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Abstract

Visibility determination is one of the fundamental building blocks of pho-
torealistic image synthesis. Light reflected at a shading point depends on
light reflected from the visible scene surfaces and on the visible light sources
in the environment. However, computing visibility is computational highly
demanding and global illumination algorithms, such as final gathering and
bias compensation for instant radiosity spend most of their rendering time
thereon. In this thesis we strive to improve the rendering performance of
the aforementioned algorithms and propose methods that on the one hand
compute and store visibility efficiently and on the other hand use feasible
visibility approximations without introducing noticeable artefacts.

Therefore we investigate a (hemi-)spherical parametrization based on
the octahedron for efficient storage of visibility at arbitrary shading points.
Building on this foundation we then formulate a point-based rendering
technique that efficiently computes (hemi-)spherical visibility for final gath-
ering.

The principles of epipolar geometry allow us to exploit visibility coher-
ence and we show how to derive an optimised sampling strategy for sin-
gle scattering from point light sources in homogeneous media. Combining
single scattering from many (virtual) point lights make it possible to ap-
proximate global illumination with multiple scattering by instant radiosity
complemented by bias compensation. The latter corrects illumination er-
rors from Instant Radiosity and is computational highly demanding due to
a high number of visibility evaluations. For better efficiency we propose the
usage of various visibility approximations in participating media and inves-
tigate several integration strategies for optimal results. Finally, we demon-
strate that compensation on surfaces can be accurately approximated by a
simple image-space post-process that does not require any visibility evalu-
ations at all.
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Kurzzusammenfassung

Sichbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealis-
tischer Bildsynthese. Licht, das einem Punkt reflektiert wird, ist von den
sichtbaren, reflektierende Obeflächen und Lichtquellen, d.h. der sichtbaren
Umgebung an diesem Punkt, abhängig. Da Sichtbarkeitsberechnungen all-
erdings sehr berechnungsaufwändig sind, beanspruchen globale Beleuch-
tungsalgorithmen wie Final Gathering oder Bias Compensation für Instant
Radiosity die meiste Zeit nur zu diesem Zweck. In dieser Arbeit streben wir
danach, die Darstellungsperformanz der eben genannten Algorithmen zu
verbessern und stellen Methoden vor, die einerseits Sichtbarkeit effizient
berechnen, andererseits aber auch sinnvolle und effiziente Approximatio-
nen ausnutzen ohne wahrnehmbare Artefakte zu erzeugen.

Hierzu untersuchen wir eine (hemi-)sphärische Parametrisierung, die
auf dem Oktaeder basiert und Sichtbarkeit effizient an beliebigen Punk-
ten speichern kann. Aufbauend auf dieser Grundlage formulieren wir eine
punktbasierte Darstellungstechnik die hemisphärische Sichtbarkeit für Fi-
nal Gathering berechnet.

Weitergehend zeigen wir, dass sich basierend auf den Grundlagen der
epipolaren Geometrie Sichtbarkeitskohärenzen ableiten lassen, die wir aus-
nutzen, um eine optimale Bildraumabtaststrategie für volumetrische Ef-
fekte in homogenen, einfachstreuenden Medien zu entwickeln. Akkumu-
liert man Einfachstreuung von vielen (virtuellen) Punktlichtquellen, lässt
sich globale Beleuchtung mit Mehrfachstreuung auf Basis von Instant Ra-
diosity und dazugehöriger Bias Compensation realisieren. Letztere kor-
rigiert Beleuchtungsfehler von Instant Radiosity und ist wegen Sichtbarkeits-
berechnungen sehr teuer. Zur Effizienzverbesserung des Korrekturverfah-
rens für Volumenbeleuchtung schlagen wir deshalb diverse Sichtbarkeit-
sapproximationen in heterogenen Medien vor und untersuchen effiziente
Integrationsstrategien. Schließlich zeigen wir, dass sich die Korrektur auf
Oberflächen durch eine einfache Nachbearbeitung im Bildraum mit hoher
Genauigkeit approximieren lässt und dabei ganz ohne Sichtbarkeitstests
auskommt.
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CHAPTER I

Zusammenfassung

Der Zweck der fotorealistischen Bildsynthese ist es, aus einer virtuellen Sze-
nenbeschreibung ein darstellbares Bild zu berechnen, das der Realität zum
Verwechseln ähnlich sieht.

Dazu werden zuerst die von einem Betrachtungspunkt
der Kamera aus sichtbaren Oberflächen berechnet. Ein
Problem auf Grafikkarten ist dabei, dass für die Bestim-
mung der sichtbaren Oberflächen alle Objekte gezeichnet
werden müssen, da verdeckte Geometrie nicht immer von
vornherein vom Zeichen ausgeschlossen werden kann. Das betrifft ins-
besondere instanziierte Objekte. Um dies dennoch zu ermöglichen wer-
den in Kapitel 6 dieser Arbeit zwei Algorithmen vorgestellt, die Sichtbarkeit
vom Betrachtungspunkt der Szene aus auf Grafikhardware feingranular auf-
schlüsseln. Dadurch wird es ermöglicht, die Sichtbarkeit direkt in den pro-
grammierbaren Ausführungseinheiten der Grafikhardware abzufragen, so
dass dadurch beispielsweise einzelne Dreiecke, größere Objektteile oder
komplette Instanzen vom Zeichen ausgeschlossen werden können.

 

X 

Z 

P0 

P1 

P2 
1 

Y 
Nachdem der Bilderzeugungsprozess die vom Betrachter

aus sichtbaren Oberflächen ermittelt hat, können diese
beleuchtet werden. Dazu wird das aus der Umgebung
auf einen Punkt einfallende Licht bestimmt. Unter der
Annahme, dass sich die Umgebung in unendlicher Ferne
zum beleuchtenden Punkt befindet, ist an jedem Punkt
der Szene dieselbe Umgebung sichtbar. Folglich kann das einfallende
Licht für alle Punkte der Szene vorberechnet und unter einer geeigneten
Parametrisierung, in einem sogenannten Umgebungsbild (engl. environ-
ment map) gespeichert werden.

In Kapitel 7 wird der Oktaeder als eine solche Möglichkeit zur Para-
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metrisierung der Umgebung untersucht. Dabei werden zwei Projektionss-
chemata betrachtet, die beide die Umgebung in ein einziges, quadratisches
Bild projizieren, ohne dabei Speicherplatz ungenutzt zu lassen, wie es bei
einigen vergleichbaren Ansätzen der Fall ist. Mit den beiden vorgestellten
Projektionsschemata ist der Oktaeder, neben der Würfelparametrisierung,
die einzige Möglichkeit ein Umgebungsbild ohne fehlerhafte Verzerrung di-
rekt auf der Grafikkarte mittels Rasterisierung zu erzeugen.

In Kapitel 8 wird ein Verfahren vorgestellt, das Umge-
bungsbilder nutzt, um indirekte Beleuchtung zu berechnen.
Hierzu muss lediglich ein Bild der (direkt) beleuchtenden
Umgebung an jeden sichtbaren Oberflächenpunkt berech-
net werden, wozu Rasterisierung jedoch zu ineffizient ist.
Stattdessen wird ein punktbasiertes Darstellungsverfahren
vorgeschlagen, das Dank des Einsatzes einer Hierarchie die Komplexität
der zu zeichnenden Geometrie während des Zeichenvorgangs automatisch
anpasst. Des Weiteren wurden speziell verzerrende Projektionen genutzt,
die größere Bildbereiche solchen Bereichen der Umgebung zuordnen, die
mehr zum reflektierten Licht beitragen als andere. Davon profitieren ins-
besondere glänzende Oberflächen. Zudem ist das Verfahren auch leicht auf
Grafikhardware zu parallelisieren, wodurch interaktive Darstellungsraten
erreicht werden können.

In Kapitel 9 wird Sichtbarkeit im Zusammenhang mit
der Entstehung von Strahlenbüscheln in partizipierenden
Medien (Volumen) untersucht und ausgenutzt. Für die fo-
torealistische Darstellung von Volumenbeleuchtung werden
Streueffekte entlang von Sichtstrahlen akkumuliert. Dabei
entsteht ein Effekt, der als Strahlenbüschel bezeichnet wird
und für den hauptsächlich die Sichtbarkeit der direkten Lichtquelle an je-
dem Punkt entlang des Sichtstrahls verantwortlich ist. Einstreuung ent-
lang eines Strahls zu akkumulieren ist jedoch sehr kostspielig, insbeson-
dere wenn die Integration für jeden Abtastpunkt im Bildraum (Sichtstrahl)
berechnet wird. Aus den Konzepten der epipolaren Geometrie lässt sich
ableiten, dass sich Strahlenbüschel an epipolaren Linien im Bildraum aus-
richten. Durch Platzieren von Abtastpunkten entlang dieser Linien kann die
Anzahl der Abtastpunkte (und damit Sichtbarkeitsauswertungen) im Ver-
gleich zu regulären Abtastmustern stark reduziert werden. Zwar muss das
Streubild dann durch Interpolation rekonstruiert werden, was aber dank
des Abtastschemas ohne starken Qualitätsverlust möglich ist. Die Ergeb-
nisse bestätigen, dass sich dadurch die Effizienz stark verbessert und hohe
Darstellungsraten auf Grafikhardware erreicht werden.

In vielen partizipierenden Medien wird der Grad des Fotorealismus durch
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Mehrfachstreuung erhöht. Diese lässt sich auf einfache Weise durch Beleuch-
tung des Mediums mit einer Menge virtueller Punktlichtquellen (VPLs) ap-
proximieren.
Jedoch haben VPLs zu Punkten in ihrer direkten Umgebung
einen so hohen Beitrag, dass sich in der Darstellung Arte-
fakte in Form von hellen Flecken bilden. Diese umgeht man,
indem man deren Einfluss auf nahe Punkte künstlich ein-
schränkt, was aber über kurze Strecken transportierte Licht-
energie vernichtet. Mittels Kompensationsverfahren kann
diese Energie wieder zurückgewonnen werden, jedoch sind diese im Gegen-
satz zur Beleuchtung mit VPLs nicht für die Beschleunigung auf Grafikhard-
ware geeignet.

In Kapitel 10 wird ein approximatives, für Grafikhardware geeignetes,
Kompensationsverfahren für Volumenbeleuchtung vorgestellt. Es korrigiert
den bei der Auswertung von VPLs entstanden Fehler durch Abtastung des
Lichttransports in der Umgebung eines Einstreupunktes. Allerdings hängt
die Abtastung von einer nicht-binären Sichtbarkeitsfunktion (sichtbar/nicht-
sichtbar) ab, die in heterogenen Medien teuer zu berechnen ist. Aus diesem
Grund wurden in dieser Arbeit unter anderem Methoden entwickelt, die
diese nicht-binäre Sichtbarkeit nur approximativ, dafür weitaus effizienter
berechnen, ohne dass sich sichtbare Fehler im Bild bemerkbar machen.

In Kapitel 11 wird ein effizientes Kompensationsver-
fahren für Oberflächenbeleuchtung vorgestellt. Diese Ver-
fahren ermitteln die sichtbaren Oberflächen in der näheren
Umgebung eines Punktes und gleichen den Energieverlust
durch deren reflektiertes Licht aus. Wie auch im Volumen ist das Verfahren
nicht für Grafikhardware geeignet, da Sichhtbarkeitsberechnungen auf
Strahlverfolgung basiert. In dieser Arbeit wurde ein neuer Ansatz entwick-
elt, der diese Oberflächen effizient im Bildraum rekonstruiert und deren re-
flektiertes Licht für die Kompensation akkumuliert. Letzteres wurde zusät-
zlich durch ein hierarchisches Integrationsverfahren beschleunigt, wodurch
das Verfahren auf Grafikhardware interaktive Darstellungsraten erreicht,
das Ergebnis dennoch kaum von der Referenz zu unterscheiden ist.
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CHAPTER II

Summary

The purpose of photorealistic image synthesis is to compute
an image resembling real photographs from the description
of a virtual scene.

For this purpose, the surfaces visible in the image are
computed first. A problem that arises on graphics hard-
ware is that all objects have to be drawn in order to determine the
visible ones. This is because hidden surfaces cannot always be deter-
mined a priori. For example instanced objects are affected by this prob-
lem and in Chapter 6 of this thesis we introduce two algorithms that
break visibility down onto a fine granular level and make it possible to
query visibility information directly in any execution unit of the GPU.
Thereby our algorithm enables culling of individual triangles, groups of tri-
angles or even entire instances.
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After detecting the visible surfaces in the image, light

reflected by them towards the observer can be computed.
This in turn depends on light incident from the environment.
Under the assumption that the environment is at infinite
distance, it is identical at each shading point and incident
illumination can be stored in a 2D image using a suitable
parametrization, called an environment map. In Chapter 7 we examine the
octahedron as the foundation for environment mapping and present two
schemes, which make it possible to project the entire sphere into a single
quadratic image. Compared to other schemes, this approach is the only one
that uses a single image without introducing distortions due to the projec-
tion and rasterization on graphics hardware.

In Chapter 8 we present a method that uses environment maps to com-
pute indirect illumination. Therefore an image of the (direct) illuminated
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environment must be computed at each visible surface
point. But because rasterization is too inefficient for this
purpose, we propose a point based method which builds
on hierarchical data structures and automatically adapts the
complexity of the geometry during the drawing process. Be-
yond that, we also employ warped projections which map
large regions of the environment images to directions from which high con-
tributions to the reflected light can be expected. This improves quality es-
pecially for glossy surfaces. Finally, this approach is easily parallelized on
graphics hardware which makes interactive frame rates possible.

In Chapter 9 we investigate the appearance of crepuscu-
lar rays in single scattering participating media. Photore-
alistic rendering of such effects accumulates scattered light
along eye rays. Because visibility with respect to the light
source(s) varies along eye rays, crepuscular rays emerge.
Beyond that, the principles of epipolar geometry give a rea-
son why the crepuscular rays even align with epipolar lines in image space.
By placing sample points along these epipolar lines to compute the scatter-
ing effects can reduce the total number of evaluations otherwise required
by regular sample patterns. Although this epipolar sampling then requires
interpolation to reconstruct the scattering image, it is possible without sig-
nificant quality loss. Our results confirm that this improves efficiency and
enables high frame rates on graphics hardware.

