
Pacific Graphics 2014
J. Keyser, Y. J. Kim, and P. Wonka
(Guest Editors)

Volume 33 (2014), Number 7

Fractional Reyes-Style Adaptive Tessellation
for Continuous Level of Detail

G. Liktor1 and M. Pan2 and C. Dachsbacher1

1Karlsruhe Institute of Technology
2Crytek GmbH

Abstract
In this paper we present a fractional parametric splitting scheme for Reyes-style adaptive tessellation. Our par-
allel algorithm generates crack-free tessellation from a parametric surface, which is also free of sudden tempo-
ral changes under animation. Continuous level of detail is not addressed by existing Reyes-style methods, since
these aim to produce subpixel-sized micropolygons, where topology changes are no longer noticeable. Using our
method, rendering pipelines that use larger triangles, thus sensitive to geometric popping, may also benefit from
the quality of the split-dice tessellation stages of Reyes. We demonstrate results on a real-time GPU implemen-
tation, going beyond the limited quality and resolution of the hardware tessellation unit. In contrast to previous
split-dice methods, our split stage is compatible with the fractional hardware tessellation scheme that has been
designed for continuous level of detail.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Hardware Architecture]: Parallel processing—
I.3.5 [Computational Geometry and Object Modeling]: Curve, surface, solid and object representations—

1. Introduction

Complex geometry is often represented in compact analytic
or procedural forms, offering several benefits compared to
polygonal models during rendering. Most importantly, such
surfaces can be tessellated dynamically to provide the nec-
essary level of detail (LoD) for a given view, optimizing the
input of visibility computation and shading. Surfaces repre-
sented this way typically also need less storage as the trian-
gulation happens on-the-fly, often after applying animation
on the coarse level. Under animation, dynamic tessellation
can cause sudden topology changes and may lead to a no-
ticeable “popping” of the geometry.

Modern GPUs feature a dedicated tessellation unit for the
evaluation of parametric patches and curves. By using frac-
tional tessellation [Mor01], which smoothly interpolates be-
tween different tessellation resolutions, it can avoid popping
artifacts. However, the uniform nature of the algorithm often
leads to over- or undertessellation in screen space, and the
hardware implementation has a limited resolution.

To improve existing real-time tessellation methods, we
were inspired by the off-line Reyes pipeline which tessel-
lates surfaces into subpixel-sized micropolygons [CCC87].
Reyes achieves its higher quality by first recursively subdi-
viding patches (split) into subpatches that can be safely tes-

sellated uniformly (dice). It is, however, not trivial to adopt
split-dice in real-time applications: existing methods do not
guarantee any temporal tessellation coherence as micropoly-
gons hide topology changes due to their scale.

In this paper we modify the split stage so that it retains
continuous LoD in a Reyes-style tessellation framework,
and works as a seamless extension of the fractional tessel-
lation implemented in modern GPUs. Although our method
does not have any resolution limitations, we do not address
micropolygon rendering (where fractional tessellation is by
definition suboptimal). Instead, the primary goal of our work
is to improve the visual quality of a real-time, rasterization-
based pipeline, for cases where the resolution and quality of
the fixed function tessellator is not sufficient. We make the
following contributions:

• A parallel, crack-free split stage for quadrilateral and
triangular parametric patches.

• Fractional splitting, a method that smoothly introduces
lower level subpatches. To our knowledge, this is the first
formulation of split-dice that provides continuous LoD
and works with fractional hardware tessellation.

• Iterative refinement for subpatch edge factor compu-
tation which also ensures a gradual adjustment of tessel-
lation quality without temporal artifacts.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Gabor
Typewritten Text
This is the authors' version of the article. Not for redistribution.
The definite version is available at http://diglib.eg.org/ and
http://onlinelibrary.wiley.com/.

Gabor
Typewritten Text

Gabor
Typewritten Text

Gabor
Typewritten Text

Gabor
Typewritten Text

Gabor
Typewritten Text

Gabor
Typewritten Text

Gabor
Typewritten Text

Gabor
Typewritten Text

Gabor
Typewritten Text

Gabor
Typewritten Text

Gabor
Typewritten Text

G. Liktor & M. Pan & C. Dachsbacher / Fractional Reyes-Style Adaptive Tessellationfor Continuous Level of Detail

2. Background and Related Work

We first provide an overview of view-dependent tessellation
of parametric surfaces, focusing on algorithms that were de-
signed for massively parallel architectures. A primary chal-
lenge of such methods is how to preserve the water-tightness
of a surface, as it is inefficient to maintain global topology
information during processing.

