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Figure 1: Dense smoke exhibiting strong multiple anisotropic scattering produced by a steam locomotive under complex environment illumination.
Our approach renders it interactively without any precomputations at 10 Hz (NVidia GeForce GTX 485 Mobile).

ABSTRACT

Efficient light transport simulation in participating media is chal-
lenging in general, but especially if the medium is heterogeneous
and exhibits significant multiple anisotropic scattering. We present
a novel finite-element method that achieves interactive rendering
speeds on modern GPUs without imposing any significant restric-
tions on the rendered participated medium. We achieve this by
dynamically decomposing all illumination into directional and point
light sources, and propagating the light from these virtual sources in
independent discrete propagation volumes. These are individually
aligned with approximate principal directions of light propagation
from the respective light sources. Such decomposition allows us
to use a very simple and computationally efficient unimodal basis
for representing the propagated radiance, instead of using a gen-
eral basis such as Spherical Harmonics. The presented approach
is biased but physically plausible, and largely reduces rendering
artifacts inherent to standard finite-element methods while allowing
for virtually arbitrary scattering anisotropy and other properties of
the simulated medium, without requiring any precomputation.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Radiosity; I.6.8 [Simulation and Modeling]:
Types of Simulation—Parallel

1 INTRODUCTION

Scattering, or translucency, greatly contributes to the appearance
of many natural substances and objects in our surrounding. Albeit
the problem can be easily formulated as the radiance transfer equa-
tion [3, 21], computing a solution can be very costly. Consequently,
many existing approaches simplify the problem, e. g., by assum-
ing isotropic scattering or homogeneity of the material, to achieve
interactive performance.

In this work we propose a novel interactive algorithm for plausi-
ble rendering of heterogeneous participating media with arbitrary
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anisotropy. The core of our approach is to propagate light in propa-
gation volumes oriented along the principal ordinates of the source
illumination. For this we typically use multiple rectilinear grids to
propagate environmental (distant) lighting, and spherical grids to
account for point light sources. In both cases, one dimension of the
grids is aligned with the prominent directional part of the source
radiance for which the grid has been created. In contrast to previous
methods (e. g., [1, 13]), discretizing the illumination into directional
and point light sources enables us to approximately describe the
anisotropy (directionality) of light transport by a single scalar value
per grid cell. Specifically, this anisotropy value corresponds to a
unimodal function implicitly aligned with the respective principal
ordinate. In addition to exploiting data locality and the parallelism of
GPUs, the benefit of these decisions is a significant reduction of the
false scattering and ray effect artifacts arising in many finite-element
methods as a consequence of representing the propagated radiance
by, e. g., spherical harmonics or piecewise-constant functions.

Our main contributions can be summarized as follows:

• We introduce a novel approach to finite-element light propagation
using implicitly aligned unimodal distributions for regular and
spherical grids. This helps reducing propagation artifacts and
helps to preserve the directionality of light during the propagation.

• A simplification of lighting by decomposing both environmental
and surface illumination (via virtual point lights) into separate
principal ordinate grids.

• An observer-centric importance-based selection of principal ordi-
nates and prefiltering for environment lighting, helping to hide its
discretized character used in the propagation.

2 PREVIOUS WORK

Offline methods A range of different approaches has been pre-
sented to compute solutions to the radiance transport equation for
participating environments [3,21]. However, none of the classic tech-
niques provides a satisfying combination of generality, robustness,
and, most importantly in our context, speed. Unbiased Monte-Carlo
methods, such as bidirectional path tracing [18] and Metropolis light
transport [26] usually require a large number of paths to be traced; in
particular in dense media with high scattering anisotropy and albedo
(like clouds or milk) the computation time increases tremendously.
Caching is often used to speed up the computation, e. g., radiance
caching [10], photon mapping [11, 12] or virtual point lights [6].
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However, these methods typically do not handle highly anisotropic
scattering very well, even with recent improvements [24, 25], and
their performance is often far from interactive.