Single scattering is a valid assumption as long as absorption effects out-
weigh scattering, otherwise multiple scattering becomes important for re-
alism. Multiple scattering can be approximated accumulating single scatter-
ing effects from a distribution of virtual point light sources (VPLs).
Unfortunatly, these VPLs create artefacts in the image due
to a singularity in the illumination term. These artefacts
become visible as bright splotches and can be avoided by
artificially clamping or bounding the influence of VPLs on
shading points. Besides removing artefacts, this also re-
moves energy transfer over short distances, reducing overall
brightness. Compensation algorithms recover this energy, but in contrast to
illumination with VPLs, cannot be efficiently realised on graphics hardware.

In Chapter 10 we introduce an approximate compensation method for
multiple scattering which is suitable for graphics hardware. The method
corrects the error due to bounding, sampling the light transport in the close
environment of the point where bounding occurred.

This however depends on a non-binary visibility function (visible/not
visible) which is costly to compute in heterogeneous media. To alleviate
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rendering costs we develop an approximate approach which is far more ef-
ficient to compute, but nonetheless sufficiently accurate to avoid noticeable
artefacts in the final image.

In Chapter 11 we present an efficient compensation
method for surface instant radiosity. Bias compensation de-
tects the visible surfaces in the close environment of a shad-
ing point and compensates the energy from light reflected
by these surfaces. As in the volume, this approach is not suitable for graph-
ics hardware, because of the abundant visibility queries. To remedy this
situation we propose a new approach which efficiently reconstructs these
surfaces and accumulates their reflected light for computing the compensa-
tion term. The latter has been realised using a hierarchical image-space in-
tegration scheme which accelerates this process. We show that our method
achieves interactive frame rates on graphics hardware computing images
that are hardly distinguishable from the reference solutions.
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CHAPTER 1

Introduction

SINCE Ivan Sutherland invented SketchPad [Sutherland, 1963], the first
computer program that relied on graphics for user interaction, the syn-

thesis of digital images evolved into a ground-breaking research area, and
eventually became an integral part of everyday life. For example, more
and more electronic devices, such as desktop computers, mobile phones or
TV sets, are controlled by the means of graphical user interfaces. But be-
sides such mundane applications, computer graphics are also heavily used
in various scientific disciplines to visualize and interpret numerical data for
gaining insight and drawing new conclusions. Medical visualization, for in-
stance, allows scientists and physicians to diagnose diseases without overly
burdening patients with dangerous and lengthy procedures.

A particularly interesting field in computer graphics is the creation of
photorealistic images. Simply speaking, photorealistic rendering computes
an image of the appearance of virtual objects under realistic illumination.
A prominent field where realistic image generation is employed is the en-
tertainment industry. By means of digital visual effects rendered on a com-
puter, real film footage can be augmented or even entirely replaced. Even
creators of animated films that do not strive for photorealism, but set out
to produce a particular artistic style, rely on principles of realistic image
synthesis to accurately light virtual scenes. Realistic rendering methods for
the film industry are heavily geared towards high image quality, for which
rendering times up to several minutes per frame can be afforded. The same
goal has been set by the games industry, however, within a time budget
of several milliseconds per frame. With increasing computational power
and improved real-time algorithms they bring realistically looking digital
worlds to life, in which players can immerse themselves. Whereas the en-
tertainment industry uses realistic rendering methods in an artistic context,
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allowing them to trade off accuracy for computational efficiency as long as
the results look plausible, other applications demand high fidelity.

First and foremost lighting engineers benefit from realistic rendering
methods. Accurate light transport simulation makes it possible to validate
the effectiveness of newly-designed light fixtures. Beyond that, preview im-
ages of lighting arrangements for direct and ambient illumination in rooms
and buildings can be generated and approved before anything is built. This
is also closely related to architectural design. Architects can create preview
images of buildings or their interiors for any given artificial or natural illu-
mination condition created by lamps or daylight at any season or time of
the day. In the same manner, product development utilizes realistic render-
ing algorithms. For instance, the automotive industry can evaluate newly-
developed car finishes on any car by applying a computational model of the
finish to a digital model of the car. Last but not least, the generation of re-
alistic digital images supports training of robotic systems that rely on visual
information, such as sorting-machines. Instead of building faulty products
and filming them, digital images can be fed into the recognition software
for training.

1.1 The Realistic Image Synthesis Framework

As we have seen, realistic image synthesis has many fields of application.
But so far, we have not mentioned how such images are generated. As
previously pointed out, realistic image synthesis computes the appearance
of virtual objects under realistic illumination. This process can be described
within the three orthogonal areas of local reflection, light transport, and
visual display [Greenberg et al., 1997].

Local reflection: Local reflection describes the light scattering or reflec-
tion properties at a surface point given the incident light field, i.e. the
incident light from all directions. For instance, when looking at a wall
coated with matte paint, the wall appears the same under all viewing angles,
whereas one notices highlights and fuzzy reflections of the environment
when looking at car paint depending on the viewing angle. An extreme
example is a mirror sphere which appears completely different under each
viewing angle.

Light transport: Light transport is the integral component in realistic im-
age synthesis that computes physically correct illumination. It can be imag-
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ined as small light particles (photons) that leave the light sources in straight
paths and carry a discrete amount of energy. After being emitted, particles
collide with objects, where they are either absorbed or scattered into differ-
ent directions, depending on the local reflection model. The reflected par-
ticles impinge on other objects, and this process continues until an equilib-
rium of absorbed and newly emitted particles is reached. This equilibrium
state of light or radiative energy can be expressed by means of a simple
mathematical equation, the so called rendering equation [Kajiya, 1986],
which will be formally introduced in Chapter 3.2. By means of a virtual
camera sensor, a response to the equilibrium distribution of light can be
computed. Formally this is expressed by the measurement equation and ul-
timately, the response is converted into a displayable image.

Visual display: On the one hand light transport is a physical simulation
and computes spectral quantities that are measured by a virtual camera sen-
sor. A display device, on the other hand, cannot process this information
because it operates in colour spaces. The task of a visual display algorithm
is to convert the measured (wavelength dependent) energy into a value that
can be processed by a display device. This is challenging, as the range of
physical quantities significantly exceeds the displayable range of colours,
and dynamic range compression must be applied. This is tackled by tone

mapping operators that employ various heuristics based on the behaviour
of the human visual system (HVS) under natural lighting conditions. For
instance, the HVS reacts more sensible to changes in the illumination in
poorly lit rooms so we can still recognize our surroundings, whereas the
sensitivity to changes in illumination is greatly reduced in brightly lit en-
vironments. This behaviour of the HVS is exploited by tone mapping op-
erators to boost or compress the dynamic range, and to obtain a natural
looking image within the limited colour space of the display device.

1.2 Motivation

Although all areas of the aforementioned framework for realistic image syn-
thesis are well-understood and researched, computing a physically accurate
image is still a time consuming process. The reason for that solely lies in
the light transport simulation. Preparing an image for display is only a post-
process executed on the final image. But even when employing the simplest
local reflection model, a constant factor, a mathematically unbiased solution
of light transport [Kajiya, 1986; Lafortune, 1996; Veach, 1997] easily takes
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light field reflection 
       model

Figure 1.1: Final Gathering improves the quality of approximate light trans-

port solutions, such as photon mapping (left). It samples incident radiance

from the visible surfaces in the environment (light field) at each shading point

(middle) and computes reflected radiance (right). Final gathering for this ex-

ample required 30x more time than directly visualizing the photon map (left).

several hours to compute.
One of the reasons for this are from-point visibility computations, among

others. For example, final gathering samples reflected illumination from the
visible surfaces in the environment of a point using ray tracing (Figure 1.1).
This is useful to improve the solutions of approximate light transport algo-
rithms, such as photon mapping [Jensen, 1996], but the gathering process
easily requires several hours due to visibility computations, and thus does
not lend itself to interactive applications.

The same is true for instant radiosity (IR) [Keller, 1997], which first
computes an approximate and biased solution of light transport, and cor-
rects the error afterwards using bias compensation [Kollig and Keller, 2006],
a technique that forbids interactive rendering of global illumination [Dachs-
bacher and Stamminger, 2005; Ritschel et al., 2008]. The reason for this
is that it is similar to final gathering and requires costly visibility computa-
tions using ray tracing. IR and bias compensation are also possible in the
presence of participating media [Raab et al., 2008], but visibility becomes
even more intricate, as it is no longer binary (visible or invisible), due to
extinction of light in the medium.

A typical approach for interactive global illumination applications is to
reduce the amount of necessary computations employing a regular sub-
sampling scheme in image space. The effects are rendered only for a low-
resolution image, thereby sub-sampling visibility from the camera, and sub-
sequently up-scaled to the full resolution. For indirect illumination, this
approach is feasible because it varies smoothly over surfaces [Ward et al.,
1988]. For crepuscular rays created by volumetric scattering in participat-
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ing media it is non-optimal because crisp features created by this effect
appear blurred.

Last but not least, visibility is not only an integral part of global illumi-
nation effects, but knowledge about visibility can also be used to accelerate
the image generation process. For example, rasterization pipelines suffer
from the overdrawing problem, i.e. invisible surfaces are drawn into the
final image, but eventually replaced by visible surfaces during the process.
Hardware-assisted culling techniques can alleviate these effects, but they
operate only on entire objects. This prevents fine-grained culling on graph-
ics hardware, i.e. triangles (or sets thereof) cannot be culled individually
for improving rendering performance for costly shaders.

1.3 Outline

In this work we address the aforementioned visibility problems and present
several different approaches for improvement. A detailed list of our contri-
butions can be found below, where we additionally point out the particular
visibility problem addressed. In Chapters 2 to 5 we first introduce prelimi-
naries and fundamental concepts used in this thesis, whereas the following
chapters present our contribution.

Preliminaries and Previous Work

In Chapter 2 we first give a brief introduction into image generation with ray
tracing and rasterization. In particular, we discuss the areas of application
and algorithms that accelerate visibility computations.

As mentioned earlier, photorealistic image synthesis is based on radio-
metric concepts, the reflection integral and the (volumetric) rendering equa-
tion. These concepts are introduced in Chapter 3 and algorithms that build
on these fundamentals are briefly reviewed in Chapter 4.

Finally, we summarize the possibilities for storing directional data in 2D
images in Chapter 5, including quality of representation and generation
thereof.
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Contributions

In the following chapters, we present our contributions:

• In Chapter 6 we present granular visibility queries that enable visibility
determination of individual triangles of an object and efficient culling
thereof to accelerate the execution of costly shaders in rasterization
pipelines. This chapter is based on our work [Engelhardt and Dachs-
bacher, 2009] presented at the Symposium on Interactive 3D Graphics

and Games 2009 (I3D’09).

• In Chapter 7 we introduce octahedron environment maps as efficient
means for compact storage of omni-directional (visibility) data on
GPUs. We discuss interactive creation and usage thereof, discuss qual-
ity of representation, and mention possible applications. This chapter
is based on our paper [Engelhardt and Dachsbacher, 2008] presented
at the Vision, Modeling and Visualization Workshop 2008.

• In Chapter 8 we describe micro-rendering, an interactive technique
for high quality final gathering on GPUs. This chapter is based on our
collaborative work [Ritschel et al., 2009a] presented at SIGGRAPH

Asia 2009.

• In Chapter 9 we present epipolar sampling an efficient sub-sampling
technique for interactive rendering of crepuscular rays. We exploit
concepts of epipolar geometry to reduce the number of (visible) scat-
tering computations in screen space, while preserving the crisp fea-
tures of crepuscular rays. This chapter is based on our publication [En-
gelhardt and Dachsbacher, 2010] presented at the Symposium on In-

teractive 3D Graphics and Games 2010 (I3D’10).

• In Chapter 10 we develop an efficient approximate bias compensation

technique for rendering multiple scattering with virtual point light
methods sub-sampling incident illumination from VPLs (binary visi-
bility) and using approximate non-binary visibility for short distance
light transport. This chapter is based on our publication [Engelhardt
et al., 2012] presented at Pacific Graphics 2012.

• In Chapter 11 we develop screen-space bias compensation, a reformu-
lation of bias compensation that allows us to extract visibility informa-
tion directly from screen space. This makes it possible to accelerate
bias compensation on the GPU achieving interactive frame rates. This
chapter is based on our work [Novák et al., 2011] presented at the
Symposium on Interactive 3D Graphics and Games 2011 (I3D’11).



CHAPTER 2

From Point Visibility for Image Generation

IMAGE synthesis is a complex process that involves several tasks to turn
a description of a virtual scene into a displayable image. The scene is

viewed from the position of a virtual camera that defines an image plane.
From this perspective, an algorithm computes the visible surface through
each image sample and records the corresponding colour value returned
from a shading algorithm. For the sake of simplicity, we assume objects are
represented by triangle meshes.

In this chapter we review ray casting, or ray tracing in its recursive form,
and rasterization, the two fundamentally different algorithms for comput-
ing the visible surfaces from an arbitrary point of view (from-point visibil-
ity). Integral to both approaches is the number of (triangle) primitives that
must be processed, and in the following we discuss this matter of efficiency
mentioning techniques that quickly cull hidden primitives from image gen-
eration.

2.1 Ray Tracing

Simple ray tracing, as described by Appel [1968], is an image generation
technique that is based on intersections between rays and objects or the
primitives they are made of, respectively. The principle is simple: For each
sample in the image plane, a primary ray in 3D world space is created. The
position of the virtual camera is taken as ray origin, and the direction is
constructed so it pierces the image sample (Figure 2.1 left). In the simplest
form, ray tracing iterates over a list of all primitives and tests the ray for
an intersection, thereby finding all potentially visible surface points. By
keeping track of the intersection distance, the algorithm determines the
visible surface point by selecting that which is closest to the camera.
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Figure 2.1: Left: Ray casting shoots rays with the camera’s position as origin

through each image sample to intersect the scene objects. The closest inter-

section is recorded in the image plane. Right: Recursive ray tracing spawns

secondary rays for refractions and reflections.

2.1.1 Applications

After the visible surface has been determined by ray casting, the shading
operation is executed at the intersection point. This for instance may in-
clude evaluating local illumination models such as the Phong model [Phong,
1975]. Detecting the visible surfaces from the camera is not the only pur-
pose ray casting can be used for. Since rays can be arbitrarily defined,
shadow rays can be used to test if any light reaches the surface point, test-
ing its visibility from the light’s point of view. Even shading operations
can spawn new secondary rays recursively in order to handle transparency,
refractions, reflections [Whitted, 1980] (Figure 2.1 right), or even diffuse
inter-reflections [Cook and Torrance, 1982]. This recursive evaluation of
visibility is then referred to as ray tracing, and because of the generality we
will use this term henceforth in our discussions. Not only shading opera-
tions benefit from the flexibility of rays. Camera models can easily be ex-
tended to include depth of field [Cook and Torrance, 1982] or sophisticated
projection schemes for non-planar viewports [Blinn and Newell, 1976; Hei-
drich and Seidel, 1998]. Beyond that, rays are an invaluable tool for light
transport simulation because entire paths that describe the propagation of
light in virtual scenes can be constructed [Pharr and Humphreys, 2010].