2.1. Reyes

One of the first adaptive tessellation methods is the Lane-
Carpenter algorithm [LCWB80], which recursively subdi-
vides patches until all edges satisfy a view-dependent flat-
ness criteria. Pixar’s Reyes architecture [CCC87] refined this
approach to a two-level adaptive tessellation framework, re-
ferred to as split-dice: the split phase subdivides patches
until they can be uniformly tessellated. The resulting sub-
patches are diced into regular micropolygon grids. The com-
bination of adaptive subdivision on a subpatch granularity
and the performance of uniform tessellation is one major
benefit of Reyes. The first parallel GPU implementation of
split-dice was presented by Patney and Owens [PO08]. They
solved the problem of unbounded geometry amplification by
replacing the recursive split stage with an iterative breadth-
first processing. As a limitation, they used a constant dicing
resolution and did not address surface cracks. We discuss
crack-free Reyes-style methods in Sec. 2.3.

2.2. Hardware Tessellation

Moreton developed a hardware-friendly evaluation of
parametric patches over quadratic and triangular do-
mains [Mor01]. Fig. 1 provides an overview of the tessel-
lation patterns generated by this method. While patches are
tessellated uniformly in their interior, which allows a fast
hardware implementation, independent edge factors can be
chosen for each side, therefore creating watertight connec-
tions between patches of different resolutions. Moreton also
defined a variant of the method that uses fractional tessella-
tion factors to seamlessly morph between subsequent integer
resolutions. New vertices are first generated at the location
of integer vertices, then slide out as the fractional component
of the tessellation factor increases.

Since all patch edges can be evaluated in both paramet-
ric directions, the fractional pattern needs to be symmet-
ric, creating new vertices in pairs. Due to this symmetry a
fractional edge might have more segments than an integer
edge with the same tessellation factor. The hardware imple-
ments two kinds of schemes: fractional odd, and fractional
even. This means that the tessellation matches the integer
factors at odd or even numbers, respectively. For example,
in Fig. 1 an edge of factor 4.0 has 5 segments. The overhead
of this suboptimal behavior amortizes as the tessellation fac-
tor increases. Furthermore, the moving vertices might lead
to swimming artifacts by sampling different parametric lo-
cations over time. This problem is particularly important in

3.0

3.5

4.0

2 3

4

6 3

2

Figure 1: Hardware tessellation for quad and triangular
domains [Mor01]. Left: patches are tessellated uniformly in
their interior (white), but arbitrary factors can be assigned
to edges, creating a transitional triangulation (colored) and
allows a watertight match between patches of different in-
terior factors. Right: fractional tessellation allows smooth
transitioning between integer levels; fractional triangles are
highlighted with red (fractional odd pattern).

the presence of displacement mapping, but it can be alle-
viated by selecting proper displacement LoD based on the
tessellation density [NL13].

The main limitation of this technique is that vertices are
evaluated regularly inside each patch, yielding suboptimal
quality if a patch projects non-uniformly into screen space.
Munkberg et al. [MHAM08] proposed a non-uniform warp-
ing of the parametric domain. This adapts the tessellation
pattern to perspective foreshortening, but still lacks the re-
finement level of split-dice.

2.3. Addressing Surface Cracks

As parametric patches are tessellated independently, they
need special care to preserve continuity across borders.
Avoiding cracks becomes intricate with split-dice: there will
be transitions between different tessellation levels where
only one of the adjacent patches are split on the same edge.
The tessellation of the lower-level subpatches might not be
consistent with the original edge (Fig. 2).

Stitching Pixar’s Photorealistic Renderman connects
subpatches of different split levels with a strip of additional
micropolygons [AG99]. This algorithm requires adjacency
information of the generated subpatches, which is normally
derived from a patch dependency tree. Unfortunately, this is
incompatible with a massively parallel pipeline.