Finite-Element methods Finite-element methods, including
volume radiosity [29], the discrete ordinates method (DOM) [3],
light diffusion [32], and lattice-Boltzmann transport (LB) [8] handle
highly multiple scattering well. However, in practice they allow
only isotropic or moderately anisotropic scattering, and usually
suffer from false scattering (smoothing of sharp light beams) and ray
effects (selective exaggeration of scattered light due to discretized
directions). Light propagation maps [7] significantly reduce the
artifacts, but are still limited to rather moderate anisotropy. It can
therefore be seen that strong scattering anisotropy is one of the
main limiting factors for existing methods. This is unfortunate, as
most real-world media exhibit relatively high anisotropy (Henyey-
Greenstein [9] coefficient g≈ 0.9 or more [23]). Although isotropic
approximations are acceptable in some cases, this is generally not a
valid assumption and one of the primary motivations for our work.

Interactive rendering Numerous works focus on individ-
ual optical phenomena to achieve interactive or real-time perfor-
mance. These phenomena include light shafts [5, 28], volume caus-
tics [17, 19], shadows [20, 30], and clouds [2]. Various approaches
can also be found in classic visualization literature, e. g., half-angle
slicing [15] which empirically computes forward scattering for vol-
ume visualization. Sometimes precomputation is used to speed
up the rendering of heterogeneous translucent objects [31, 33] or
smoke using compensated ray marching [34]. In contrast, we tar-
get general multiple scattering in participating media without any
precomputation or focus on a particular phenomenon.

We build on concepts of DOMs and light propagation volumes [1,13].
These approaches are attractive for interactive applications as their
grid-based local propagation schemes allow for easy parallel imple-
mentation on contemporary GPUs. Virtually all existing variants of
DOM use a single scene-aligned grid, where every grid cell stores a
representation of the directional radiance function using spherical
harmonics (SH) or piecewise-constant functions. This representa-
tion is then used to iteratively calculate energy transfer between
nearby cells, typically within a local 18- or 26-neighbourhood. How-
ever, this representation is only suited for moderately anisotropic
scattering at best; especially for anisotropic media under complex
(high-frequency) illumination such approach causes prominent ray
effect and false scattering artifacts (see [7]). We take a different ap-
proach and propose to identify the most important light propagation
directions (principal ordinates) in the scene and then use multiple
propagation grids aligned with these directions, instead of a single
volume. This enables using a unimodal representation of the angular
energy distribution around the principal direction in each grid cell.

3 PRINCIPAL ORDINATE PROPAGATION

The core idea of our method is to reduce the main drawbacks of
previous grid-based iterative methods, false scattering and ray ef-
fects, by using propagation volumes where the propagation domain
is explicitly aligned with approximate principal directions of light
transport. Furthermore, we use only a single scalar value per grid cell
to describe the local anisotropy of the directional light distribution.
In our scheme, we use the well-known Henyey-Greenstein (HG) [9]
distribution; the aforementioned value, called the anisotropy co-
efficient, is used to parametrize this distribution. Using principal
directions implies that for more complex lighting scenarios we have
to use multiple grids that sufficiently well approximate their direc-
tionality; for local light sources we propose to use spherical grids
centred around them.
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Figure 2: For distant (parallel) light we use rectilinear grids aligned
with its principal direction, and spherical grids for point light sources.
Every grid cell stores only radiance magnitude and anisotropy. The
propagation scheme is almost identical for both cases.

d (principal) direction
g scattering anisotropy coefficient

σs, σa scattering / absorption coefficient
xi location of grid cell i

Li, ai (per-cell) radiance magnitude and anisotropy
fhg, Fhg HG function and its cumulative distribution

µ scattering angle cosine
L, Lacc propagation and accumulation grid
M, m number of iterations / iteration index
Lin(d) incident radiance from direction d

∆Lsrc→dst src to dst radiance contribution
Ti, Tsrc→dst transmittance to cell i and between cells

Ωi, Ωn solid angle subtended by cell i or ordinate n
N, n number of principal ordinates / ordinate index

Table 1: Table of symbols (in the order of appearance).

These choices assume that the principal directions can be derived
from the initial radiance distribution and do not change strongly
when light travels through the medium. However, such variation
might occur if the density of the simulated medium changes abruptly.
Still, as we discuss in Sec. 3.1.5, violating this assumption does not
cause our algorithm to fail, but only leads to decreasing its accuracy.