2.1.2 Efficiency

Unfortunately, ray tracing is computationally highly demanding because
one must compute an intersection with each primitive for each ray, even
with ones that are not intersected. To remedy this situation, researchers
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Figure 2.2: Left: A bounding volume hierarchy intersected by a ray. Right:

Sub-trees are skipped if the ray does not intersect the sub-trees’ bounding boxes.

have developed acceleration structures that quickly cull large sets of hid-
den primitives from ever being intersected. All these approaches are based
on subdivision schemes.

Grids: Uniform grids [Fujimoto et al., 1986] divide the space containing
the scene into rectangular cells, so called voxels, which store links to the
contained geometry. Using a 3D digital differential analyzer (an incremen-
tal line drawing algorithm in 3D space), traversal quickly enumerates all
voxels intersected by the ray and the geometry within. Later this approach
was further extended, using hierarchical grids [Jevans and Wyvill, 1989]
or grids specialised for rays with specific origins and directions [Hunt and
Mark, 2008].

Hierarchical space subdivision: Hierarchical space subdivision schemes
use splitting planes for recursively dividing the available space into smaller
subregions. During traversal, the subregions a ray intersects are recursively
refined until a subregion contains only primitives, which are then inter-
sected. For this purpose, Glassner [1984] proposed octrees based on a
rigid space subdivision scheme, but kd-trees [Kaplan, 1985] have proved
to be more efficient due to adaptive placement of splitting planes. The
latter has been optimized using surface area heuristics (SAH) [MacDonald
and Booth, 1990]. The optimal position of a splitting plane is derived so
that the probability of traversing the created subregions is minimized. Fur-
ther tuning [Havran and Bittner, 2002], and improved [Wald and Havran,
2006] and parallel [Shevtsov et al., 2007] construction algorithms have
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contributed to the fact that the SAH has become the dominant construction
algorithm for good ray tracing hierarchies.

Hierarchical object subdivision: Object subdivision schemes, such as
bounding volume hierarchies (BVH) [Rubin and Whitted, 1980; Kajiya, 1986],
pursue a slightly different strategy. BVHs use tight bounding volumes for the
scene’s primitives. Bounding volumes are recursively split finding tighter
bounds for the remaining primitives in each step (Figure 2.2). As for kd-
trees, elaborate construction schemes exist. Goldsmith and Salmon [1987]
compute best-fitting bounding boxes based on the probability ever being hit
by a ray, similar to the SAH algorithm, which has also been applied to BVH
construction [Wald, 2007].

Interactive ray tracing: Ray tracing has long been limited to offline ren-
dering applications, but ever increasing computational power and the avail-
ability of highly efficient acceleration structures spawned the field of inter-
active and real-time ray tracing. Much pioneering work was done by Wald
[2004]. An important aspect of interactive applications are dynamic scenes,
but rebuilding acceleration structures in each frame is prohibitive due to
the costly SAH. A logical choice therefore was using the simpler grids [Wald
et al., 2006], but BVHs have also been extended to deformable scenes [Wald
et al., 2007a,b].

The first steps in this field were still done on the CPU, but ray tracing
gradually moved onto the GPU thanks to its highly parallel hardware ar-
chitecture and programmability. First results were shown by Purcell et al.
[2002] who developed a GPU-based photon mapper. The lack of traversal
stacks that are required for traversing acceleration structures made ray trac-
ing on the GPU difficult [Horn et al., 2007] and stackless alternatives were
developed [Popov et al., 2007]. In early days the possibilities of program-
ming GPUs was limited, hindering the advances in GPU-based ray tracing,
until the advent of GPGPU architectures [NVIDIA Corporation, 2011]. Since
then impressive results have been achieved that show hundreds of million
of rays per second [Aila and Laine, 2009] for solutions tailored to specific
problems. Later, entire ray tracing solutions [Parker et al., 2010] emerged
that can be used for interactive rendering, but also to accelerate offline im-
age generation.

Not only ray tracing benefits from the GPU’s computational power. The
costly construction of good acceleration structures can also be accelerated
with GPUs. Lauterbach et al. [2009] showed that bounding volume hierar-
chies for fully dynamic scenes with moving and deforming objects can be
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Figure 2.3: Left: Scanline rasterization iteratively processes the image sam-

ples on each scanline segment enclosed by the triangle’s edges. Right: For all

image samples within the triangle’s bounding box the signs of all three edge

equations determine if a sample is covered by the triangle.

built on the GPU for interactive rendering. Similarly, Zhou et al. [2008]
demonstrate interactive kd-reconstruction for deformable scenes on GPUs.

2.2 Rasterization

In contrast to ray tracing, rasterization in its classical sense completely oper-
ates in the 2D image plane. This implies that a (triangle) primitive must first
be projected onto the image plane before all image samples that are covered
by the projection are determined. To avoid artefacts from projection, trian-
gles must be clipped in projective space [Foley et al., 1990] beforehand.
Early scanline rasterization algorithms [Foley et al., 1990] walked along tri-
angle edges interpolating triangle barycentric coordinates over the sections
of the scanlines falling between a triangle’s boundaries (Figure 2.3 left).
Because the algorithm operates on projected triangles, perspective-correct
interpolation [Heckbert, 1989] must be used to recover barycentric coordi-
nates of the corresponding triangle in 3D space. Pineda [1988] developed
an alternative approach and derived edge equations of the form

Ei(x , y) = Ai x + Bi x + Ci, i ∈ {0, 1, 2}

for each triangle edge. An image sample is covered by the (projected) tri-
angle when all edge equations have positive sign (Figure 2.3 right). This is
trivial to parallelize, because each image sample can be processed indepen-
dently. However, it is prohibitively costly when all image samples are tested



36 2. From Point Visibility for Image Generation

Geometry 

Processing
Rasterization

Fragment 

Processing
Depth Testing

(Visibility)

Figure 2.4: A simplified rendering pipeline: (1) Before triangles are raster-

ized, geometry processing transforms, clips and projects them onto the image

plane. (2) Rasterization computes sample coverage and interpolates barycen-

tric coordinates. (3) Fragment processing executes shading operations and (4)

depth testing decides whether the fragment will be visible.

and Pineda [1988] proposed to test only those within the 2D bounding box
of the triangle (also called binning). Later, edge equations were extended
to homogeneous space [Olano and Greer, 1997]. Then rasterization op-
erates in post-projective space, which avoids clipping entirely. Davidovič
et al. [2012] developed 3D rasterization, avoiding projection entirely, mak-
ing rasterization onto non-linear viewports possible.

However, rasterization only enumerates the pixels covered by a trian-
gle. To resolve visibility, a z-buffer must be used. Because rasterization
cannot stand on its own for image generation, it is part of a rendering

pipeline, as implemented by modern DirectX [Microsoft Corporation, 2010]
and OpenGL [The Khronos Consortium, 2011]. The rendering pipeline
takes care of all tasks required before primitives can be rasterized (pro-
jection, clipping) and performs shading as well as visibility testing on frag-
ments produced by the rasterizer. A fragment is a structure containing the
address of an image sample and interpolated attributes, including a depth
value.

Ultimately, the depth value is used for depth testing [Catmull, 1974]. A
z-buffer stores a depth value for each image sample in the output, which is
only replaced if the produced fragment passes the depth test. Typically this
is the case if the depth value is smaller than the contents of the depth or
z-buffer.

2.2.1 Applications

Rasterization is the main image generation algorithm for interactive ren-
dering. The reason is twofold: First, rasterization is simple because it does
not require complicated data structures, thus easily supports fully dynamic
scenes with animation, moving objects, and deformations; an aspect ray
tracing struggles with. Also, the order in which primitives are processed is
clearly defined (Figure 2.4), which is ideal for hardware-based feed-forward
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pipelines. Second, rasterization, fragment generation, shading, and depth
testing are completely independent of each other, i.e. rasterization can
easily be parallelized. Modern GPUs have dedicated hardware rasterizers
which achieve triangle throughputs of hundreds of millions per second.

2.2.2 Efficiency

Two aspects are important to maintain high efficiency in traditional raster-
ization pipelines (Figure 2.4): First, costly shading operations for hidden
surfaces (or fragments) must be avoided. Second, geometry processing of
hidden surfaces must also be avoided, culling them prior to submitting them
to the pipeline.

Fragment culling: Visibility is resolved after shading because shaders may
discard fragments or change their depth values. This implies that shad-
ing is also executed for hidden surfaces, and should be avoided for expen-
sive shaders (e.g. lighting computation). In many cases rendering pipelines
on the GPU can cull large blocks of fragments autonomously using early
z-testing. Essentially, blocks of fragments are tested against a hierarchi-
cal depth-buffer [Greene et al., 1993; Greene, 1999] before they enter the
shading stage. However, this is only possible if the shader does not dis-
card fragments or change their depth value. Finally, the rendering order
is also important, i.e. primitives should be submitted in order of increasing
distance to the camera’s position. This is because culling depends on the
current contents of the depth buffer. Drawing the nearest primitives first
increases the likelihood that hidden surfaces are culled before shading.

A more reliable approach to avoid shading for hidden surfaces is the
geometry buffer [Saito and Takahashi, 1990]. First, images of shading pa-
rameters (position, normal, etc.) are rendered (potentially exploiting early-
z culling), and second, shading is executed for each image sample using the
previously rendered parameters as input. This is similar to ray tracing which
also executes shading only for visible surface points.

Geometry culling: To maintain high rendering efficiency, it is not only
crucial to avoid shading hidden surfaces, but also to avoid submitting ge-
ometry to the rendering pipeline that is not visible in the final image. This
is the ultimate goal for a huge class of culling algorithms, which have been
a vital part of computer graphics since the early 1970s, and a huge body
of research exists. A classification of visibility problems and comprehensive
overviews are given by [Cohen-Or et al., 2003; Bittner and Wonka, 2003].
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Frustum culling [Akenine-Möller et al., 2008] is a simple method to
avoid geometry processing, only submitting geometry to the rendering pipe-
line that lies within the camera’s viewing frustum. Detecting hidden sur-
faces within the viewing frustum, however, is much more sophisticated and
output-sensitive. On modern GPUs, this is possible with hardware occlu-
sion queries (HOQ). They count the number of visible image samples by
rasterizing geometry, such as bounding boxes, against the z-buffer. After
reading back the query result, a decision is made whether to render the
object or not. This is a fundamental building block for many algorithms.
For example, many implementations of cell and portal algorithms [Luebke
and Georges, 1995] determine the visibility of portals with HOQs. Read-
ing back the query result implicitly synchronizes CPU and GPU execution
which is detrimental to performance. This thereby induced read-back la-
tency can be avoided querying the result not earlier than three frames after
issuing the HOQ [Microsoft Corporation, 2010]. Yoon et al. [2003], Bittner
et al. [2004], and Mattausch et al. [2008] demonstrate how to use HOQs for
hiding the read-back latency efficiently, and how to exploit spatial and tem-
poral coherence of visibility. Guthe et al. [2006] apply a statistical model to
describe occlusion probability of queries in order to reduce the number of
wasted queries. HOQs are not only viable for on-line visibility determina-
tion, but have also been successfully used to speed up from-region visibility
pre-computation [Leyvand et al., 2003] and complexity reduction of large
meshes [Ernst et al., 2004].

Conditional rendering (OpenGL) [The Khronos Consortium, 2011] or
occlusion predicates (DirectX) [Microsoft Corporation, 2010] avoid explicit
synchronization. First, the (bounding) geometry is rasterized against an
existing depth buffer to generate the predicates, and later predicated draw
calls are issued: rendering is automatically omitted, if the query result is
available and full occlusion has been detected, i.e., predicates are non-
stalling and are therefore not guaranteed. This is perfectly suited for per-
object occlusion culling.

Apart from hardware occlusion queries (HOQs) various other methods
exist which determine visibility in image space in an output-sensitive way:
Hierarchical representations of depth maps (similar to [Greene et al., 1993])
have been presented by [Décoret, 2005], which can be queried in GPU pro-
grams, but can also be used to cull geometry prior to draw submission. Hi-
erarchical occlusion maps [Zhang et al., 1997] store opacity and not depth
information which allows approximate visibility culling by using an opac-
ity threshold. For this, occluders and occludees are distinguished, and the
visibility test is decoupled into an overlap test (do objects overlap in screen
space), and a depth test (are occluders closer to the viewer than occludees).
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Occupancy maps [Staneker et al., 2003] aim at reducing the number of vis-
ibility queries: A low-resolution version of the frame buffer is stored as a
bitmask to determine efficiently if an object is visible or possibly occluded
(which is then verified with a standard HOQ).
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CHAPTER 3

Radiometry

Light transport simulations follow physical principles to measure the dis-
tribution of radiative energy in space. The central quantity of radiometry
studies is radiance, a density of radiative power over solid angle and area.
This density remains constant along straight paths or rays (assuming vac-
uum) and thus lends itself ideally to ray or geometric optics. As radiometry
is a study of energy distribution, it cannot encompass any phenomena only
explainable within wave optics or even quantum optics, for instance diffrac-
tion and interference.

By the means of radiometry, it is possible to formulate the relation be-
tween incident and reflected energy at a surface from which local reflection

properties and eventually the rendering equation [Kajiya and Von Herzen,
1984] are derived.

Not only can radiometry be used to study the reflective behaviour of
surfaces, but it can also be used in studies of gaseous phenomena. To that
end Chandrasekhar [1960] established radiative transfer, the theory of ra-
diative energy distributions in participating media. Nowadays the theory
has been adopted by computer graphics and is heavily applied in volume
rendering [Hege et al., 1993] and light transport simulations for simulating
participating media [Dutré et al., 2006; Pharr and Humphreys, 2010].

3.1 Radiometric Quantities

Radiation can be conceptualized by streams of photons travelling through
space [Dutré et al., 2006]. Each photon carries an energy of

eν = hν,
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which solely depends on the photon frequency ν and Planck’s constant h.
A stream of n photons of frequency ν carries the total amount of radiant
energy Qν = nνeν. Taking only visible frequencies from ν0 = 400T Hz to
ν1 = 790T Hz into account, the total amount of radiant energy can be com-
puted.