Binary dicing Another way to solve the problem is
avoiding T-junctions. It is possible to limit the tessellation
of edges to power-of-two rates, which ensures that there is
always a vertex where an adjacent split potentially occurs.
This simple strategy suffers from poor tessellation quality:
the nearest power-of-two number might greatly differ from
the optimal value.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

G. Liktor & M. Pan & C. Dachsbacher / Fractional Reyes-Style Adaptive Tessellationfor Continuous Level of Detail

IsoSplit Stitching

DiagSplit FracSplit

Figure 2: Cracks may occur when adjacent patches make
different splitting decisions. IsoSplit splits at the paramet-
ric edge center along an isocurve. Renderman uses Stitch-
ing to connect patches of different subdivision levels. Di-
agSplit matches split locations to tessellation vertices. Frac-
Split splits edges on both sides, but one patch eventually be-
comes triangular as the split factor reaches zero.

DiagSplit Fisher et al. [FFB∗09] combine split-dice with
the edge-based integer tessellation of Moreton [Mor01] to
prevent cracks instead of eliminating them. Their DiagSplit
algorithm evaluates a τ tessellation metric over each edge,
depending exclusively on the edge properties and thus en-
suring consistency across adjacent patches. τ can also return
a value indicating that the edge is non-uniform, and needs to
be split. They avoid cracks by connecting the non-uniform
edge midpoint to a vertex on the uniformly diced edge. This
may lead to non-isoparametric (diagonal) splits, hence the
name of the method.

None of the above methods addresses popping artifacts,
which limits their application to micropolygon rendering.
Furthermore, DiagSplit is not compatible with Moreton’s
fractional tessellation method (see Fig. 3).

DiagSplit Integer DiagSplit Fractional FracSplit

Figure 3: DiagSplit only works with integer tessellation
(left). The symmetric nature of fractional tessellation pre-
vents the matching of vertices on the original edge (middle).
Our method splits edges on both patches, ensuring that tes-
sellation always matches (right).

3. The Fractional Split-Dice Algorithm

In this section we describe our modified Reyes-style tessella-
tion pipeline, which provides better adaptation than uniform
tessellation, but does not necessarily refine the surface to the
sub-pixel level (see Table 1 for a comparison against previ-
ous work). Our algorithm, which we refer to as FracSplit, is
built around the following principles:

Tess. Continuous
Crack-free

Quality LoD
HW. Tessellation

[Mor01]
DiagSplit
[FFB∗09]
FracSplit

(this paper)

Table 1: Our method seeks to create a bridge between high-
quality micropolygon tessellation, which is not popping-free,
and fractional hardware tessellation.

1. Purely edge-based splitting. Decisions about splitting
are based on the edge properties only. If an edge is ever
split, then it will happen on both adjacent patches.

2. Fractional split factors. We make “soft decisions”
about edge splitting, by computing a per-edge split fac-
tor. This evaluates to 0 if the edge can be diced or to a
fractional value if the edge needs to be split. By reaching
the value 1.0, we get an equivalent result to median split.

3. Fractional tessellation. FracSplit is compatible with
fractional tessellation as implemented on current GPUs,
which we use for the dicing stage.

Fractional splitting is the key component of continuous
LoD: we never split a parametric patch instantaneously in the
middle, which may lead to visual popping. Instead, we use
a fractional value to express the “split-affinity” of an edge,
and interpolate the parametric split between one corner of
the patch and the edge midpoint.

Let us briefly illustrate our concept on a bicubic Bézier
patch. We can approximate an edge with its 4 control points
(Fig. 4, left). The split stage may subdivide the control

0.
5 1.0

0.
5 1.0

0.5

1.0

0.0

1.
0 0.5

a)

b)

c)

T = 8

T = 3 T = 3

T = 5 T = 2

Fractional Split
transition

Figure 4: Left: fractional splitting on a cubic Bézier curve,
4 control points (a). Median split creates popping by the
change of topology and reevaluation of edge factors (c). Our
method gradually introduces a new subdomain from an ex-
isting corner, so the refinement does not result in popping
(b). Right: the extension of this concept to the 2D domain
gives us a method to generate fractional subpatches.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

G. Liktor & M. Pan & C. Dachsbacher / Fractional Reyes-Style Adaptive Tessellationfor Continuous Level of Detail

cage (using the de Casteljau algorithm), and get a more
accurate bound. Existing split-dice algorithms would per-
form the subdivision in the middle, which can lead to pop-
ping: besides the split location, the edge factors of the new
subpatches might differ. FracSplit gradually introduces the
splitting location from one corner of an edge thus allowing
the reevaluation of the tessellation. We can now extend this
concept to planar coordinates and get the complete splitting
algorithm. The fractional split factors define sliding split lo-
cations on each edge. Fig. 4 shows possible subpatches that
the algorithm may generate.