In the following we first detail our concept of principal ordinate prop-
agation for a single directional source (Sec. 3.1). Then we describe
how to extend this scheme to environment illumination (Sec. 3.2) and
local light sources (Sec. 3.3) by using multiple importance-sampled
rectilinear and spherical propagation volumes, respectively. The
propagation scheme is explained using radiance as the radiometric
quantity; we assume all other quantities (such as irradiance from
environment maps or intensity from point lights) to be converted
accordingly. All frequently-used notation is summarized in Table 1.

3.1 Regular grids for directional light

The concept as well as the propagation scheme can be best explained
for parallel (distant) light travelling along a direction d through a
region in space (Fig. 2, top). For this case we discretize the space
into a uniform rectilinear grid similar to DOM; however, we make
sure that one of its dimensions is aligned with d. For every grid cell i,
we store the directional distribution of light and its magnitude Li (all
computations are performed independently per-wavelength, which
is omitted here for brevity). The main difference to DOM is that
we represent both the directional distribution of light and the phase
function using the HG distribution implicitly aligned with d. To
distinguish radiance anisotropy (directional distributions) from phase
functions, we denote the HG parameter for the former as ai ∈ [−1,1],
and g ∈ [0,1] for the latter (we do not consider negative values of
g because of physical implausibility of dominantly-backscattering
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Figure 3: The propagation grid aligned with the direction of incidence
is initialized with the attenuated radiance and an anisotropy param-
eter ai = 1. During the propagation both radiance magnitude and
anisotropy change towards lower anisotropy.

media). That is, the directional radiance of a grid cell centred at xi is
L(xi,ω) = Li · fhg(µ,ai), where fhg is the HG function and µ =ω ·d
is the cosine of the angle between a direction ω and the principal
light direction d. We assume that the medium is further characterized
by its (spatially-varying) scattering coefficient σs and absorption
coefficient σa; these two quantities as well as the spatially-varying
anisotropy of the phase function defined by the HG parameter g
are wavelength-dependent and stored for every cell of the medium
volume (which exists independently of the propagation volumes).

Conceptually, two grids are required in the propagation procedure.
The first, propagation grid, stores the unpropagated (residual) en-
ergy; we will denote it as L and its state at the iteration m ∈ {1..M},
where M is the total number of propagation iterations, as Lm. The
second, accumulation grid Lacc, is needed to accumulate the energy
transported through the medium over the course of the computation.
Two options are available for implementing Lacc: we could either
store the overall radiance distribution that has passed though each
cell during the propagation, or alternatively store only the observer-
dependent out-scattered radiance at each iteration. We opted for the
second approach, because storing the entire directional radiance dis-
tribution at each cell is much more expensive than just accumulating
the outgoing radiance (which is essentially a single scalar value).
Although this of course requires recomputing the solution on every
observer position change, it is in agreement with our premise of a
fully dynamic algorithm without relying on precomputations.

3.1.1 Grid initialization

At the beginning each propagation grid—which is scaled to span the
entire medium (Fig. 2, top)—needs to be initialized by the incident
radiance at each cell. As no scattering has been accounted for yet,
the anisotropy is set to an HG coefficient of ai = 1, an equivalent
to the Dirac function in the direction d (Fig. 3). The radiance
magnitude Li is set to the incident radiance Lin(d) at xi, attenuated
by absorption and out-scattering. That is, for every cell, we compute
the transmittance Ti (from the point where light enters the medium,
travelling along d to xi) set to Li = Lin(d) ·Ti. Note that this can be
efficiently computed using ray marching: as our grid is aligned with
d we can compute the transmittance incrementally along individual
‘slices’ of the grid along d in a single pass.

3.1.2 Light energy propagation

In this section, we describe how to iteratively update the grid to
simulate the propagation of light. We use a propagation stencil
where the radiance of each grid cell is propagated to its 6 direct
neighbours in every iteration. More specifically, we perform a
gathering-type computation of how much radiance flows into each
grid cell from its neighbours based on their radiance distributions

Source
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Inter-cell transport
reduces anisotropy
(scattering; Eq. 4) 
and radiant energy
(absorption; Eq. 2)
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Figure 4: Left: Our polar parametrization of the solid sphere. The
coloured patches correspond to the approximate solid angles sub-
tended by the cells next to (green), in front (purple) and behind (or-
ange) src. Middle: The HG cumulative function Fhg is used to integrate
the radiance from the source cell flowing towards the destination cells
(depicted as coloured patches of fhg, for g = 0.5). Right: On the way
the light undergoes scattering and is possibly reduced by absorption.

and then combine these contributions to yield the new distribution at
that cell (Fig. 4, right). In the following we denote the neighbouring
source cell with index src, and the target destination cell with dst.