Q =

∫ ν1

ν0

nνhνdν.

Based on radiant energy, we can define radiant flux Φ as the total amount
of energy that is registered within the unit time interval, i.e.

Φ =
dQ

dt
[W ] .

As radiation flows through a surface, we can measure the flux per unit area.
This quantity is called irradiance if the flux is incident on the surface:

E =
dΦin

dA

�
W

m2

�

.

Similarly, radiation can also leave the surface, due to reflection or emission.
This exitant flux is called radiosity

B =
dΦout

dA

�
W

m2

�

,

and has the same physical units as irradiance.
Just as flux can be defined over surface, it can also be defined over solid

angle. The solid angle is conceptually the same as the radian measure in
2D, but extended into 3D space. It is measured in steradians (sr) and corre-
sponds to the total area of the projection of an object onto the unit sphere.
Therefore the maximum solid angle is 4π and the differential solid angle
dω is essentially a unit direction. The relation between solid angle and
surface are is given by

dω =
cosθ

r2
dA. (3.1)

Here dA is the differential surface at a position y which is projected onto
the unit sphere at a point x where the solid angle is measured (Figure 3.1).
The distance between x and y is denoted r, and θ is the angle between the
connection between x and y and the normal at y.
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Figure 3.1: The solid angle of a differential surface dA is its projection onto

the unit sphere.

Intensity is defined as the total amount of power that arrives at a point
over solid angle:

I =
dΦ

dω

�
W

sr

�

The final and probably most important radiometric quantity for light trans-
port simulations is radiance, defined as flux over projected area over solid
angle

L =
d2
Φ

cosθdAdω

�
W

m2 · sr

�

where θ is the angle between the surface’s normal vector and the direction
ω (Figure 3.2). From the definition of radiance, the relations to intensity,
irradiance/radiosity and flux become immediately clear.

dE(x,ω) = L(x,ω) cosθdω

dI(x,ω) = L(x,ω) cosθdA

dΦ(x,ω) = L(x,ω) cosθdAdω (3.2)

3.2 The Rendering Equation

The rendering equation is the governing equation of the radiative equilib-
rium distribution of spectral energy. It was first introduced by Kajiya [1986]
to the field of computer graphics. We briefly summarize the results, starting
with local reflection and extending the concept to light transport and global
illumination.
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a) b)

Figure 3.2: Radiance is the energy density within a beam confined to a surface

element dA with normal n. (a) At travel directions ω parallel to n, the beam

cross-section is equivalent to dA. (b) At other angles, the beam cross-section is

reduced by a factor of cosθ .

3.2.1 Local reflection

The appearance of objects depends on two criteria, the incident illumina-
tion from all directions (also called light field), and the objects’ material
properties. Under the same incident illumination, different objects appear
differently because of their reflective properties. This reflection behaviour
under pre-set lighting conditions is the study of local reflection. Local reflec-
tion considers the behaviour of reflection on a macroscopic level. Instead
of taking the underlying physical processes into account which leads to ab-
sorption and emission or scattering (microscopic level), the reflection model
describes the amount of radiation reflected into a given direction given an
incident radiance field.

In the most general case, light enters a surface from a direction ωi at
a surface point pi, is scattered within the material and is outgoing into di-
rection ωo at a surface point po. This relation of incoming and outgoing
radiance is described by the bidirectional subsurface scattering reflectance

distribution function (BSSRDF) [Nicodemus et al., 1977]. For a huge class
of materials, however, the simplifying assumption can be made that light is
outgoing at the point of incidence, i.e. pi = po. Then the function govern-
ing the ratio between incident and exitant radiation is called bidirectional

reflectance distribution function (BRDF) and defined as the ratio of outgoing
radiance and irradiance [Dutré et al., 2006]:

fr(x,ωi,ωo) =
d L(x,ωo)

dE(x,ωi)
=

d L(x,ωo)

L(x,ωi) cosθdωi
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Figure 3.3: The reflection integral (Equation 3.3) accumulates incident light

arriving from direction ωi in the upper hemisphere Ω+ at the shading point x

and computes radiance reflected into direction ωo.

Rearranging terms yields

d L(x,ωo) = fr(x,ωi,ωo)L(xωi) cosθdωi

Physically-plausible BRDFs must obey three important properties [Dutré
et al., 2006]: (1) Reciprocity, i.e. interchanging the incident and outgo-
ing directions does not change the value of the BRDF. (2) the BRDF must
be energy conserving, and (3) it must be linear with respect to all incident
directions.

The latter property allows us to compute the total reflected radiance
solving the reflection integral (Figure 3.3).

L(x,ωo) =

∫

Ω
+

fr(x,ωi,ωo)L(x,ωi) cosθdωi, (3.3)

where Ω+ is the set of all directions in the upper hemisphere aligned with
the surface normal at x, and cosθ is the positive cosine of the angle between
the normal and the direction ωi.

3.2.2 The Rendering Equation

The rendering equation [Kajiya, 1986] states that light exitant from any
surface point is the sum of its emitted and reflected radiance. Equation 3.3
already defines the reflected radiance and thus the rendering equation is

L(x,ωo) = Le(x,ωo) +

∫

Ω
+

fr(x,ωi,ωo)L(x,ωi) cosθdωi

︸ ︷︷ ︸

local reflection

(3.4)
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Integration over area: The rendering equation, or more importantly, the
shading integral are defined as integration over solid angle. This formula-
tion is not always convenient, for instance when computing direct illumi-
nation from area light sources, or in general, when gathering illumination
from surface elements. In those cases it serves better to reformulate the
shading integral as integration over surface area. Key to that is substituting
the differential solid angle using Equation 3.1 (Figure 3.1).

dω =
cos+θy→x

‖x− y‖2
dy. (3.5)

Here the cos+θy→x is the positive cosine of the angle between the normal at
y and the direction from y to x, i.e. it is non-zero, only if the normal at y

faces x. Substituting then yields:

L(x←y) = Le(x←y) +

∫

A

fr(x←y←z)Gv(y↔z)L(y←z)dz (3.6)

Here the three point notation [Veach, 1997] has been used for brevity and
to unmistakeably state the directional dependencies in this reformulation.
The extended geometry term

Gv(y↔z) = V (y↔z)
cos+θz→y cos+θy→z

‖y− z‖2
︸ ︷︷ ︸

=G(y↔z)

arises from the substitution of the integration over solid angle, where visi-
bility has to be taken into account explicitly. The visibility function V (y↔z)

evaluates to zero if the direct connection between the arguments is ob-
structed by a surface. Otherwise it is one.

Operator notation: As can be seen, the rendering equation is recursive
in nature. This expansive notation often becomes cumbersome and Kajiya
[1986] noted that is more convenient defining an integral transport operator

〈TL〉(x,ωo) =

∫

Ω
+

fr(x,ωo,ωi)L(x,ωi) cosθidωi.

Then the rendering equation can compactly be written as: L = Le + TL.
Recursively expanding the right-hand side substituting L with its definition,
yields the well-known Neumann series

L =

∞∑

i=0

Ti Le.
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This equation states, that light L(x,ωo) is the sum of light emitted at x0,
light that has been reflected once (direct illumination), twice (one bounce
indirect illumination), and so on (i = 0,1,2,...). This formulation has been
adopted to derive many rendering algorithms, such as path tracing [Ka-
jiya, 1986], bidirectional path tracing [Lafortune, 1996], and instant ra-
diosity Keller [1997]. The derivation of our screen space bias compensation
(cf. Chapter 11) is also based on this formulation.

3.3 The Volumetric Rendering Equation

The rendering equation only considers light transport between surfaces in
vacuum. In real scenarios, light (photons) also interacts with particles in
the air. These, for instance, are small dust particles, water droplets, soot,
or materials with high scattering behaviour (e.g. human skin). In general,
this is called participating medium.

When photons travel through a medium, there are three possibilities
how they interact with it [Chandrasekhar, 1960].

Absorption occurs when particles of the medium absorb all radiant en-
ergy of a colliding photon. Energy is typically transformed into other
forms, such as heat, or re-emitted into the medium (with different
wavelength).

Scattering occurs when a photon is deflected from its travelling direction
ω after colliding with a particle of the medium (out-scattering), and
travelling along a new direction ω′ (in-scattering).

Emission is the result of thermal processes within the medium, for instance
in fire. Photons are emitted into the medium.

All those effects are brought together in the general equation of transport,
which states [Cerezo et al., 2005]:

d L(x,ω)

ds
= −σt(x)L(x,ω)
︸ ︷︷ ︸

extinction

+σa(x)Le(x,ω)
︸ ︷︷ ︸

emission

+σs(x)

∫

Ω

fp(x,ω,ω′)L(x,ω′)dω′

︸ ︷︷ ︸

in-scattering

.

Light travelling in direction ω is removed from the straight path due to
absorption (σa) and out-scattering (σs). Both effects account for extinc-
tion and are expressed in the extinction coefficient σs(x) = σa(x) +σs(x).
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contribution from surface reflectance contribution from emission and in-scattering

+

Figure 3.4: The volumetric rendering equation is the sum of attenuated sur-

face emission and reflectance and the integral over light emitted and scattered

within the volume.

Furthermore, radiative energy is added through emission and in-scattering.
This is combined in the so called source term

Li(x,ω) = σa(x)Le(x,ω) +σs(x)

∫

Ω

fp(x,ω,ω′)L(x,ω′)dω′. (3.7)

The term fp(x,ω,ω′) is called phase function and is the probability of a
photon being scattered at x from direction ω into direction ω′ [Pharr and
Humphreys, 2010]. The phase function is a probability distribution, i.e. it
is normalized: ∫

Ω

fp(x,ω,ω′)dω′ = 1.

Integral formulation: The equation of transfer is an integro-differential
equation and has an integral form counterpart, which makes it suitable for
rendering algorithms.

In the integral form of the equation of transport, the new quantity optical

depth is introduced. The optical depth is defined between two points x,y,
which lie on a straight path with direction ω, i.e. y= x+ sω.

δ(x,y) =

∫ s

0

σt(x+ s′ω)ds′.

Based on optical depth, the transmittance

τ(x,y) = exp
�

−δ(x,y)
�
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is defined as the fraction of light that is not attenuated travelling from x to
y. Then the equation of transfer can be reformulated, and radiance L(x,ω)
leaving a point x into direction ω becomes (Figure 3.4):

L(x,ω) = L∂ V (x0,ω)τ(x0,x)
︸ ︷︷ ︸

=Latt(x,ω)

+

∫ ‖x−x0‖

0

Li(x0 + s′ω,ω)τ(x0,x0 + s′ω)
︸ ︷︷ ︸

Lscatt(x,ω)

ds′.

(3.8)

L∂ V (x0,ω) is the light that enters the medium at its boundary, and Li(x0 +

s′ω,ω) in-scattered and emitted light described by the source term (Equa-
tion 3.7). Boundaries typically are the scene surfaces where light is reflected
into the medium. Hence it is computed using the rendering equation,

L∂ V (x0,ω) = Le(x0,ω) +

∫

Ω

fr(x,ωi,ω)L(x0,−ωi) cosθdωi.

Light incident on a surface is computed by the volumetric rendering equa-
tion (Equation 3.8). This is why the direction incident directionωi is negated.
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CHAPTER 4

Global Illumination Algorithms

GLOBAL illumination (GI) has been an active research area since the be-
ginning of the 1980s. In the early years, global illumination and pho-

torealism did not go farther than computing direct illumination plus ac-
counting for perfect specular reflections and refractions [Whitted, 1980].
In 1984 the radiosity algorithm, based on finite element methods, has been
applied to light transport for purely diffuse surfaces [Goral et al., 1984]. At
the same time, the first stochastic methods for handling soft shadows, mo-
tion blur, and depth of field started to appear [Cook et al., 1984]. Two years
later, Kajiya [1986] introduced the first path tracing algorithm and the ren-
dering equation, which ever since has been the formal foundation for all
global illumination algorithms. In the following decade, research heavily
focused on improvements and extensions of radiosity algorithms, until the
mid 1990s, when particle tracing [Jensen, 1996; Keller, 1997] and Monte
Carlo path tracing algorithms [Lafortune, 1996; Veach, 1997] gained mo-
mentum. With the ever increasing computational power and programmable
flexibility of GPUs, the early 2000s ushered the era of interactive GI algo-
rithms. In contrast to techniques from the 1990s, which were developed
to cover the full spectrum of light transport, interactive GI algorithms are
either tailored to specific problems or limited in the kind of phenomena
they can compute. Those restrictions help to reduce the complexity of light
transport, which is mostly a necessary evil to maintain interactivity.

In this chapter, we briefly summarize the core ideas and principles of
traditional global illumination techniques, followed by a section on global
illumination in participating media, and a survey on interactive global illu-
mination algorithms.
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4.1 Radiosity

Radiosity is a finite element method that is inspired by heat transport sim-
ulations and was introduced to computer graphics by Goral et al. [1984].
The core of the algorithm is to discretize the scene’s surfaces into finite ele-
ments, also referred to as surface patches in classic radiosity. For each sur-
face patch, radiosity is assumed to be constant. This can also be interpreted
as a projection of the radiosity function onto a piecewise-constant basis. In
this spirit, other basis functions, such as Wavelets [Gortler et al., 1993] and
polynomial basis functions [Zatz, 1993] have been explored. Then light
transport can be formulated as system of linear equations, in which each
equation

Bi = Be,i +ρi

N∑

j=1

Fi jB j,

computes the radiosity of the i-th surface patch [Sillion and Puech, 1994].
Here ρi denotes the patch albedo and Be,i the emitted radiosity. The form
factor

Fi j =
1

Ai

∫

Ai

∫

A j

V (xi,x j) cosθxi
cosθx j

π‖xi − x j‖2
dxidx j

encodes the fraction of radiosity of B j that contributes to the reflected ra-
diosity at the i-th patch. The linear system of equations can be solved by
using numerical methods, such as Gauss-Seidel iteration [Sillion and Puech,
1994], Southwell relaxation, or progressive radiosity [Cohen et al., 1988].