3.1. Parallel Splitting

Algorithm 1 provides a parallel breadth-first implementa-
tion of our fractional split stage (shown for quad-patches).
The method FracSplit is called during every iteration in
parallel, and processes one subpatch from a working array,
defined by its four corners in the parametric domain of the
base patch (Subdomain). EdgeCode is a bit-mask encod-
ing the edge directions relative to the patch winding order
(e.g. edges in clockwise direction are marked with 1). If the
patch is visible (BoundNCull), we compute fractional split
and tessellation factors for every edge. To simplify the code,
we only show splitting in the u parametric dimension. Com-
pleted patches are added to the DiceQueue for fractional
tessellation, while split patches are processed further in the
next iteration from the WorkQueue.

Algorithm 1 Pseudocode of the fractional split stage
FracSplit(Subdomain{uv00,uv01,uv10,uv11}, EdgeCode){

if(BoundNCull(Subdomain)) return;

{s, t}← GetSplitAndTessFactors(Subdomain);
needUSplit = max(sv=0, sv=1) > 0;
if(needUSplit) {

ev=0 = SplitEdge(uv00, uv10, s, EdgeCodev=0);
ev=1 = SplitEdge(uv01, uv11, s, EdgeCodev=1);

WorkQueue← {{uv00,ev=0,ev=1,uv01}, EdgeCode};
WorkQueue← {{ev=0,uv10,uv11,ev=1}, EdgeCode};

} else {
DiceQueue← {Subdomain, t};

}
}

SplitEdge(uv0, uv1, splitFactor, EdgeDir){
uvroot = lerp(uv0, uv1, EdgeDir);
uvmid = 0.5(uv0 +uv1);
return lerp(uvroot , uvmid , splitFactor);

}

3.2. Avoiding Cracks

We ensure that our method avoids cracks on two levels: in
contrast to previous split-dice methods, FracSplit avoids T-
junctions among the subpatch edges after splitting (see prin-

Figure 5: In a preprocessing step we assign consistent
directions to patch edges. During rendering we propagate
these to subpatch levels. Fractional splits always occur at
the edge roots first, ensuring temporal coherence.

ciple 1 of Sec. 3). Shared edges are then diced consistently
using the fractional tessellation of Moreton [Mor01].

Consistent edge directions As already introduced in
Fig. 4, we rely on directed edges to interpolate split loca-
tions between corners and edge midpoints. While we could
have opted for a symmetric splitting pattern, the advantage
of our decision is that it keeps the number of generated sub-
patches identical to median split (e.g. a symmetric pattern
might generate 9 subpatches from a quad patch if all edges
have a fractional split factor). The challenging part of our
method is ensuring that edge directions match across ad-
jacent patches to avoid T-junctions. Furthermore, opposite
edges of a quad patch need to share their directions, other-
wise splitting would cause popping on the diagonal of the
patch (and poor tessellation quality).

We have addressed the problem of directing edges with
a simple algorithm: we traverse all quad-strips of the sur-
face and assign the same direction to all edges which are
shared by two quads in the strip. A strip traversal terminates
if a previously visited edge, a border, or a triangle face is
reached. Fig. 5 visualizes edge directions that were gener-
ated this way. Edges of triangle patches can have an arbitrary
orientation (Fig. 6).

The edge traversal step and the additional storage needed
for the direction data is a disadvantage of this approach,
however, the former only needs to be executed once (e.g.
on authoring from a DCC tool), and the memory equirement
is essentially one bit per edge. The edge directions of sub-
patches can be easily determined in parallel during the split-
ting step, thus require no global information.