Radiance magnitude contribution We first need to determine
the amount of radiant energy that flows from cell src towards dst ac-
cording to the radiance distribution in src. To this end, we efficiently
compute the integral of L(xsrc,ω) over the solid angle subtended
by dst (denoted as Ωsrc→dst below) using the closed form of the
cumulative HG function Fhg(µ,g) =

∫ µ

−1 fhg(µ
′,g) dµ ′:

Fhg(µ,g) =
1−g2

4πg
·
(

1
(1+g2−2gµ)1/2

− 1
1+g

)
. (1)

By this we compute the radiance from src travelling towards to dst
using the transmittance Tsrc→dst as

∆Lsrc→dst = Lsrc ·Tsrc→dst · |φ1−φ2|
·
(
Fhg(cosθ1,asrc)−Fhg(cosθ2,asrc)

) (2)

using the following approximate parametrization for the subtended
solid angle Ωsrc→dst (depending on mutual positions of src and dst):

(θ1,θ2, |φ1−φ2|) =


(0, π

4 ,2π) dst in front of src
( π

4 ,
3π

4 , π

2 ) dst next to src
( 3π

4 ,π,2π) dst behind src
(3)

(see Fig. 4, left for a sample illustration of the second case of Eq. 3).
Since the HG distribution is rotationally-symmetric (Fig. 4, middle)
only the absolute value of the difference of the azimuthal angles
|φ1 − φ2| is required. Note that here the transmittance Tsrc→dst
accounts just for absorption that affects the radiance propagation on
its way from src to dst. This is because our scheme treats scattering
as a decrease of anisotropy and not as an extinction process, as we
show below. In practice, we take the averaged absorption coefficients
σa at the source and destination cells and the distance between
their centres t, and apply the Beer-Lambert-Bouguer law; however,
ray-marching with a small number of steps might potentially be
required to integrate the absorption coefficient if the resolution of
the propagation volume is much smaller than the medium grid.

Radiance anisotropy contribution Similarly to absorption at-
tenuating the radiant energy flowing between neighbouring cells, the
anisotropy of the energy propagated from src to dst will decrease due
to scattering. In agreement with the radiance transfer equation, in
our case this can be easily computed exploiting the self-convolution
property of the HG distribution [22]: in a medium with scattering
anisotropy of g the radiance anisotropy reduces to a′ = a ·gσs·t after
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travelling a distance t (assuming a constant σs along this path). We
obtain σs and t the same way as for computing Tsrc→dst above. The
change of radiance anisotropy from src to dst is therefore

∆asrc→dst = asrc ·gσs·t . (4)

We can easily see that this formula cannot lead to an increase of
anisotropy, since g ∈ [0,1]. Additionally, in non-scattering media
(σs = 0) the anisotropy will be preserved perfectly.

Combining contributions from neighbours Updating the ra-
diance distribution at the cell dst entails accumulating the contribu-
tions from its six neighbours (indexed by src) as

Ldst = ∑
src

∆Lsrc→dst , (5)

adst =
∑src ∆Lsrc→dst ·∆asrc→dst

∑src ∆Lsrc→dst
. (6)

While the radiant energy contributions simply need to be added up,
the anisotropy is a weighted average of its neighbours, since the
update has to yield an anisotropy value adst within the valid range.
We discuss implications of Eq. 6 in Sec. 3.1.5.

3.1.3 Iterating the solution

The update procedure defined by Eqs. 5 and 6 is performed for every
cell of Lm to yield Lm+1 for every iteration m. Implementation-wise,
this requires maintaining a second grid identical to the propagation
grid and swapping these at each iteration.

Additionally, the results of every propagation iteration need to be
accumulated in Lacc by evaluating the updated distributions in Lm+1:

Lm+1
acc,i = Lm

acc,i +Lm+1(xi,c−xi) (7)

= Lm
acc,i +Lm+1

i · fhg(µ,a
m+1
i ) (8)

for every cell i. Here c is the observer position and µ is therefore
the dot product of d and the view direction.