Since its conception, research heavily focused on solving the pressing
issues of radiosity. Form factor computation is the most time consuming
operation involving numerous visibility queries, especially as the number
of form factors grows quadratically with the number of surface patches.
To alleviate this complexity, Hanrahan et al. [1991] proposed hierarchical
radiosity, significantly reducing the number of form factor computations.
Other improvements include lifting the restriction to purely diffuse surface
reflectance [Immel et al., 1986] and improving quality [Heckbert, 1992;
Lischinski et al., 1993]. As GPUs became more powerful and flexible, the
first GPU-based radiosity solvers started to appear. While Coombe et al.
[2004] ignored visibility, the later proposed Antiradiance method [Dachs-
bacher et al., 2007] shows that occlusion can be solved by propagating neg-
ative light. Besides these selected examples, radiosity methods proved to be
fertile research ground, which brought many more extensions to life. Ex-
cellent introductions to radiosity can be found in dedicated books [Cohen
et al., 1993; Sillion and Puech, 1994].
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4.2 Monte-Carlo Integration

Monte-Carlo simulations are a class of stochastic techniques that makes it
possible to estimate the solution of problems which are not analytical solv-
able. As such they are an invaluable tool for global illumination algorithms
because they make it possible to estimate the solution of the reflection inte-
gral (cf. Chapter 3.2). In general, an integral can be estimated by a Monte-
Carlo estimator of the form

∫

D
f (x)d x ≈

1

N

N∑

i=1

f (x i)

p(x i)
,

where the values x i are randomly picked from the integration domain D
with probability p(x i). This estimator is said to be unbiased if the expected
value of the error

E

�

1

N

N∑

i=1

f (x i)

p(x i)
−Q

�

= 0,

for all N ≥ 1, where Q is the value of the integral to be estimated. Following
the law of large numbers (N → ∞), the estimator becomes the expected
value, which in turn is the solution to the integral:

lim
N→∞

1

N

N∑

i=1

f (x i)

p(x i)
= E

�

1

N

N∑

i=1

f (x i)

p(x i)

�

=

∫

D

1

N

N∑

i=1

f (x i)

p(x i)
p(x i)d x

=

∫

D
f (x i)d x .

Due to being a stochastic method, the estimator deviates from the expected
value for a finite number of samples, and the root-mean-square error (RMSE)
reduces with a convergence rate of O(N−

1
2 ), regardless of the dimension of

D.
To improve the estimation, Monte-Carlo methods rely on variance reduc-

tion techniques. The most important technique in photorealistic image syn-
thesis is importance sampling. Hereby a probability density function (PDF)
is chosen that matches the integrand as closely as possible, and thereby
samples are drawn preferably where the integrand has a significant contri-
bution. Ideally the PDF is just the scaled integrand, i.e. p(x) ∼ c f (x), but
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without importance sampling with importance sampling

Figure 4.1: Monte-Carlo integration of the reflection integral with glossy ma-

terials. Incident directionsωi close to the perfect reflection r have a high contri-

bution. Left: Uniform sampling considers all direction equally. Right: Impor-

tance sampling prefers directions for which the BRDF has higher contributions.

this would make Monte-Carlo integration superfluous because the value of
the integral would already be known (c−1 =

∫

f (x)d x). A common appli-
cation of importance sampling is to distribute directions according to the
BRDF when computing the estimator of the shading integral (Figure 4.1):

L(x,ωo)≈
1

N

N∑

i=1

fr(x,ωo,ωi) cosθi

p(ωi)
L(x,ωi).

Here p(ωi) is the probability of sampling the direction ωi of incident light
L(x,ωi) that contributes to the estimation, and cosθi is the cosine of the
angle between the normal at x and the incident direction ωi.

Incident directions ωi may be distributed uniformly, but make the esti-
mation prone to high variance if this strategy is applied to glossy surfaces.
This is because glossy surfaces reflect light over a narrow solid angle, and
uniform sampling takes incident illumination mostly from directions with
low contribution to the overall estimation. The variance can substantially
be reduced by sampling directions for which the BRDF has a significant con-
tribution to the overall estimation. A unified scheme for importance sam-
pling BRDFs does not exist because it highly depends on the BRDF itself.
For example, diffuse surfaces benefit from sampling according to the cosine
of the incident angle [Pharr and Humphreys, 2010]. Importance sampling
the Phong BRDF [Phong, 1975; Pharr and Humphreys, 2010] or Lafortune’s
model [Lafortune et al., 1997] considers the diffuse term and the specular
term separately and combines results afterwards. The Ward model [Ward,
1992] applies a similar strategy, but uses exponential functions for the spec-
ular term. For the well-known Cook-Torrance BRDF [Cook and Torrance,



4.3 Path Integrals and Path Tracing 55

1982] analytical sampling does not exist, but factored representations can
be used [Lawrence et al., 2004].

Unfortunately, not in all cases light is incident from directions for which
the BRDF has high contribution. Ideally, samples are distributed according
to the full integrand, i.e.

p(ωi)∼ c fr(x,ωo,ωi)L(x,ωi) cosθi,

but this would require the solution to the integral (see above). Numeri-
cal approaches, however, are possible. On the one hand, Jensen [1995]
used photon mapping to sample incident illumination and constructed a
piecewise-constant numerical probability density function to approximate
sampling according to the full integrand (see above) for path tracing, but
his numerical approach is computational prohibitive. Veach [1997], on
the other hand, computed two estimators using different importance sam-
pling strategies and combined them optimally using multiple importance
sampling.

Besides importance sampling, a large repertoire of other variance re-
duction techniques exist, such as control variates, stratified sampling, and
low-discrepancy sampling among others [Veach, 1997].

4.3 Path Integrals and Path Tracing

Path integrals are another way of describing light transport and are closely
related to the Neumann series (cf. Chapter 3.2). Often, this way is pre-
ferred because path integrals, as Veach [1997] points out, provide a global
view onto the integration problem, are intuitive, and make integration tech-
niques in the literature directly applicable. Key to the path integral refor-
mulation is the infinite dimensional path space. A path xn is a concatenation
of vertices x0x1...xn where x0 lies on the image plane and xn lies on a light
source. All vertices in-between lie on scene surfaces. The path is said to
have length n, counting the edges required to connect pairs of successive
path vertices. For instance, a path of length 2 consists of a vertex on the
image plane, one on a scene surface and one on a light source. All paths of
length n form the set Pn, and the union of all Pn forms the path space.

Then light transport is formally expressed by the measurement equation

that computes the response I j of the j-th (pixel-)sensor to light carrying
paths of all length (Figure 4.2):
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Figure 4.2: Transport paths of different length. Paths that account for direct

illumination (y) have length 2. One bounce indirect illumination stems from

paths of lengths 3 (z). Any GI phenomena can be expressed within the path

integral, e.g. caustics (x).

I j =

∞∑

k=1

∫

Pk

W j
e
(x0←x1)G(x0↔x1)V (x0↔x1)T(xk)Le(xk→xk−1)dµ(xk)

(4.1)

Here dµ(xk) = dx0dx1 · · · dxk is the path measure, and W j
e
(x0← x1) the

response function of the j-th (pixel-)sensor. Essentially, this is a pixel filter,
e.g. a box filter, that accumulates all paths whose endpoints x0 lie within the
boundaries of the pixel. The geometry term is defined as (cf. Chapter 3.2):

G(x j↔x j+1) =
C(x j→x j+1)C(x j+1→x j)

‖x j − x j+1‖2
,

with

C(x→y) = cos+θx→y =max

�

0, dot

�

n(x),
y− x

‖y− x‖

��

,

where n(x) is the normal at x. The binary visibility function V (x j↔x j+1)

returns 1 if both points are mutually visible and zero otherwise. The path

throughput

T(xi) =

i−1∏

j=1

fr(x j−1←x j←x j+1)V (x j↔x j+1)G(x j−1↔x j)

is the fraction of emitted light Le(xk) that reaches the sensor at x0.
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Random walks: Despite the complexity of the equation, its estimator can
be easily computed. The only challenge that has to be overcome is how to
sample random paths. The typical approach is to construct paths incremen-
tally adding new path segments exploiting random walks. A random walk
in its simplest form traces a path starting from the image plane at x0. Shoot-
ing a ray into the scene, a path x1 of length 1 is constructed with the closest
intersection point x1. From there on, path tracing incrementally adds new
path segments by casting a new ray from the last vertex xn found into a
random direction ωn in order to find the next path vertex xn+1 = h(xn,ωn)

using the ray-casting function h(.). With each additional path segment, the
throughput changes as follows [Veach, 1997]:

T(xn+1) =
fr(xn−1←xn←xn+1)C(xn→xn+1)

p(ωn)
T(xn). (4.2)

Path tracing terminates when a light source is hit. Alternatively, transported
light can be computed at each newly added path vertex xn+1 connecting it
to the light sources thereby accounting for each path length. As the ran-
dom walk would continue infinitely, it must be terminated using Russian
roulette [Arvo and Kirk, 1990].

4.3.1 Extension to Participating Media

Pauly et al. [2000] opted for a generalized form of the path integral to
extend Metropolis Light Transport to participating media. The general form
of Equation 4.1 remains, however, generalized variants of the geometry
term, the visibility function, and the scattering function are introduced to
account for the fact that path vertices either reside in the volume or on a
surface. The measurement equation (Equation 4.1) is then redefined:

I j =

∞∑

k=1

∫

Pk

W j
e
(x0←x1)G

∗(x0↔x1)V
∗(x0↔x1)T

∗(xk)L
∗
e
(xk→xk−1)dµ(xk).

(4.3)

Light can be emitted from surfaces or the medium where it is partially ab-
sorbed (cf. Chapter 3).

L∗
e
(xk→xk−1) =

§
Le(xk→xk−1) xk on surface
σa(xk)Le(xk→xk−1) xk in volume

Visibility in the presence of participating media is non-binary because it
additionally accounts for transmittance, i.e. V ∗(x↔y) = τ(x↔y)V (x↔y).
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Figure 4.3: Three configurations for two subsequent path vertices exist. Both

vertices lie on surfaces (left), one of both vertices lies in the volume (middle),

the other on the surface, or both vertices are in the volume (right). For volume

vertices, the phase function and scattering coefficient contributes to the path

throughput, for surface points the BRDF is evaluated.

The generalized geometry term

G∗(x j↔x j+1) =
C∗(x j→x j+1)C

∗(x j+1→x j)

‖x j − x j+1‖2

replaces the cosine functions with their generalized counterpart. If a path
vertex lies in the volume, a normal, and therefore a cosine, does not exist,
i.e.

C∗(x j→x j+1) =

�

cos+ θ j x j on surface
1 x j in volume .

The generalized throughput T∗(xi) combines all generalized terms and
is the fraction of emitted light that reaches the sensor at x0.

T∗(xi) =

i−1∏

j=1

f ∗(x j−1←x j←x j+1)V
∗(x j↔x j+1)G

∗(x j↔x j+1),

with the generalized scattering function

f ∗(x j−1←x j←x j+1) =

�

fr(x j−1←x j←x j+1) x j on surface
σs(x j) fp(x j−1←x j←x j+1) x j in volume

which evaluates the BRDF in case x j lies on a surface, and otherwise ac-
counts for in-scattering due to the phase function and the scattering coef-
ficient. This differentiation leads to three light transport configurations for
two subsequent path vertices (Figure 4.3). Light is either exchanged be-
tween two surfaces, between the medium and the surface, or only within
the volume.
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Random walks: Random walks have to account for path vertices in the
volume where the throughput is updated as follows [Pauly et al., 2000]:

T(xn+1) = τ(xn,xn+1)
f ∗(xn−1←xn←xn+1)C

∗(xn→xn+1)

p(ωn)p(s)
T(xn), (4.4)

with xn+1 = xn+sωn, s ≤ ‖xn−h(xn,ωn)‖. The distance s is smaller or equal
to the distance of the closest surface in direction ωn and chosen using free
path sampling with probability p(s). Free path sampling is used because
the next path vertex may reside in the medium. For homogeneous media
exists a simple analytic formula [Lafortune and Willems, 1996; Raab et al.,
2008]:

s =
−ln(1− ξ)
σt

,

with the according probability density function p(s) = σt exp(−σts). For
media of non-uniform density exists only an implicit equation [Raab et al.,
2008] that cannot be applied directly. Instead Woodcock tracking, a rejec-
tion sampling technique, can be used [Coleman, 1968; Raab et al., 2008;
Yue et al., 2010]. The next path direction ωn is determined importance
sampling the phase function or the BRDF, respectively, depending on the
location of xn.

Algorithms: The first path tracing algorithm was proposed by Kajiya [1986].
Veach [1997] developed the path integral, a robust mathematical frame-
work in which many global illumination methods can be concisely expressed.
In particular, photon mapping [Jensen, 1996] and instant radiosity [Keller,
1997] can be formulated as integration over paths [Pharr and Humphreys,
2010].

Based on the path integral formulation, Veach [1997] developed bidirec-
tional path tracing (BPT), at the same time as Lafortune [1996]. BPT creates
subpaths through random walks from the light sources and the camera. Full
transport paths are then created connecting the sub-paths using multiple
importance sampling [Veach, 1997]. The Metropolis-Hastings algorithm is
a Markov chain Monte-Carlo technique that has been used by Veach [1997]
to create Metropolis Light Transport (MLT). MLT uses Markov chains to cre-
ate new path samples mutating existing paths according to different muta-
tion strategies. Those mutations are then either accepted or rejected which
helps faster conversion in difficult illumination scenarios, such as caustics.
Both, BPT and MLT, have later been extended to participating media [Lafor-
tune and Willems, 1996; Pauly et al., 2000].
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4.4 Photon Mapping

Photon mapping [Jensen, 1996] is a particle tracing algorithm, but despite
the name, those particles have nothing in common with photons as they are
understood in physics. Photon mapping is a two-pass method. First it traces
a set of light carrying trajectories through the scene, thereby computing a
sparsely sampled distribution of illumination incident on the scene surfaces.
Second, the incident illumination is reconstructed using reconstruction fil-
ters at surface points visible from the camera while evaluating the shading
integral numerically. Optionally, this step is replaced by final gathering (see
below).

Photon shooting: Particles with an initial power spectrum Φ0 are emitted
from the light sources, and their starting positions and directions in which
to trace the particles are sampled. Using ray tracing, the first visible surface
point on which a particle impinges is determined. There a record of the in-
cident illumination is created and stored in the so called photon map. Using
Russian roulette [Arvo and Kirk, 1990], it is decided whether a particle shall
be absorbed or scattered into a new direction. When scattered, the power
spectrum of the scattered particle Φi+1 depends on the power spectrum of
the incident particle Φi as follows:

Φi+1 =
fr(x,ωi,ωo) cosθo

p(ωo)
Φi.