Figure 6: Edge directions and fractional splitting for a sim-
ple combination of triangular and quad patches, with the
corresponding tessellation pattern.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

G. Liktor & M. Pan & C. Dachsbacher / Fractional Reyes-Style Adaptive Tessellationfor Continuous Level of Detail

4. Implementation

We have implemented our algorithm in the Direct3D 11
pipeline, and also evaluated it inside a commercial game en-
gine. We augmented the hardware tessellation unit with a
computational FracSplit stage prior to the rasterization. Our
algorithm works with any kind of parametrization over quad
or triangle domains, but in this paper we focus on the render-
ing of Catmull-Clark subdivision surfaces [CC78]. To con-
vert these to parametric patches we use the Gregory patch
approximation method of Loop et al. [LSNC09].

4.1. Rendering Pipeline with Fractional Splitting

During a FracSplit iteration, we use 16 threads to collaborate
on the processing of a subpatch. This matches the number of
control points of a bicubic Bézier patch, which we also use
to approximate Gregory patches (this is precise enough for
a split decision). Triangular patches are approximated with
cubic Bézier triangles, requiring only 10 active threads. This
design allows us to efficiently parallelize the processing of
subpatches without synchronization, as 16 (index-aligned)
threads always operate in lockstep on current GPUs.

Culling We have implemented back-patch and frustum
culling for Bézier patches (BoundNCull in Algorithm 1).
The base patches are first trimmed to the parametric bound-
ing box of the subpatch. The frustum culling can be then
evaluated using a fast parallel reduction. For back-patch
culling we use the approximate cone-of-normals method
from Sederberg et al. [SM88], which is able to analytically
bound normals of Bézier patches. When displacement is
present, there is no known method which would efficiently
bound patch normals.

Data queues Once a subpatch passed the culling test, we
compute tessellation and split factors for each edge (Sec-
tion 4.2). If a split occurs, we add its children to a work
queue for further processing. Patney and Owens [PO08] pro-
vided a lockless algorithm for breadth-first subdivision us-
ing parallel stream compaction. However, their technique
requires redundant memory allocation for the sparse output
buffer and the bandwidth-overhead of compaction is signif-
icant. Instead we use Append buffers (provided by Direct3D
11) to generate a compact queue directly with atomics.

Asynchronous processing The dynamically changing
number of subpatches poses another important implemen-
tation challenge. We need to determine the number of Frac-
Split threads and the draw call parameters for the rasteriza-
tion step, but it is essential to avoid CPU-GPU synchroniza-
tion between the iterations. For rasterization, Direct3D 11
provides indirect draw calls, where attributes can be loaded
from a GPU buffer. For the computational split stage, how-
ever, we have found that the persistent thread model worked
the best, where a constant number of threads consumes el-
ements from a shared input queue. The CPU controls only
the number of iterations (by dispatching kernels), which is
currently a user-defined value.

4.2. Tessellation and Split Factors

The tessellation metric τ (GetSplitAndTessFactors
in Algorithm 1) in our implementation is based on approxi-
mating the length of cubic Bézier curves using their control
cage (see Fig. 4). If significant displacement is present, we
switch to the sparse parametric sampling of the final surface
at 4 locations per edge. In both cases we approximate the
final result by the sum of tessellation factors of three linear
segments. For each segment ei we compute the tessellation
factors using the following formula:

τi =
‖a−b‖

0.5(a.z+b.z)
c_TessFactor,

where τi essentially approximates the projected diameter of
a sphere drawn around the segment. c_TessFactor is a global
constant computed from the desired triangle size, screen res-
olution and camera field of view. This concept, illustrated in
Fig. 7 is well-accepted in real-time rendering, and slightly
overtessellates silhouette edges for better displacement map-
ping [Can11].

a

b

c = 0.5(a+b)

r
r`

zc

1

Eye

Figure 7: We compute linear edge factors by estimating the
projected diameter of the edge circumsphere.

For the split factor s we use a very simple threshold

formula: s = clamp(τ−c_SplitLimit
c_SplitLimit ,0,1). If s exceeds the

threshold, we split the edge. In our results, we set this value
to 16.