3.1.4 Upsampling and rendering

When the solution has converged after a sufficient number of itera-
tions, using it for rendering is relatively straightforward. We employ
ray-marching to integrate the incoming radiance for every camera
ray using the common front-to-back emission-absorption model [21].
In this case the emission term corresponds to the scattered radiance
accumulated in Lacc.

As we discuss in Sec. 4, the typical resolutions used for the propa-
gation grids need to be rather small (in most of our examples 203

or less) for performance reasons. In order to improve the rendering
quality with such low grid resolutions it is desired to upsample them
prior to their visualization. We use a 3D version of the joint bilat-
eral upsampling [16] where the density field of the medium (i. e.,
the spatially varying scattering coefficient) is used as a guidance
signal. Typically, the density field is significantly more detailed than
the propagation volumes; this detail is “transferred” to the solution
by the upsampling. According to our experiments, low-resolution
propagation grids are usually sufficient for plausible results.

3.1.5 Discussion of the propagation scheme

Using the unimodal HG function with a single parameter to repre-
sent the directional distributions in light transport obviously means
that there are distributions in a cell that cannot be represented well.
On the other hand, we compensate for this by using multiple grids

Strong absorption

Source 1

Source 2

Destination Source 1 Source 1

Source 2 Source 2

Destination Destination

Figure 5: Three examples of the local propagation behaviour. Left: all
source cells exhibit strong forward scattering which is well-preserved
by our propagation scheme. Centre: radiance anisotropy is reduced
due to in-scattering from Source 2 which has isotropic radiance dis-
tribution. Right: light from Source 1 to destination is almost entirely
absorbed. Light from Source 2 should then be deviated “upwards”,
which our scheme cannot represent.

(see Sec. 3.2), which in turn can handle anisotropic phase functions
significantly better than previous work thanks to the proposed prop-
agation scheme. In comparison, an exceedingly large number of
SH coefficients is required to represent highly anisotropic distribu-
tions, and this still does not prevent false scattering issues if a local
propagation scheme is employed.

In this view the most heuristic step of our scheme is the recombina-
tion of reduced anisotropies from the neighbouring cells in Eq. 6.
The logic behind this formulation is that the radiance distribution
at dst will result from superposing the neighbouring distributions
according to how much energy they contribute to dst. The main
limitation of this approach lies in the fact that combining multiple
HG distributions with different anisotropy values cannot generally
be represented by any single HG distribution. Although we have
experimented with fitting the resulting HG distribution to the com-
bination of its neighbours in terms of least square error, we found
that the simple weighted arithmetic average produces comparable
results while keeping the computational cost of this core operation
minimal. In addition, Eq. 6 very well preserves the anisotropy of
light transported along the principal direction, thus greatly reducing
false scattering effects.

Note that there are cases of very heterogeneous media where our
approach might locally become too inaccurate (see Fig. 5). If light
along the principal direction undergoes strong absorption, while
light from other directions does not, the resulting light distribu-
tion should possibly become skewed, which cannot be represented
within our framework. Although this is obviously a failure case
of our representation, occurrences of such strong absorption fluctu-
ations are comparatively rare, and more importantly the resulting
radiance magnitude in these cases is typically very small (therefore
having little impact on the resulting image). Also note that with
multiple propagation volumes we can actually reproduce complex
multimodal radiance distributions, despite each grid being composed
of unimodal HG distributions.

3.2 Environment lighting: Multiple propagation grids

In the previous section we have described our approach for a sin-
gle directional light source. In order to account for environmental
lighting (typically modelled by an environment map), we need to
use multiple grids oriented in different principal directions. In the
following we discuss how to choose these directions and, as every
grid accounts for light from a finite solid angle, how to prefilter the
respective incident radiance to avoid singularity artifacts (see Fig. 6).