Density estimation: In the second pass, photon mapping computes the
illumination at the surface points visible to the camera. This process, called
density estimation, is essentially a reconstruction of the incident illumina-
tion from the sparsely sampled illumination. Light reflected towards the
camera from a visible surface point x is approximated by

L(x,ωo)≈
N∑

i=0

fr(x,ωo,ωi)κ(x,x′
i
)Φp(x

′
i
,ωi), (4.5)

where κ is the normalized reconstruction filter and the Φp is the particle’s
spectral power that is incident at x′

i
from directionωi. N is the total number

of the photons in the photon map. Because the reconstruction filter usually
has limited support, it suffices to gather only those photons for which the
filter does not evaluate to zero.
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In contrast to path tracing [Kajiya, 1986], this approach is biased, but
consistent. The bias occurs because blurring is introduced by the recon-
struction filter κ. With an infinite number of photons (N →∞), the filter’s
support can be arbitrarily small, and thus it is said that the method is con-
sistent [Jensen, 1996].

Photon mapping works exceptionally well for caustics that appear on
diffuse surfaces by focusing light through reflective and refractive objects.
In caustic regions, the photon density is sufficiently high, and reconstruc-
tion yields acceptable results. If this focusing does not occur because of
multiple subsequent diffuse or moderately glossy bounces, the photon den-
sity at surface points is in general not sufficient. Then the approximation of
the reflection integral exhibits visible artefacts perceived as low frequency
noise. To counter this issue without introducing new undesirable artefacts,
final gathering can be used.

Final gathering: Final gathering calculates the amount of indirect illumi-
nation at a surface point and is typically used to improve the quality of ap-
proximate light transport methods, such as photon mapping. Typically final
gathering is computed using Monte-Carlo integration (cf. Section 4.2) and
ray tracing to sample the incident illumination. Wherever a sample ray in-
tersects a surface, light reflected towards the integration point is computed
using Equation 4.5. For satisfactory results, often hundreds of sample rays
must be processed at each gather point. This makes final gathering the most
time consuming part of photon mapping.

Not only photon mapping benefits from final gathering. Radiosity so-
lutions suffer from distracting discontinuities in the illumination, and final
gathering can also be used to improve quality [Lischinski et al., 1993].

Ray tracing is not the only algorithm that can be used to determine the
surface from which to gather light. Christensen [2008] used a CPU-based
method to speed up final gathering for diffuse and moderately glossy scenes
using a point-based representation of direct illumination stored in an octree.
At each gathering location, distant points are rasterized into a cube map and
nearby points are raycast.

Building on this idea, we present micro-rendering in Chapter 8 that en-
ables high quality final gathering on the GPU in interactive framerates.
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Figure 4.4: (a) Instant radiosity traces particle trajectories and creates a VPL

at each impinging location (b). Direct illumination with VPLs and primary

light sources (Le) yields full global illumination with multiple bounces of indi-

rect illumination.

4.5 Virtual Point Light Methods

The general idea of virtual point light methods is to represent the equilib-
rium distribution of radiative energy in the scene by a precomputed, sparse
set of virtual point lights (VPLs). The first algorithm that exploited this
idea was instant radiosity [Keller, 1997]. VPL generation is similar to pho-
ton mapping. They are created using a particle tracing algorithm. Particles
are emitted from the light sources and traced through the scene, which
essentially constructs a light path incrementally (each bounce of the par-
ticle creates a new path segment). At each vertex of the light path, a VPL
is created (Figure 4.4). Ultimately, computing direct illumination from all
VPLs and primary light sources yields full global illumination (Figure 4.4).
A derivation of this approach and details for practical applications that in-
volve generating VPLs will be described in Chapter 10.

4.5.1 Rendering with VPLs

Computing indirect illumination with VPLs is simply approximated by

Lr(x0←x1) =

k∑

i=0

fr(x0←x1←yi)V (x1↔yi)G(x1↔yi) L̂i(x1←yi) (4.6)

Here the yi denote the positions of the VPLs. This illumination step, as
already demonstrated by Keller [1997], can be accelerated exceptionally
well using commodity GPUs.
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VPLs concentrate all energy into one single point which leads to infi-
nite variance in the illumination. This is caused by the singularity in the
geometry term

G(x↔yi) =
C(x→yi)C(yi→x)

‖x− yi‖2

if the shading point x and the VPL at yi are very close. In rendered im-
ages, this singularity causes exceptionally bright splotches. To remedy this
situation, an artificial bound b on the geometry term is introduced, i.e.
G′ = min(G, b), and the bounded geometry term is used instead. Despite
suppressing artefacts, bounding introduces new problems, for it removes
energy from short distance illumination. This becomes visible in artificial
darkening of creases, edges, and corners.

Fortunately, there exists a closed form expression for the lost short dis-
tance energy [Kollig and Keller, 2006]:

L′
r
(x,ωo) =

∫

Ω
+

max(G(x, h(x,ωi))− b, 0)

G(x, h(x,ωi))
fr(x,ωo,ωi)L(x,ωi) cosθidωi.

(4.7)

G is the unbounded geometry term, b the bound and h(x,ωi) the ray casting
function returning the first visible surface point seen at x in direction ωi.
An unbiased estimate of full global illumination then becomes the sum of
the biased global illumination with VPLs (including direct illumination) and
the compensation term (Equation 4.7), i.e.

L(x,ω) = Ld(x,ω)
︸ ︷︷ ︸

direct illum.

+ Lr(x,ω)
︸ ︷︷ ︸

VPL illum.

+ L′
r
(x,ω)
︸ ︷︷ ︸

compensation

. (4.8)

The compensation term L′
r
(x,ω) is computed using Monte-Carlo integra-

tion in conjunction with ray casting to sample incident illumination over
the hemisphere aligned with the surface normal at x. Note that on the
right-hand side of Equation 4.7 the unbiased illumination L(x,ω) occurs
(Equation 4.8). This implies that VPL illumination (Equation 4.6) and bias
compensation (Equation 4.7) is necessary for all surface points returned
by the ray casting function. Kollig and Keller [2006] have shown that VPL
lighting with bias compensation can be interpreted as a variant of bidirec-
tional path tracing [Lafortune, 1996], but can also be viewed as a variant of
final gathering, that gathers incident illumination only from surfaces that
lie within the distance

dmax <

√
√cos+θx→y

b
.



64 4. Global Illumination Algorithms

The maximum distance dmax is a direct result from the bounded geometry
term G′ (see above) [Kollig and Keller, 2006]. Similar to final gathering for
photon mapping, this bias compensation is the most expensive part of the
entire algorithm.

In Chapter 11 we present a novel reformulation of the bias to derive an
efficient screen-space compensation algorithm, which computes the com-
pensation term solely from the illumination present in an image. This avoids
costly ray-casting operations and achieves interactive framerates on com-
modity GPUs.

Besides bounding and bias compensation, other variants to avoid the
inherent singularity have been proposed. Hašan et al. [2009] introduced
virtual spherical lights (VSLs) that have finite extent. Incident illumination
is integrated over the entire solid angle it subtends at shading points, but
visibility is assumed to be constant. The approach by Davidovič et al. [2010]
creates millions of virtual local lights that recover short distance illumina-
tion lost due to bounding the geometry term.

Other extensions to improve VPL algorithms have also been proposed.
In the spirit of bidirectional path tracing [Lafortune, 1996; Veach, 1997],
Segovia et al. [2006a] proposed bidirectional instant radiosity to select VPLs
that actually contribute to the final image. Later, Metropolis sampling was
also applied to VPL generation [Segovia et al., 2007]. Although VPL-based
methods achieve stunning results in purely diffuse scenes even with only
hundreds of VPLs, the number of VPLs required to accurately light (mod-
erately) glossy objects is magnitudes larger [Křivánek et al., 2010]. The
reason being that only relatively few paths (several hundreds) are created
and thus the set of all possible light paths is only sparsely sampled. Since
the computational demand of lighting with VPLs grows linearly with their
number, rendering scenes with thousands to hundreds of thousands of VPLs
is impractical. Walter et al. [2005] proposed light cuts, building a hierar-
chy of VPLs and selecting only those with significant contribution to shading
points. This approach was later extended [Walter et al., 2006] to efficiently
handle scenes with anti-aliasing, motion blur and depth-of-field. Matrix
row-column sampling [Hašan et al., 2007] is an algorithm suitable for be-
ing implemented on the GPU. In contrast to light cuts [Walter et al., 2005],
the algorithm does not compute different VPL sets per shading point, but
clusters VPLs and sums up the clusters’ contribution to the entire image, i.e.
to all shading points.

Extension to participating media: It is possible to render full multiple
scattering with only single scattering from virtual point light sources. How
this and bias compensation is efficiently done is discussed in Chapter 10.
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4.6 Global Illumination in Participating Media

Rendering participating media can look back onto a long history in com-
puter graphics. The first physical-based scattering model [Blinn, 1982] was
restricted to single scattering, uniform density, and infinite light sources, but
was analytically solvable. Kajiya and Von Herzen [1984] presented a gen-
eral two-pass algorithm that lifted those restrictions and supports multiple
scattering. First, in-scattered light was projected onto spherical harmonics
for each voxel in a 3D grid, and second, all in-scattered radiance was ac-
cumulated along a ray. Max [1986] computes single scattering only within
the bounds of shadow volumes [Crow, 1977] using scanline rasterization,
while Nishita et al. [1987] rely on ray casting, also supporting light volumes
and media with varying density.

Unfortunately, single scattering is only a valid assumption for participat-
ing media with low albedo (i.e. low scattering), which is not true for most
media where multiple scattering is crucial, e.g. in clouds or smoke.

Discrete ordinate methods [Chandrasekhar, 1960; Languénou et al., 1994;
Fattal, 2009] discretize space (voxels) and directions (spherical parametriza-
tions) and compute light transport using local transport operators exchang-
ing energy between adjacent cells only. A similar approach is described
by Stam [1995] who models multiple scattering effects using the diffusion
equation. Beyond that, point spread functions for multiple scattering [Pre-
moze et al., 2004] were derived from close analysis of light transport in
participating media.

Radiosity: Global illumination algorithms originally developed for sur-
face light transport were later extended to support participating media and
multiple scattering. The zonal method [Rushmeier and Torrance, 1987] ex-
tends radiosity [Goral et al., 1984] to volumetric finite elements (voxels)
and handles volumetric light transport with isotropic scattering. This was
later extended by Bhate and A. [1992] who use spherical harmonics to rep-
resent a voxel’s radiation which in turn allowed them to use anisotropic
phase functions.

Path tracing: In contrast to finite element methods, Monte-Carlo algo-
rithms do not rely on a discretization of the volume and can handle arbitrary
density functions [Lafortune and Willems, 1996]. Light transport in partic-
ipating media using bidirectional path tracing was first presented by Lafor-
tune and Willems [1996]. They derived analytical distance sampling in me-
dia of uniform density and assume piecewise constant density properties
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for sampling in non-uniform media. Pauly et al. [2000] extend Metropo-
lis light transport [Veach, 1997] to participating media, but also rely on
ray marching for free path sampling and computing transmittance. The is-
sue of distance sampling, or free path sampling, in inhomogeneous media
was later picked up by Raab et al. [2008]. They introduced Woodcock-
tracking [Woodcock et al., 1965], a technique from computational physics,
and derived a practical algorithm for unbiased free path sampling. The per-
formance of this approach depends on the maximum extinction in the entire
volume. To improve performance, Yue et al. [2010] use cost heuristics to
build kd-trees subdividing volume densities into regions of near uniformity
which are sampled adaptively.

Photon mapping: Volumetric photon mapping made efficient rendering
of scattering effects possible [Jensen and Christensen, 1998]. Ray marching
was used to accumulate in-scattering along eye rays. At each step during
ray marching, the volume photon map is queried, and in-scattered radiance,
supporting arbitrary phase functions, estimated. Instead of ray marching
and using disjoint photon map queries along the ray, cylindrical queries
used by the beam radiance estimate [Jarosz et al., 2008] gather all pho-
tons in the proximity of a ray, speeding up the gathering process signifi-
cantly. Despite those improvements, rendering quality strongly depends on
the photon density in the photon map. Due to memory constraints, the
density cannot be arbitrarily high. Progressive photon mapping [Hachisuka
et al., 2008] lifted the memory constraints by combining results of several
thousand photon maps progressively, accounting for several hundreds of
millions of photons. Although this was first shown only for surface illumina-
tion, the method was extended to participating media shortly after [Jarosz
et al., 2011; Knaus and Zwicker, 2011].

Many light methods: Many light methods are also suitable for volume il-
lumination. It is briefly discussed in the context of instant radiosity by [Raab
et al., 2008], who also extends bias compensation [Kollig and Keller, 2006]
to arbitrary volume densities. Hierarchical VPL clustering methods [Wal-
ter et al., 2005, 2006] can help to reduce computation costs for volume
lighting with many virtual point lights. Besides clustering VPLs only, mul-
tidimensional light cuts [Walter et al., 2006] also cluster samples at which
in-scattering is computed. Kulla and Fajardo [2011] exploit the fact, that
the contribution of a point light to in-scattering along a ray segment highly
depends on its distance to the latter. They derive a new importance sam-
pling technique that shows better convergence behaviour than traditional
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ray marching, and unbiased ray integration techniques based on Woodcock
tracking [Raab et al., 2008; Jarosz et al., 2011].

4.7 Real-Time Global Illumination

Real-time global illumination is intricate. Even today’s hardware is not pow-
erful enough to support a straight forward implementation of the aforemen-
tioned algorithms. Efforts exist, but despite sophisticated and highly opti-
mized data-structures [Zhou et al., 2008], algorithms [Popov et al., 2007]
and careful programming of the underlying hardware [Novák et al., 2010],
interactive image generation is either restricted to particular phenomena
(e.g. caustics), to primary rays only, or is progressive at best.

In general, interactive and real-time algorithms cut back on the univer-
sality of light transport, are commonly tailored to specific problems or do
not support the full spectrum of possible phenomena.

Early attempts at interactive global illumination [Drettakis and Sillion,
1997] maintain a precomputed radiosity solution, incrementally updating
it after an object has been moved. Other approaches, now know as pre-

computed radiance transfer (PRT) [Sloan et al., 2002], compactly store inci-
dent radiance and the product of the BRDF and the cosine term (cf. Chap-
ter 3.2) in a spherical harmonics representation, making it possible to ex-
press the shading integral as simple multiplication in frequency space which
can be evaluated at run-time. Most of the PRT variants require static ge-
ometry, although some recent extensions also allow the movement of rigid
objects [Iwaski et al., 2007], but fully dynamic scenes are out of question.
Low-resolution dynamic scenes are possible, assuming low-frequency illu-
mination [Ren et al., 2006; Sloan et al., 2007].

