2. Acquired data

We evaluated different sensors for acquiring RGB-D data.
We used the Microsoft Kinect and the Creative Senz3D cam-
era as well as a professional Faro Photon 120 laser scanner.
As expected, the quality of the laser scanner’s data was su-
perior to that of the other acquisition methods. For the ex-
amples we then used the laser scanner’s data and applied a
joint bilateral filter to the depth values with the RGB data
providing the other domain.

One problem that all acquisition methods share is the in-
ability to faithfully scan glossy objects. To remedy this prob-
lem we coated these objects with a layer of cyclododecane,
rendering their surfaces diffuse for depth acquisition; RGB
data was then scanned in a separate pass.

Figure 8 shows results of our method working on acquired
data: The left image is the original color data from our sensor
combination. In the middle image, the surface of the glossy
sphere has been re-shaded to appear less specular. In contrast
the right image shows how we changed the appearance of a
former diffuse surface, causing it to be perceived as specular.

5. Discussion

The problem of material editing in RGB-D images is in-
herently hard because of missing or imperfect data, ambigu-
ities and computational requirements. The goal of this work
was to provide a comparatively simple yet intuitive method
for artistical editing. To achieve this, we had to make a num-
ber of assumptions, so naturally there are cases where some
of these fail. This can lead to incorrect and/or implausible
results. In the following we discuss some of these cases.

No glossy objects in scene When building the environment
map, we rely on glossy objects in the scene. If the scene
contains no glossy surfaces (or if their normals cover only
a small solid angle), a reconstructed EM will not be able to
provide a plausible Li for all directions (see Figure 6 right
for an example). This results in missing or wrong data for
the final image, when too few or no valid irradiance samples
are present. To fill gaps in the image, we experimented with
inpainting, e.g. as proposed by Telea [Tel04]. While such
methods can easily fill small gaps, they cannot always pro-
vide convincing results for larger regions of missing data.

High glossiness assumption We acknowledge that using

c© The Eurographics Association 2014.

Stephan Bergmann, Tobias Ritschel, Carsten Dachsbacher / Interactive Appearance Editing in RGB-D Images

Figure 5: Input image with n = 500 (left); re-shaded dragon surface with n = 10 (center); LuxRender reference image with
n = 10 (right). Note that the color saturation in the reference image is also higher due to the fact that the global illumination
method accounts for multiple reflections, while in our method a material edit affects one bounce only.

Figure 6: A diffuse dragon created from a highly specular
input (left). The dragon on the right has been re-shaded using
the left image as input and a Phong exponent n=100.

Figure 7: Translucency effect created by first re-shading the
dragon to a diffuse appearance and then adding the translu-
cency effect. The silhouette edges are dark due to the Fresnel
coefficient when the reconstructed normals are nearly per-
pendicular to the view direction.

pixel colors directly when building the EM we implicitly as-
sume that the surface is highly glossy because we do not per-
form a deconvolution. This will cause artifacts if we increase
an object’s glossiness when re-shading. However, they will
only be noticeable if a significant part of an object’s sur-
face reflects the environment and not nearby geometry be-
cause reflections of nearby geometry will be resolved by ray
marching.

Incorrect normals These can result from noisy sensor data
or from discontinuities in the input depth image and in-

troduce two problems: During EM construction they cause
color data to be splatted into incorrect EM locations and thus
whole regions of the EM can be rendered invalid depending
on the data density. Second, they can result in obvious errors
when shading the surface.

Incorrect back side reconstruction As sensors only cap-
ture the front-most surfaces, we make assumptions about
the far side of objects in the scene. These assumptions can
be wrong, causing the reconstruction back side to be incor-
rect which in turn can lead to incorrect EMs and incorrectly
shaded surfaces. However, our approach yielded satisfying
results. Using multiple images with different view points
as input data and fusing the information can obviously add
more layers to the depth buffer, however, we wanted our
work to be applicable to single RGB-D images.

Diffuse object assumption When generating the environ-
ment maps and when sampling the irradiance we use the
pixel color of the patch hit during ray marching, meaning
that we assume a diffuse BRDF. We currently do not use the
information about specular surfaces although this informa-
tion is used for generating the scene environment map. This
would allow us to follow further light bounce, however, the
input data still lacks all the information about these surfaces.

Indirect lighting effects Our example images (esp. Fig-
ure 8 left) clearly show a limitation of our current method:
indirect lighting effects are not yet taken into consideration.
In future work, we would like to develop methods that allow
us to efficiently render plausible indirect lighting changes.

5.1. Future work

Besides those points mentioned in the discussion, we
would also like to estimate the properties of the visible sur-
faces in the scene. We could use estimated parameters for
a BRDF model to improve the creation of the environment
map. Additionally, this information would also allow us to
account for indirect effects more accurately.

We would also like to take into account color information
about the far sides of objects that might appear in glossy
objects to improve the estimation of back side colors.

c© The Eurographics Association 2014.

Stephan Bergmann, Tobias Ritschel, Carsten Dachsbacher / Interactive Appearance Editing in RGB-D Images

Figure 8: Original input image (left) Sphere surface re-shaded with n = 10 (center) Bag surface re-shaded with n = 500 (right)
Note the reflection of the bag’s original colors in the sphere and the diffuse reflections on the surface next to the bag.