Prefiltering A straightforward approach is importance-sampling
the environment map to obtain N directions, dn, each carrying an
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Figure 7: Importance propagation improves overall radiance distribution across the medium and visibility of bright regions behind. This especially
holds for high-albedo media with strong scattering anisotropy (here g = 0.98) and when using a low number of ordinates (27 here).

g = 0.95 g = 0.999g = 0.99g = 0.98

W
it

h
o

u
t 

p
re

fi
lt

er
in

g
W

it
h

 p
re

fi
lt

er
in

g

Figure 6: The effect of prefiltered initialization on a thin, strongly-
scattering medium with increasing anisotropy (left to right). Without
prefiltering (top) the individual ordinates become apparent. Using
prefiltering (bottom) the resulting images become much smoother
and yield the expected appearance (more anisotropic slabs appear
more transparent). Note that our technique is energy-conserving (as
opposed to, e. g., singularity clamping in instant radiosity).

energy corresponding to its associated portion of the directional do-
main Ωn. We can account for the shape of Ωn when determining the
initial directional radiance distributions (parameter ai in Sec. 3.1.1).
Recall that the anisotropy parameter of fhg represents the average
cosine of the distribution. We can therefore approximate the initial
an,i =

∫
Ωn
−dn ·ω dω/||Ωn||, the average cosine between dn and

the directions in Ωn and use this value for the grid initialization.
In practice, an,i can be approximated without the integration over
Ωn for each ordinate or without even knowing the shape of Ωn. As
we importance-sample the environment map, the importance of the
ordinate n is proportional and (up to a factor) very similar to the
actual solid angle of Ωn. Therefore, we use a heuristic that maps
the importance wn ∈ (0,1) to anisotropy as an,i = (1−wn/N)β : im-
portant ordinates are denser in the directional domain and will have
small solid angle and high anisotropy, less important ordinates are
more sparse, will have larger solid angles and low anisotropy. The
scalar factor β > 0 defines the proportionality and currently needs
to be tuned empirically once for each environment map; from our
experiments this is a simple and quick task.

Importance propagation The described sampling scheme can
be further improved by considering how much illumination from dif-
ferent directions actually contributes to the image. To this end, we in-
troduce an additional importance propagation step before sampling

Ours (g = 0) Ours
(g = 0.7)

Ours
(g = 0.81)

Ours
(g = 0.8)

Ours
(g = 0.87)

Ours
(g = 0.9)

Ours
(g = 0.92)

Light tracing (g = 0.7) Light tracing (g = 0.8) Light tracing (g = 0.9)Light tracing (g = 0)

Figure 8: Comparison of our radial propagation to a Monte-Carlo
reference for a uniform spherical medium (radius 2.5 m, σs =
{0.8,1,1.3}m−1 and unit albedo). The resolution of the radial propaga-
tion grid was 323. Our solution differs from the reference mainly due to
low (but for this propagation type still present) false scattering, in par-
ticular with low anisotropy values. We found that this can be reduced
by artificially increasing g, if a specific appearance is desired.

the environment map: we use a regular grid (perspective-warped
into the camera frustum and oriented along the view direction) and
propagate importance from the camera through the medium. Thanks
to the duality of light transport this is equivalent to the radiance
propagation as described before. The result of this propagation is
a directional importance distribution stored in the grid cells. By
ray-marching this grid we project the importance into the directional
domain and create a directional importance ‘map’ that aligns with
the environment map. We then sample the environment map accord-
ing to its product with the importance map. We show that in certain
situations this step improves the sampling result, especially when
a low number of propagation grids is used (see Sec. 4 and Fig. 7).
It is also quite cost-effective, since the directional importance func-
tion is typically very smooth and therefore only low resolutions for
the propagation grid and the directional map are required (all our
examples use the resolutions of 163 and 32×16 respectively).

3.3 Radial grids for local light sources

In order to extend our method to local light sources, we use spherical
grids with two angular coordinates and a radial coordinate which
is again aligned with the initial principal directions of the point
source (Fig. 2). To obtain more isotropic cell shapes, the spacing of
shells along the radial coordinate grows exponentially (in proportion
to the radial segment length at a given radius). For parametrizing
the spherical domain we use the octahedron parametrization [27]
mainly as it is simple, provides reasonably uniform sampling, and
above all, it discretizes the domain into a 2D square where every
cell has four natural neighbours (plus two along the radial axis),
similar to rectilinear grids. The resulting grid is thus topologically
equivalent to rectilinear grid and albeit not being uniform, it allows
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Figure 9: Workflow of the presented algorithm for a single directional light. For distant environment illumination the volumetric part of the pipeline
is very similar, with the exception of rectilinear grids being used to propagate illumination from distant ordinates instead of the combination of
VPLs and spherical grids.
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Figure 10: In media like clouds the scattering anisotropy plays a significant role in their appearance, thus the common assumption of isotropic
scattering prevents a believable rendition of such media. The clouds are rendered by the described method at 12 Hz using 64 ordinates and 203

grid resolution for each of them, with 15 propagation iterations. The scattering anisotropy was set to g = 0.96.