Lehtinen et al. [2008] presented an interactive PRT-based illumination
method for static scenes using a hierarchical, point-based representation.
Light transport was simulated in a similar manner to radiosity [Cohen et al.,
1993]. Related to radiosity is antiradiance [Dachsbacher et al., 2007]which
renders moderately complex scenes with multiple bounces of indirect illu-
mination at interactive framerates. The required link hierarchy, however, is
precomputed and dynamic scenes require more work [Meyer et al., 2009].

VPL methods: A popular method for real-time global illumination is in-
stant radiosity [Keller, 1997] because it represents the equilibrium distri-
bution of radiance as a set of virtual point lights (VPLs), which are highly
amendable for efficient GPU evaluation. Direct light reflected by scene sur-
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faces can be stored in shadow maps, storing position, normal and material
properties. Although this information has first been used to render inter-
active translucency effects using translucent shadow maps (TSM) [Dachs-
bacher and Stamminger, 2003], it has later been extended to render one-
bounce indirect illumination with reflected shadow maps (RSM) [Dachs-
bacher and Stamminger, 2005]. Therefore, the samples in the RSM are
interpreted as VPLs whose sum contribute to one-bounce indirect illumina-
tion at each shading sample. For reasons of efficiency, the visibility to VPLs is
ignored. Other global effects based on the RSM are also possible, i.e. caus-
tics [Dachsbacher and Stamminger, 2006]. Creating shadow maps for each
VPL to account for visibility is too expensive in each frame. Thus Laine et al.
[2007] reuse already created shadow maps as long as possible and incre-
mentally add new ones on demand. Imperfect shadow maps [Ritschel et al.,
2008] achieve interactive framerates for moderately complex and fully dy-
namic scenes using approximate visibility, but ultimately fail to handle large
scenes. Further, indirect shadows are generally smoothed out considerably.
However these issues were later addressed using view-adaptive sampling
schemes [Ritschel et al., 2011]. Holländer et al. [2011] propose, following
in the footsteps of Micro-Rendering (cf. Chapter 8), point rendering with
sophisticated level of detail techniques to generate many VPL shadow maps
in parallel, achieving results with impressive speed.

Screen-space methods: Another popular class of rendering techniques
are global illumination approximations in screen space. These GPU-friendly
techniques are typically used when the need for high performance out-
weighs that of quality. However, they are output-sensitive, adapt to the
current visible geometry in the scene and thereby avoid irrelevant compu-
tations. Many of them are based on reflective shadow maps (RSMs) [Dachs-
bacher and Stamminger, 2005]. Multi-resolution splatting [Nichols and
Wyman, 2009; Wyman et al., 2010] computes indirect lighting (without vis-
ibility) from the RSM at lower resolution for smooth surfaces and falls back
to high resolutions in image regions with varying geometry. Image-space
radiosity [Nichols et al., 2009] uses a hierarchy for both RSM and surface
elements stored in a geometry buffer [Saito and Takahashi, 1990]. Comput-
ing ambient occlusion (e.g. see [Mittring, 2007; Bavoil et al., 2008]) or vol-
umetric obscurance [Loos and Sloan, 2010] in image-space is widely used
nowadays and has been extended by Ritschel et al. [2009b] to account for
directional lighting with coloured shadows and indirect illumination from
nearby surfaces.
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Participating media: Rendering participating media in real-time is intri-
cate and most often limited to single scattering effects. Many approaches
are based on shadow volumes to provide information on the regions of illu-
minated and shadowed space in front of visible surfaces. To identify these
regions, the shadow volume polygons must be sorted back-to-front which
introduces sorting cost [Venceslas et al., 2006; Mech, 2002; James, 2003].
Gautron et al. [2009] compute light cones (instead of shadow volumes) and
compute the intersection of an eye ray and a cone to determine the length
of the eye path through the light.

Wyman and Ramsey [2008] render in-scattering from textured and shad-
owed spot lights using ray marching and use shadow volumes to distinguish
between lit and potentially shadowed parts of the scene. They also use naïve
image space sub-sampling to reduce the number of rays. Tóth and Umenhof-
fer [2009] propose to use interleaved sampling in screen space exploiting
the fact that nearby pixels cover similar geometry; the in-scattered light is
computed using ray marching and shadow mapping.

Slicing techniques, known from volume rendering, can be used to em-
ulate ray marching through participating media. Dobashi et al. [2002]
and Mitchell [2004] use slicing to render volumetric shadows by rendering
quads parallel to the image plane at varying distances from the eye. These
slices are accumulated back-to-front using blending while the shadows on
each slice are computed using shadow mapping. Imagire et al. [2007] re-
duce the number of slices by averaging the illumination over regions near
each slice.

Mitchell [2007] presents a simple post-processing technique working in
screen space that is very fast but has inherent limitations including non-
textured lights and false light shafts from objects behind the light sources.
Similar restrictions apply to the technique presented by Sousa [2008] that
uses a radial blur on the scene depth buffer to obtain a blending mask for
sun shafts.

Based on epipolar geometry, we have developed an algorithm that com-
putes an optimized distribution of samples in image space where in-scattering
along eye rays is computed (cf. Chapter 9). Baran et al. [2010] construct
epipolar planes in which in-scattered light is sampled and volumetric shad-
ows incrementally propagated. Exploiting partial sum trees, they efficiently
accumulate all in-scattered radiance along eye rays. 1D mip map hierar-
chies on shadow maps rectified in epipolar space allowed Chen et al. [2011]
to quickly locate lit ray segments for evaluating single scattering.

If visibility can be ignored (e.g. when accumulating light within a light
volume), even analytical solutions to single scattering in homogeneous par-
ticipating media exist [Lecocq et al., 2000; Sun et al., 2005; Pegoraro, 2009].
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Although early work only supported isotropic phase functions, this limi-
tation has been lifted and anisotropic scattering models have been inte-
grated [Pegoraro et al., 2010].

Upsampling: Oftentimes, interactive global illumination algorithms are
still too demanding and forbid satisfactory rendering performance for high
resolution images. Ward et al. [1988] already noted that indirect illumi-
nation varies smoothly over the image, which led to the development of
irradiance caching (IC). IC computes indirect illumination sparsely in im-
age space and reconstructs missing information afterwards through inter-
polation. Since the approach was only applicable for surfaces with diffuse
reflectance, Křivánek et al. [2005] extended IC to moderately glossy sur-
faces, of which even a GPU variant [Gautron et al., 2005] exists.

For real-time rendering, often much simpler interpolation schemes are
used. GI is computed at a lower resolution of the target image across-the-
board, and than reconstructed. Bilateral filtering [Tomasi and Manduchi,
1998; Sloan et al., 2007] avoids blurring over normal and depth disconti-
nuities, detected in image space in a geometry buffer [Saito and Takahashi,
1990], where the illumination varies strongly.

More sophisticated upsampling techniques build discontinuity hierar-
chies in image space [Nichols and Wyman, 2009; Nichols et al., 2009] and
chose the proper reduced resolution based on the smoothness of the surface
within image regions. A reconstruction pass finally combines all hierarchy
levels to generate the target resolution.

Interleaved sampling [Keller and Heidrich, 2001] uses blocks of irregular
sampling patterns spanning blocks of pixels (usually 2× 2 or 4× 4 pixels)
to distribute computations over the entire block. This becomes apparent as
structured artefacts, and thus the image is subsequently blurred. Segovia
et al. [2006b] present an efficient GPU implementation for this approach
and applied it to increase performance for computing illumination from
VPLs.

Unfortunately, bilateral upsampling, its variants and interleaved sam-
pling do not take strong changes in the illumination due to shadowing in
to account. This leads to visible blurring of indirect shadows, which can be
highly distracting in strongly indirectly illuminated scenes.



CHAPTER 5

Directional Parametrizations

DIRECTIONAL parametrizations play an important role in computer graph-
ics. They make it possible to parametrize the entire environment seen

from a point over one or more two-dimensional textures. The term ‘envi-
ronment’ refers to all surfaces visible from a point in all directions. More
importantly, these surfaces reflect light, and hence an environment map
stores incident radiance for each direction at the point it is created, which
is the foundation for reflection mapping [Blinn and Newell, 1976] and im-
age based lighting [Miller and Hoffman, 1984; Debevec, 1998].

5.1 Environment Mapping

Environment mapping projects the entire environment visible from a point
into one or more two-dimensional textures. To that end, directional para-
metrizations map texture coordinates into direction vectors and vice versa.
Blinn and Newell [1976] used this technique for the first time rendering
perfect specular reflections onto surfaces of arbitrary shape. Under the as-
sumption that the environment is at infinite distance at all shading points,
a single environment map rendered at the reflecting object’s centre proved
to be sufficient.

Miller and Hoffman [1984] noted that environment maps are not lim-
ited to reflection rendering. They suggested to interpret an environment
map as illumination map. Logically, this assumption allowed them to ex-
tend reflection mapping and solve the shading integral (Section 3.2.1) for
arbitrary local reflection models. In contrast to the method of Blinn and
Newell [1976], also referred to as latitude-longitude mapping, the environ-
ment or illumination map was not created rendering virtual scenes but from
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taking photographs of mirror spheres. These photographs, also called light

probes, depict the reflection of the real world environment in the mirror.
Light probes imply a directional parametrization that is not compatible with
the one developed by Blinn and Newell [1976]. This is why Miller and
Hoffman [1984] developed sphere mapping, at the same time as Williams
[1983]. This approach was later picked up by Debevec [1998] for image
based lighting with high dynamic range illumination maps [Debevec and
Malik, 1997], and it is still used today for natural illumination.

Unfortunately the latitude-longitude and sphere projection exhibit se-
vere drawbacks. Sphere mapping suffers from strong aliasing towards the
silhouettes of the photographed sphere. The reflected environment is highly
condensed in thin image regions close to the silhouette. Beyond that the
sphere projection scheme exhibits a singularity directly on the silhouette.
Latitude-longitude mapping shares similar problems. The distortion of the
environment increases towards the poles of the sphere, and besides the sin-
gularities at the poles, reflection mapping makes the texture seams visible
when the mapping wraps around in the latitude dimension.

Cube mapping proposed by Greene [1986] overcomes those aforemen-
tioned drawbacks. His parametrization is based on the unit cube where the
environment is projected onto the cube’s faces. Due to the linearity of the
projection onto each cube face, this parametrization was the first that could
be generated directly on graphics hardware using rasterization, but at the
price of generating six individual images. To leverage the costs of creating
environment maps on graphic hardware, Heidrich and Seidel [1998] pro-
posed to project the environment map onto two paraboloids. As cube map-
ping, this projection can be carried out on graphics hardware. It requires
only two images, but high tesselation factors to reduce approximation er-
rors due to the non-linearity of the projection.

The field for applications of environment mapping is broad. Besides stor-
ing natural illumination [Miller and Hoffman, 1984; Debevec, 1998], which
is equally used in offline rendering systems [Pharr and Humphreys, 2010]
and interactive techniques [Sloan et al., 2002], directional parametriza-
tions are also used for finite element methods [Cohen and Greenberg, 1985;
Coombe et al., 2004] in order to store radiative energy incident at a shading
point. Micro-Rendering (cf. Chapter 8) follows the same approach. Omni-
directional shadow maps store depth instead of illumination and are used
for point light sources and virtual point lights [Ritschel et al., 2008].
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5.1.1 Latitude-Longitude Mapping

The method by Blinn and Newell [1976] is also called latitude-longitude
mapping. Their idea was to map u, v-texture coordinates directly to spher-
ical coordinates (φ,θ ),

φ = 2πu,

θ = vπ (5.1)

from which the normalized direction vectorω = (cosφ sinθ , sinφ sinθ , cosθ )T

is obtained (Figure 5.1 left). Inversely, the normalized direction vector
ω = (ωx ,ωy ,ωz)

T is mapped onto texture coordinates as follows:

u = atan2(ωy/ωx),

v = arccos(ωz).

This kind of environment map can only be generated synthetically as there is
no device that is capable of recording such an image. Common approaches
to generate such images are ray casting or re-sampling other parametriza-
tions, such as sphere maps (Section 5.1.2). The distortion that stems from
Latitude-Longitude mapping is depicted in Figure 5.1 right. In the proxim-
ity of the equatorial region, the environment is undersampled by a factor of
≈ 1.6, comparing to optimal, uniform sampling. In proximity of the poles
(|θ |¦ 0.9), oversampling occurs and eventually reaches infinity at the poles
(singularities).
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Figure 5.1: Left: The direction vector ω is parametrized over the two spheri-

cal coordinates φ and θ , which are directly mapped onto texture coordinates.

Right: Moving along a geodesic, the singularity appears at the poles. Com-

pared to uniform sampling, the mapping oversamples in the proximity of the

poles and undersamples in equatorial regions.
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5.1.2 Sphere Mapping

Sphere mapping is derived from the reflection seen in a mirror sphere as-
suming an orthogonal view. The mirror sphere is placed at the origin of the
coordinate system, and the view direction is aligned with the negative z-axis
(Figure 5.2 left). The intersection of the view direction with the xy-plane
yields the uv-texture coordinates. These are first mapped to the sphere us-
ing Nusselt’s parametrization

n=
�

u, v,
p

1− u2 − v2
�T

to obtain the normal vector on the sphere where the ray intersects its sur-
face. At this point the reflected environment is visible through the reflection
vectorω = v−2〈n,v〉n. The projection of direction vectors onto texture co-
ordinates can then be easily derived:

u= −
ωx
p

2(1−ωz)
, v = −

ωy
p

2(1−ωz)
.

One notices that the environment on the front side is captured for all
uv-coordinates (u, v ∈ [−1, 1]) for which the constraint

p

u2 + v2 ≤
p

2

2

holds. Otherwise the environment behind the light probe appears. Unfor-
tunately, the sampling rate rapidly decreases on the backside. This becomes
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Figure 5.2: Left: View vectors are aligned with the z-Axis, and the projection

captures the front- and backside of the environment. Right: Sampling ratio

of sphere mapping (SM) to uniform sampling. SM always undersamples and

condenses the environment on the back side into small image regions.
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more and more apparent the farther the texture coordinates move towards
the silhouette of the image of the mirror sphere, where the projection ex-
hibits a singularity. Figure 5.2 right depicts the ratio of the solid angle
captured by a reflection vectors to sampling the sphere uniformly.