5. Results and Discussion

In this section we evaluate the tessellation generated by our
algorithm and compare it to existing methods: hardware tes-
sellation (HWTess) and our implementation DiagSplit using
the same hardware-based parallel framework we introduced
in Section 4. In summary, we show that we are able to tes-
sellate with no practical resolution limits and in most cases
with better quality than hardware tessellation (Sec. 5.1). We
also analyze the performance aspects of our method to un-
derstand its benefits and limitations (Sec. 5.2).

5.1. Quality

We seek to improve the quality of HWTess by addressing two
main factors. First, we demonstrate that FracSplit, like other
split-dice methods, does not have resolution limits. Second,
HWTess tessellates large patches uniformly in object space,
which often yields highly irregular triangle sizes in screen

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

G. Liktor & M. Pan & C. Dachsbacher / Fractional Reyes-Style Adaptive Tessellationfor Continuous Level of Detail

Figure 8: We compare the tessellation accuracy of our method to HWTess and DiagSplit. Left column: screen space triangle
area relative to the desired rate (red: 10x overtessellation, blue: 10x undertessellation). Middle left: Histograms of triangle
area and quality distributions. The quality is measured as the ratio of incircle and circumcircle radius, relative to an equilateral
triangle. Right: in these closeup wireframe renderings we can see that both Reyes-style methods rapidly split distorted patches.
To see the details, please zoom in using the electronic version.

space. By splitting such patches, we expect our method to
better adapt to such irregular regions. We regard DiagSplit
as a ground truth tessellator.

Fig. 8 shows our quality analysis on the Killeroo model.
The left column visualizes the tessellation density relative
to the desired rate (by measuring the screen space triangle
size). Note that due to our metric described in Sec. 4.2 we
purposely have a higher density on silhouettes. FracSplit
successfully removes most over- and undertessellation is-
sues from the surface of the mesh, but it does not reach the
quality of DiagSplit. The two rightmost columns show wire-
frame renderings in more detail for two areas of the surface.
The eye region contains some highly distorted quad patches,
which cannot be tessellated uniformly. On the other hand,
the topology around the ear is more regular. For the latter
case, FracSplit produces a tessellation that closely matches
the appearance of DiagSplit, but near the eyes it leaves some
fractional subpatches with suboptimal tessellation.

To provide a better quantitative measurement of the qual-
ity, we also plot two histograms for each algorithm. The first
one is simply a distribution of projected triangle areas, thus a
different representation of the heatmap. We can see that the
average density (marked by a red line) is approximately half-
way between HWTess and DiagSplit. The second histogram
is a quality metric of the triangles often used in Delaunay

triangulation: the greater the ratio between the radius of the
incircle and circumcircle, the closer it is to an equilateral tri-
angle. This metric is interesting as thin triangles typically
generate more overhead during rendering. Our method does
not improve the surface in this aspect.

Limitations The main quality limitations of our method
are direct consequences of the choice of our continuous LoD
scheme. The first one is directly inherited from fractional
tessellation, which typically generates more triangles than
ideally required (refer to Fig. 1). Unfortunately the number
of fractional edges is likely to increase exponentially after
each split iteration. The second problem is that at transi-
tional regions (where our split factors become fractional),
some subpatches become distorted. In the heatmap of Fig. 8
these subpatches are clearly visible in red, but we can also
see that their number is relatively small. Furthermore, these
factors together often produce very small and thin triangles,
that might potentially lead to numerical issues during sam-
pling and shading. Sampling is not an issue in our current
application, since it is successfully addressed by the fixed-
function arithmetics used by the rasterizer. However, it might
result in artifacts in a ray tracer, the evaluation of which is
left for future work. We also did not experience shading ar-
tifacts, even when the tessellation density was adjusted to
the micropolygon range (where our method is no longer op-

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

G. Liktor & M. Pan & C. Dachsbacher / Fractional Reyes-Style Adaptive Tessellationfor Continuous Level of Detail

timal). There the main cause of artifacts are shader deriva-
tives: we have visualized parametric derivatives in the pixel
shader, but did not experience any outliers.

5.2. Performance in a Rasterization Pipeline

Fig. 9 shows performance statistics using four subdivision
surfaces from two different perspectives each, using a distant
and a close-up view. All surfaces were tessellated to approx-
imately 3-pixel-sized triangles, and we used an edge split
threshold of 16. The Lizard model has been rendered using
our method inside a commercial game engine, but using a
different configuration (NVIDIA GTX660Ti). Therefore the
timings are not directly comparable. We performed all other
tests on an NVIDIA GFX Titan Black GPU.