6. Conclusion

We presented a method to interactively edit material ap-
pearance in RGB-D images taking advantage of the depth
buffer and using glossy objects in the image to estimate en-
vironmental lighting. Together with ray marching against the
depth image, this enables plausible surface appearance ma-
nipulations and subsurface scattering effects.

Acknowledgments Part of this work has been funded
by Software Campus Grant FKZ 01IS12051. Dragon and
Happy Buddha model are from the Stanford 3D Scanning
Repository. Grace cathedral EM from [Deb98].

References

[CRA11] CARROLL R., RAMAMOORTHI R., AGRAWALA M.:
Illumination decomposition for material recoloring with con-
sistent interreflections. ACM Transactions on Graphics 30, 4
(2011), 43:1–43:10. 2

[Deb98] DEBEVEC P.: Rendering synthetic objects into real
scenes: Bridging traditional and image-based graphics with
global illumination and high dynamic range photography. In SIG-
GRAPH’98 (1998), pp. 189–198. 2, 8

[DS03] DACHSBACHER C., STAMMINGER M.: Translucent
shadow maps. In Proc. Eurographics Workshop on Rendering
(2003), pp. 197–201. 5

[FB05] FLEMING R. W., BÜLTHOFF H. H.: Low-level image
cues in the perception of translucent materials. ACM Transaction
on Applied Perception 2, 3 (2005), 346–382. 1

[FH04] FANG H., HART J.: Textureshop: Texture synthesis as a
photograph editing tool. ACM Transactions on Graphics 23, 3
(2004), 354–358. 1

[GLMF∗08] GUTIERREZ D., LOPEZ-MORENO J., FANDOS J.,
SERON F., SANCHEZ M., REINHARD E.: Depicting procedural
caustics in single images. ACM Transactions on Graphics (Proc.
of SIGGRAPH Asia 2008) 27, 5 (2008), 120:1–120:9. 2

[HLK13] HAN Y., LEE J.-Y., KWEON I. S.: High quality shape
from a single RGB-D image under uncalibrated natural illumina-
tion. In ICCV 2013 (2013), vol. 1, pp. 1617–1624. 3

[JB02] JENSEN H. W., BUHLER J.: A rapid hierarchical render-
ing technique for translucent materials light diffusion in translu-
cent materials. ACM Transactions on Graphics (Proc. of SIG-
GRAPH 2002) (2002). 5, 6

[JMLH01] JENSEN H. W., MARSCHNER S. R., LEVOY M.,
HANRAHAN P.: A practical model for subsurface light transport.
SIGGRAPH’01 (2001), 511–518. 5

[KHFH11] KARSCH K., HEDAU V., FORSYTH D., HOIEM D.:

Rendering synthetic objects into legacy photographs. ACM
Transactions on Graphics 30, 6 (2011), 157:1–157:12. 2

[KRFB06] KHAN E., REINHARD E., FLEMING R. W.,
BÜLTHOFF H.: Image-based material editing. ACM Transac-
tions on Graphics 25, 3 (2006), 654–663. 1, 3

[LB00] LANGER M. S., BÜLTHOFF H. H.: Depth discrimination
from shading under diffuse lighting. Perception 29, 6 (2000),
649–660. 3

[LGG14] LOPEZ A., GARCES E., GUTIERREZ D.: Depth from a
single image through user interaction. Spanish Computer Graph-
ics Conference 2014 (2014), 1–10. 3

[Lux] LuxRender GPL physically based renderer. http://
www.luxrender.net/. 6

[MES∗11] MUNOZ A., ECHEVARRIA J. I., SERON F., LOPEZ-
MORENO J., GLENCROSS M., GUTIERREZ D.: BSSRDF esti-
mation from single images. Computer Graphics Forum (Proc. of
Eurographics 2011) 30, 2 (Eurographics) (2011), 455–464. 3, 5

[OCDD01] OH B. M., CHEN M., DORSEY J., DURAND F.:
Image-based modeling and photo editing. SIGGRAPH’01
(2001), 433–442. 1, 3

[Pho75] PHONG B. T.: Illumination for computer generated pic-
tures. Commun. ACM 18, 6 (June 1975), 311–317. 5

[RSD∗12] RICHARDT C., STOLL C., DODGSON N. A., SEIDEL
H.-P., THEOBALT C.: Coherent spatiotemporal filtering, upsam-
pling and rendering of RGBZ videos. Computer Graphics Forum
31, 2 (2012), 247–256. 2

[She68] SHEPARD D.: A two-dimensional interpolation function
for irregularly-spaced data. In 23rd ACM national conference
1968 (1968), pp. 517–524. 4

[Sze10] SZELISKI R.: Segmentation. In Computer Vision: Algo-
rithms and Applications. Springer, 2010. 3

[Tel04] TELEA A.: An image inpainting technique based on the
fast marching method. Journal of Graphics Tools 9, 1 (2004),
25–36. 6

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. Sixth International Conference on Computer
Vision (1998), 839–846. 3

[YWLZ11] YANG Q.-Q., WANG L.-H., LI D.-X., ZHANG M.:
Hierarchical joint bilateral filtering for depth post-processing.
2011 Sixth International Conference on Image and Graphics
(2011), 129–134. 3

[ZFGH05] ZELINKA S., FANG H., GARLAND M., HART J. C.:
Interactive material replacement in photographs. In Graphics In-
terface (2005), pp. 227–232. 1

c© The Eurographics Association 2014.

http://www.luxrender.net/
http://www.luxrender.net/