us to approximately treat the space as locally Euclidean and obtain
plausible results again using virtually the same propagation scheme
as before. The main difference in the propagation is that we have to
account for the quadratic fall-off : although we base our propagation
on radiance, we have to explicitly compensate for the varying grid
cell sizes resulting from the non-uniform shell spacing. To this
end, we scale the radiance when propagating along the principal
direction in proportion to the radial coordinate spacing. A sample
demonstration of this propagation type for a point light in a simple
homogeneous spherical medium is shown in Fig. 8.

Instant radiosity Given the ability to use local point lights, we
can use instant radiosity [14] methods, which represent complex
illumination as a collection of point lights, to simulate surface-to-
volume light transport. Normally these VPLs are obtained from
random walks through the scene. In our interactive setting, we
generate VPLs using a reflective shadow map (RSM) [4] for every
primary light. We importance-sample these RSMs according to sur-
face albedo and (attenuated) irradiance, aiming at keeping the total
number of VPLs low. The reflected radiance is then used to initialize
the radial propagation grids. Prefiltering can be done in the same
way as for environment maps: VPLs with a large importance have a
high initial anisotropy and vice versa. Similar to surface lighting, we
can use clamping to reduce any remaining singularities [6]. Fig. 9
depicts the pipeline of the algorithm when propagating scattering
from one directional light and VPLs generated from its RSM.

4 RESULTS

All results were computed on a laptop PC with a 2.0 GHz Intel Core
i7 CPU, 16 GB of RAM and an NVidia GeForce GTX 485 Mobile
card with 2 GB of VRAM. In all our measurements we use the
framebuffer resolution of 800×600 in order to let the computation
time be dominated by the propagation rather than ray-marching.
Resolutions of the medium density datasets are typically in the
order of tens in each dimension (but effectively enhanced by the
procedural noise). Although the number of propagation iterations
needs to be chosen empirically at the moment, in general we found
that amounts similar to the propagation grid resolution along the
propagation dimension is sufficient (around 10–20 in our examples).
Other specific scene details are provided in the caption of each
discussed figure.

We first tested our method for cloudy media with high scattering
anisotropy in comparison to their isotropic versions (Fig. 10). It
can be seen that our propagation scheme handles both cases well.
Interestingly, grid resolutions as well as computation times required
to render plausible participating media are rather insensitive to its
anisotropy, i. e., anisotropic media render as fast as isotropic media.
Although a larger number of ordinates is required to reproduce high-
anisotropy effects, this additional effort is usually compensated by
a decreased complexity of the spatial radiance distribution, which
enables using coarser propagation grids.

6
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Light tracing
(12 h)

Ours
(10 Hz)

Ours
(0.5 Hz)

SHDOM
(10 Hz)

SHDOM
(0.5 Hz)

Figure 11: Comparison of our principal ordinates propagation to SHDOM and a Monte-Carlo reference, for a smoke plume 10 m across with
σs = {2.9,3.6,4.2}m−1, σa = {3.4,3.35,3.4}m−1 and g = 0.9 using the “Uffizi” environment map as illumination. For our technique we used 64 and
125 principal ordinates, grid resolutions of 203 and 503, 10 and 30 propagation iterations, respectively. For SHDOM we have used 5 and 10 bands
to represent the directional radiance distribution in each cell and the same grid resolutions. SHDOM required a strong prefiltering to avoid ringing
and due to false scattering fails to reproduce the high scattering anisotropy. Our method compares well to the reference solution, and even with
low-quality settings it matches the overall appearance.

Next, we compare our approach to an unbiased Monte-Carlo refer-
ence, as well as SHDOM, in Fig. 11. It is apparent that the described
artifacts prevent SHDOM from handling anisotropic media correctly,
despite being theoretically capable to do so.