We have also conducted a more detailed breakdown of all
three algorithms inside the rasterization pipeline. Their ef-
ficiency depends on the interplay of multiple factors, such
as the cost of evaluating a patch (domain shading), visibility
sampling and shading, and in case of split-dice, the per-patch
processing. To measure these, we prepared a simple experi-
ment which gradually increases the tessellation density from
a static viewpoint over time. Fig. 10 shows these measure-
ments using the Killeroo asset.

In the results the overall rendering time did not improve
significantly over HWTess when using split-dice. In fact, for
the Killeroo the rasterization itself gets up to 10% faster be-
low a certain triangle size (about 4 pixels), but the overhead
of the computational stage seems to cancel it out. However,
our primary goal is not to outperform the hardware in its
standard domain, but rather to extend its capabilities into a
more flexible adaptive scheme. Also, the trends indicate that
going lower with the tessellation, split-dice methods would
have a consistently better performance, but that range is no
longer covered by the resolution of the hardware.

Looking at the other plots in Fig. 10, we can clearly see
that all split-dice methods use fewer triangles and domain
shader invocations than HWTess. The latter is not trivial,
since the number of subpatches increases exponentially on
each split level, and shared domain vertices are shaded re-
dundantly. This means that the improvement in tessellation
can compensate against this effect. Another major overhead
of FracSplit and DiagSplit comes from the extra bandwidth
used during computational stage and the hull shader invoca-
tions, which are per-patch costs.

DiagSplit consistently outperforms our method: due to in-
teger tessellation and the further limitations outlined in Sec-
tion 5.1, it should be preferred for micropolygon rendering.
However, popping is usually an important issue with larger
polygon sizes.

6. Conclusion and Future Work

We have presented a method which bridges the gap between
the performance and quality of hardware tessellation and

micropolygon renderers. To our knowledge this is the first
real-time implementation of split-dice, which is both crack-
free and temporally coherent. The requirement of continu-
ous LoD also meant a compromise in terms of quality and
speed when compared to integer-based micropolygon tessel-
lators. While we believe that fractional splitting opens up in-
teresting possibilities for hardware tessellation, in the future
it would be useful to automatically transition towards integer
tessellation beyond a certain triangle size.

In the future we would like to combine our method
with other surface subdivision techniques. The feature-
adaptive method of Niessner et al. [NLMD12] is particu-
larly promising, as it can represent finer edge or vertex-
based details of subdivision surfaces (hierarchical edits and
creases [DKT98]). It would be also interesting to investigate
asymmetric fractional tessellation techniques, given we have
already used directed edges, as well as methods that better
adapt to out transitional patches.

Acknowledgements

We would like to thank Vaclav Kyba and Xiaomao Wu
for their helpful ideas and support, and the rest of Cry-
tek’s Cinebox team. We are very grateful for the assets used
throughout this paper. The Lizard asset was modeled by
Hanno Hagedorn. The DragonBaby is from the Sintel movie
by the Blender Foundation (www.sintel.org) and the Killeroo
is the courtesy of Headus Inc. (www.headus.com.au). The
first author of this paper was funded by Crytek GmbH.

References

[AG99] APODACA A. A., GRITZ L.: Advanced RenderMan:
Creating CGI for Motion Picture, 1st ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999. 2

[Can11] CANTLAY I.: Directx 11 terrain tessellation. Nvidia
whitepaper (2011). 5

[CC78] CATMULL E., CLARK J.: Recursively generated b-spline
surfaces on arbitrary topological meshes. Computer-Aided De-
sign 10, 6 (1978), 350–356. 5

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The
Reyes image rendering architecture. Computer Graphics (Proc.
SIGGRAPH) 21, 4 (1987), 95–102. 1, 2

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision sur-
faces in character animation. SIGGRAPH’98, pp. 85–94. 7

[FFB∗09] FISHER M., FATAHALIAN K., BOULOS S., AKELEY
K., MARK W. R., HANRAHAN P.: DiagSplit: parallel, crack-
free, adaptive tessellation for micropolygon rendering. ACM
Transactions on Graphics (Proceedings of SIGGRAPH Asia) 28,
5 (2009), 150:1–150:10. 3