The effect of using different numbers of principal ordinates is shown
in Fig. 12. It can be seen that the discretization becomes apparent
only with very few ordinates. The importance propagation usually
helps to alleviate this by sampling those directions which will influ-
ence the solution most significantly. As Fig. 7 demonstrates, this
is most likely the opposite side of the medium, suggesting that a
simpler empirical heuristic could potentially work in certain cases.

One of the main shortcomings of the importance propagation is
its potential temporal incoherency, mostly manifested by temporal
flickering. For this reason we filter the importance map both spatially
and temporarily, which, however, mainly distributes the incoherency
over time. One of our main targets for future work is therefore
improving this by explicitly enforcing temporal coherency when the
sampled light sources relocate due to camera movement.

Prefiltering helps to improve the rendering quality in most scenarios
and we used it to generate all results throughout the paper. It is
particularly indispensable for media with an optical thickness insuf-
ficient to blur the sampled illumination, e. g., as in Fig. 6, where
singularity-like artifacts would appear otherwise. Prefiltering re-
moves these artifacts but still allows to perceive features of the
background illumination, thanks to its adaptivity.

Finally in general, Fig. 1 and Fig. 13 show our propagation scheme
for both regular and radial grids used to render multiple scattering ef-
fects in the volume stemming from direct illumination (light shafts),
environment lighting, and indirect surface illumination (using virtual
local light sources) under fully-dynamic conditions.

5 CONCLUSION

We propose a novel discrete ordinates method capable of comput-
ing light transport in heterogeneous participating media exhibiting
light scattering of virtually arbitrary anisotropy. The method does
not require any precomputations, which makes it suitable even for
simulating dynamic and evolving media. Our representation also
adapts to and prefilters the incident lighting. Radiance is represented
by the Henyey-Greenstein distribution, and propagated by our novel
scheme in volumes oriented along the principal light directions.

In general the steps of the proposed method are physically-plausible
(please refer to the supplementary materials for further details). The
employed empirical heuristics introduce a certain bias but allow us
to make design decisions that result in a near-realtime performance
on contemporary graphics hardware.

8 ordinates 64 ordinates 216 ordinates
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Figure 12: The smoke dataset with an increasing number of ordinates
using the “kitchen” environment map (g = 0.9, 203 grid resolution,
10 propagation iterations). Accounting for importance improves the
results, mainly if low numbers of principal ordinates are used. The
typical setting we use is shown on the bottom-centre and takes 10 ms
for importance propagation, 4 ms for determining the ordinates, 7 ms
for grid initialization, 50 ms for propagation, 10 ms for residuum propa-
gation, 3 ms for upsampling and 11 ms for ray-marching.

The decomposition into a finite number of directions for distant light
can only be successful if the variation of the initial light distribution
is not too high; this however holds for the HDR environment maps
we used in our examples. In addition our prefiltered initialization
can be used to avoid discretization artifacts in favour of a smooth
approximation. Another limitation that we share with most variants
of DOM is the handling of (surface) boundaries. In volumes with
high density gradients (close to opaque surfaces) the light distribu-
tion might not be faithfully reproduced by the HG basis aligned with
the initial light direction. Also the resolution of every principal grid
is limited and therefore the general limitations of discrete sampling
apply: for finer details more resolution is required. Fortunately, the
upsampling and prefiltering help to defer this problem and for typical
volume data sets moderate propagation grid resolutions of 83–203

have shown to be sufficient to handle a wide range of illumination
conditions and medium properties.

As future work, we would like to extend our propagation to work
on hierarchical or nested grids to handle higher details in media
as well as illumination. In general, we believe that the effect of
complex lighting on dynamic participating media is an exciting
visual phenomenon that deserves more dedicated research, e. g., to
better understand human perception of volumetric light or the artistic
practice applied to depict it.
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Figure 13: A scene with both animated medium and illumination, combining scattering from directional and local virtual light sources (running
at 9 Hz including the generation of the 125 VPLs used to render indirect illumination from surfaces; the medium has a size of 203 m with
σs = {3.2,3.3,3.4}m−1, σa = {1.15,1.2,1.3}m−1 and g = 0.7). The grid size for the directional light is 1282×16, with the 16-cell axis oriented along
the light shafts (i. e., along the principal ordinate). The radial grids have a resolution of 83 each. We use these settings for local light sources in all
our examples; note how even this small resolution proves to be sufficient for plausible results.
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