[LCWB80] LANE J., CARPENTER L., WHITTED T., BLINN J.:
Scan line methods for displaying parametrically defined surfaces.
Communications of the ACM 23, 1 (1980), 23–34. 2

[LSNC09] LOOP C., SCHAEFER S., NI T., CASTANO I.: Ap-
proximating subdivision surfaces with Gregory patches for hard-
ware tessellation. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia) 28, 5 (2009), 151:1–151:9. 5

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

G. Liktor & M. Pan & C. Dachsbacher / Fractional Reyes-Style Adaptive Tessellationfor Continuous Level of Detail

Killeroo (2894 base patches) DragonBaby (8154 base patches) Bedroom (15038 base patches) Lizard(2000 base patches)

2035 patches / 309K tris 8825 patches / 626K tris 21873 patches / 2197K tris 2396 patches / 526K tris
0.48 ms (0.11/0.37) 1.85 ms (0.17/1.68) 1.9 ms (0.3/1.6) 2.43 ms (0.38/2.05)

4105 patches / 1145K tris 8704 patches / 1855K tris 29961 patches / 4019K tris 3717 patches / 2020K tris
1.02 ms (0.15/0.87) 3.40 ms (0.25/3.15) 2.73 ms (0.43/2.3) 12.47 ms (0.67/11.8)

Figure 9: Performance statistics of our method. We report the number of subpatches sent for rasterization and the rasterized
polygons. The first number of the timings show the total rendering time, which we break down as FracSplit / Rasterization. All
images were captured at Full-HD resolution. For the DragonBaby and Lizard back-patch culling was disabled.

500 K

1000 K

1500 K

2000 K

2500 K

3000 K

7.9 7.3 6.8 6.2 5.7 5.2 4.6 4.1 3.5

DS Invocations

HWTess

FracSplit1

FracSplit2

DiagSplit1

DiagSplit2

0

2000

4000

6000

8000

10000

12000

14000

7.9 7.3 6.8 6.2 5.7 5.2 4.6 4.1 3.5

HS Invocations

400 K

900 K

1400 K

1900 K

2400 K

2900 K

7.9 7.3 6.8 6.2 5.7 5.2 4.6 4.1 3.5

Triangles Rasterized

0.80

1.30

1.80

2.30

2.80

7.6 7.3 7.1 6.8 6.4 6.0 5.6 5.2 4.8 4.4

Rendering Time (ms)

HWTess
FracSplit1
FracSplit2
DiagSplit1
DiagSplit2

0

1

2

3

4

5

6

7

7.2 6.4 5.5 4.5 3.1

Compute / Rasterization (ms)

HWTess
FracSplit1
DiagSplit1

Figure 10: Performance metrics of adaptive tessellation methods, as a function of target triangle size (the horizontal axis of
each plot). The numbers in the names mean the split iterations (e.g. FracSplit2 has two). We profiled shader invocations as well
as timings from a static view (the setting was identical to Fig. 8, and the image resolution was 3840×2160).

[MHAM08] MUNKBERG J., HASSELGREN J., AKENINE-
MÖLLER T.: Non-uniform fractional tessellation. In Proceedings
of Graphics Hardware (2008), pp. 41–45. 2

[Mor01] MORETON H.: Watertight tessellation using forward dif-
ferencing. In Proceedings of Graphics Hardware (2001), pp. 25–
32. 1, 2, 3, 4

[NL13] NIESSNER M., LOOP C.: Analytic displacement map-
ping using hardware tessellation. ACM Transactions on Graphics
32, 3 (2013), 26. 2

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.:
Feature-adaptive GPU rendering of Catmull-Clark subdivision
surfaces. ACM Transactions on Graphics 31, 1 (2012), 6:1–6:11.
7

[PO08] PATNEY A., OWENS J. D.: Real-time Reyes-style adap-
tive surface subdivision. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH Asia) 27, 5 (2008), 143:1–143:8. 2, 5

[SM88] SEDERBERG T. W., MEYERS R. J.: Loop detection in
surface patch intersections. Computer Aided Geometric Design
5, 2 (1988), 161–171. 5

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