5.1.3 Cube Mapping

The cube map [Greene, 1986] projects the environment onto the six faces
of the unit cube (Figure 5.3 left). The projection p = (pu, pv, pw)

T of a unit
vector ω onto the cube map is simply obtained by

p=
ω

|ωi|
were ωi is the component of the direction vector with maximum extent.
Here the texture coordinate is three-dimensional, and the components pi ∈
{−1,1} encode the cube face. The inverse projection is simply the normal-
ization of p.

ω =
p

‖p‖
Using perspective projections with a field of view of 90◦, rasterization can
be used to generate cube maps, besides ray casting and resampling other
parametrizations. Because look-up does not require costly, transcenden-
tal mathematical functions and generation can rely on rasterization, cube
mapping has become the major, natively supported environment mapping
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Figure 5.3: Left: Direction vectors are projected onto the cube face corre-

sponding to the vector’s component with maximum extent. Right: Sampling

ration to uniform sampling. The parametrization scheme undersamples in the

centres of cube faces and oversamples close to the face borders.
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scheme on GPUs. In addition to that, it neither exhibits any singularity or
excessive deterioration of the sampling rate as sphere and latitude-longitude
mapping. Figure 5.3 right depicts the sampling behaviour of the cube map.
It can be observed that the ratio of neither over- nor undersampling exceeds
a factor of 2.

5.1.4 Paraboloid Mapping

Paraboloid mapping takes the same approach as sphere mapping. The en-
vironment is displayed as reflection on a mirrored paraboloid seen from an
orthographic view, where the viewing direction is parallel to the negative
z-axis (Figure 5.4 left). The environment appears in the reflection of the
viewing vector at the paraboloid of the form

f (x , y) =
1

2
−

1

2

�

x2 + y2
�

.

Heidrich and Seidel [1998] showed, that the projection onto uv-texture
coordinates (u, v ∈ [−1; 1]) is simple and obtained from a reflection vector
r= (rx , ry , rz)

T as follows:

u=
rx

(1+ rz)
, v =

ry

(1+ rz)
.

Paraboloid mapping requires two textures, one for each hemisphere. The
sign of the z-component of the reflection vector shows, whether the reflec-
tion occurred on the positive (rz ≥ 0) or negative (rz < 0) hemisphere.
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Figure 5.4: Left: The environment is projected onto the paraboloid as if it

was seen in the reflection r from an orthogonal viewing direction v. Right:

Sampling ratio of the paraboloid projection to uniform sampling. The quality

is comparable to cube mapping and neither over- nor undersampling exceeds

a factor of 2.
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The inverse projection is found reflecting the viewing vector v= (0, 0,−1)T

at the surface of the paraboloid s = (u, v, f (u, v))T with the normal n =
∂ s

∂ u
× ∂ s

∂ v
/‖ ∂ s

∂ u
× ∂ s

∂ v
‖.

The sampling behaviour is shown in Figure 5.4 right. As can be ob-
served, the quality is comparable to that of cube mapping [Greene, 1986]
and does not exhibit any singularity.
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CHAPTER 6

Granular Visibility Queries

VISIBILITY determination is a widely studied topic in computer graphics
and is required for many applications, such as walkthroughs for large

scale environments [Funkhouser et al., 1996], computer games, and CAD
modelling systems. Its ultimate goal is to identify occluded portions of a
scene which do not contribute to the final image. This has been an active
research topic since the 1970s, and many algorithms have been proposed
to solve this occlusion culling problem (extensive overviews can be found
in [Cohen-Or et al., 2003; Bittner and Wonka, 2003]).

More recent approaches in real-time computer graphics are based on
hardware occlusion queries (HOQ) and predicated rendering (cf. Chap-
ter 2.2.2), but these techniques introduce read-back latencies or do not
guarantee culling. Furthermore, the finest granularity of both techniques is
a single draw call, i.e. multiple queries are required if the visibility of parts
of an object is to be determined, possibly resulting in a large number of
draw calls. Consequently, culling does not become possible for instanced
draw calls because individual instances cannot be queried separately. Visi-
bility results are also not directly available in shaders (with predicates they
are not available at all), where they can be useful to cull object parts or to
control the level of detail of tessellation and other rendering techniques.

Determining the visibility of objects (in an output-sensitive manner) is
basically a problem of counting pixels of rasterized geometry, and for that
purpose we developed two approaches based on summed area tables and
item buffers. These enable fine granular visibility queries on the GPU and
make results directly available in shaders. 1

1This chapter is based on our work [Engelhardt and Dachsbacher, 2009] presented at
Symposium on Interactive 3D Graphics and Games 2009 (I3D’09).
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Figure 6.1: Left: Shadow volumes are extruded in a geometry shader and

granular visibility queries are used directly on the GPU to exclude unlit objects

from the shadow volume generation. Right: Visibility determination on the

GPU is also beneficial in costly rendering techniques, such as displacement

mapping to cull individual, occluded primitives. Illustration: Engelhardt and

Dachsbacher [2009].

6.1 Granular Visibility Queries

The main goal of granular visibility queries is to provide efficient means for
counting the number of pixels covered by the query objects on the screen.
However in contrast to HOQs, we want to be able to query the visibility
of subregions of objects individually and to make the results available to
shaders directly on the GPU. We analyse two possible approaches for fast
pixel counting: First, we use summed area tables to retrieve the average
colour of an image region, and thus we retrieve the screen coverage of
query objects once we rendered them appropriately coloured. Second, we
introduce a new variant of item buffers which can be quickly rendered and
evaluated on contemporary GPUs.

6.1.1 Pixel Counting with Summed Area Tables

The basic idea of our first approach is to render query objects into a colour
texture and count the pixels belonging to each object afterwards. Two GPU-
friendly methods exist to accelerate this process: summed area tables (SATs)
and mip maps allow us to retrieve the accumulated or average colour within
a rectangular image region efficiently. Both treat colour channels indepen-
dently and by rendering query objects in pure red, green, blue, or into the
alpha channel, we can distinguish pixels of up to four objects per image re-
gion (given a standard four channel texture). The crucial point for a prac-
tical algorithm is to develop a good heuristic for colouring the objects and
constructing an as minimal as possible set of texture accesses to determine
the visibility of an object. We focus our discussion in this section on SATs
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and will comment on mip maps in Section 6.1.4. Our heuristic is a three-
step process performed every frame: First, we assign query objects to colour
channels such that no overlapping and fusing in image space occurs (step
1). Obviously, this is not possible if more query objects overlap than colour
channels are available. In this case we cannot assign such conflict objects as
a whole to a colour channel – instead we assign portions of these objects to
different colour channels (step 2). In step 3, we determine a set of texture
accesses to the SAT for each query object to retrieve the visibility. Step 1
to 3 are executed on the CPU and require access to the objects’ transforma-
tions and bounding boxes. The SAT computation takes place on the GPU,
and hence the visibility queries are then possible in any shader program.

6.1.2 The Conflict Graph

The goal of the first step of our algorithm is to assign as
many query objects as possible to colour channels in a
way such that fusion in image space does not occur. For
this we build a conflict graph: Each vertex of the graph
corresponds to one query object. A conflict between two
objects exists if their bounding rectangles in image space
overlap; in this case the graph contains an edge between
the two corresponding vertices. We chose this conser-
vative overlap test particularly with regard to the use of SATs: In favour
of fewer texture accesses we want to avoid non-rectangular regions in ad-
vance. Please note that we do not assume a depth sorting of the objects
as this does not provide any advantages unless we perform an occlusion
culling procedure beforehand. For colouring the conflict graph’s vertices,
we adapt the Chaitin-Briggs algorithm from the domain of compiler de-
sign [Muchnick, 1997]: In its original application it is used for register allo-
cation. In our case, the algorithm must not assign two objects in conflict to
the same colour channel. During graph colouring, conflict objects are iden-
tified and separated for special treatment afterwards. Optimal colouring is
a NP-complete problem, the graph colouring algorithm (possibly yielding
suboptimal results) is O(n2). The first phase of the algorithm is the graph
decomposition: We find the vertex with the least incident edges, remove
this vertex and all its edges from the graph, and store it on a stack. This
is repeated until the entire graph has been decomposed. The second phase
reconstructs the graph and assigns colours. For this purpose, the following
steps are repeated until the stack is empty:
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Figure 6.2: Left: The query of a rectangular region from a SAT requires 4

texture lookups (shown as circles). Right: For non-rectangular query regions

samples can often be reused. Illustration: Engelhardt and Dachsbacher [2009].

• Take the top-most vertex from the stack, reinsert it into the graph and
restore edges to adjacent vertices if they have already been recon-
structed.

• If the vertex does not have any neighbours yet, assign it to an arbitrary
colour channel, otherwise select a channel which is not used by one
of its neighbours.

• If no colour channel is available, mark this vertex as conflict object
and do not insert it into the graph (it will undergo special treatment
afterwards).

This algorithm removes vertices with fewer incident edges with higher
priority. During graph reconstruction, the vertices are reconstructed in the
opposite order, effectively colouring objects in more difficult configurations
first and colouring unproblematic objects (with few or no conflicts) later.
The output of the graph colouring are two sets of objects: Non-conflict ob-
jects which have been assigned to colour channels as a whole and conflict
objects which could not be assigned.

6.1.3 The Region Set

A SAT allows us to compute the sum of pixel colours in an axis-aligned rect-
angular region [x1, x2] × [y1, y2] in image space, with 0 ≤ x1 ≤ x2 ≤ 1
and 0 ≤ y1 ≤ y2 ≤ 1 easily. Each query of a rectangular region requires
four lookups to the SAT. Non-rectangular shapes can be approximated with
multiple rectangles and often samples can be shared among the queries
(cf. Figure 6.2). Of course, the SAT will be generated at a finite resolution
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Figure 6.3: A conflict object is split recursively (b and c); each rectangle keeps

track of free colour channels (there are only two channels in this example).

(d) Adjacent sub-rectangles are merged iteratively if they can be assigned to

the same colour channel. Illustration: Engelhardt and Dachsbacher [2009].

(10242 in our examples) and x i, yi ∈ [0; 1] are mapped to pixels accord-
ingly. A region set represents the information where to lookup the SATs in
order to determine the area covered by an object, i.e. it contains i ≥ 1
SAT-lookups consisting of a rectangle and an associated colour channel:
([x i,1, x i,2] × [yi,1, yi,2], ci). The graph colouring assigns non-conflict ob-
jects to colour channels, and the visibility for every such object corresponds
to a single SAT query: The rectangular region corresponding to the object’s
bounding rectangle (Figure 6.3a). Next, we need to split and assign parts
of the conflict objects to colour channels. All operations are performed on
the bounding rectangles in image space only, thus keeping the necessary
operations simple and efficient. We process one conflict object at a time
by splitting its bounding rectangle and keeping track of free and occupied
colour channels for each sub-rectangle. The following steps are performed
for each conflict object:

• Find the next overlapping SAT lookup (that has already been created)
and split the conflict object into axis-aligned rectangles (Figure 6.3b
shows a split operation).

• For each sub-rectangle we store flags indicating which colour channels
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are already occupied by other objects. The flags of the overlap region
(of the object to be inserted) are updated accordingly after the split.

• We proceed recursively for all sub-rectangles and test for overlaps with
the remaining SAT-lookups (Figure 6.3c).

• The sub-rectangles form a partition of the initial bounding rectangle
and in order to reduce the number of SAT queries for the conflict ob-
ject, we iteratively merge sub-rectangles sharing an edge if their flags
indicate that they can be assigned to the same colour channel (Fig-
ure 6.3d).

Difficulties and optimizations: So far the outlined algorithm is based on
the assumption that there is always a free colour channel for each sub-
rectangle. However, configurations exist where this is not the case and
they occur more frequently with an increasing number of conflict objects
and higher depth complexity. Obtaining accurate results with rectangular
queries may also create an exceedingly large number of SAT lookups and
thus splitting is to be terminated. By looking at the silhouette of the objects’
bounding volumes in image space we distinguish the three possible overlap
configurations that may occur in these cases and handle them – possibly by
sacrificing accuracy – as follows.

Overlap conflict: Both objects intersect the overlap re-
gion. Since we omit further splitting we overestimate visi-
bility and share the overlap region across both objects, i.e.
pixels in that region contribute to the visibility of both objects.

Overlap no conflict: If only one object intersects the
overlap region then we split the rectangle of the respec-
tive other object. In favour of less SAT queries, we can
over-estimate visibility in this case as well and abandon
the rectangle split.

Empty overlap: The simplest case is when no object in-
tersects the overlap region. If we detect this case, no rect-
angle needs to be split.
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Creating the summed area table: The region set for each object is sent
to the GPU via shader constants. Non-conflict objects are rasterized into
the query texture into a single colour channel, whereas rendering the con-
flict objects is slightly more involved: In a fragment shader, we determine
for each pixel to which rectangle it belongs and choose the colour accord-
ingly. The summed area table itself is computed on the GPU using the fast
generation algorithm by Hensley et al. [2005].

6.1.4 Querying the Visibility of Subregions
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We can now query the visibility of arbitrary sub-
regions of objects, e.g. a rectangular subregion S =

[x1, x2]× [y1, y2]. We determine the intersections
of S and the region set rectangles Ri = [x i,1, x i,2]×
[yi,1, yi,2], with

S ∩ Ri = [max(x1, x i,1), min(x2, x i,2)]× [max(y1, yi,1),min(y2, yi,2)]

All non-empty S ∩ Ri are evaluated using the SAT and their accumulated
contribution yields the visibility of the sub-region.

Pixel Counting with mip-maps: Similar to SATs we can use mip-map
pyramids (MMPs) to retrieve the average colour of larger image regions
efficiently and we implemented this approach for comparison. However,
look-ups with MMPs are less flexible due to their generation scheme. Dur-
ing the construction of the region set, we keep track of the occupancy of
texels in the MMP using one quad-tree for each colour channel such that
each quad-tree node corresponds to one colour channel in one texel in the
MMP.

At first sight, MMPs are tempting as few lookups allow us to query large
image regions and this proved right in scenes with few objects. However it
turned out that the region sets, and with it the CPU overhead for maintain-
ing the quad-tree updates, become very large when the number of query
objects increases. In the end, the SAT approach outperformed MMPs for all
reasonably complex test scenes and we consequently refrain from a detailed
description.

6.2 Hierarchical Item Buffers

Our second approach is an extension to the well-known item buffer algo-
rithm [Weghorst et al., 1984]. In its original formulation a unique ID (a
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Figure 6.4: A 2D histogram (computed from a hierarchical item buffer) with

192 bins due to a 4x4 image plane tiling and 12 instances from 3 different ob-

jects. Mip-mapping can be used to query the visibility of instances in individual

screen tiles up to the whole screen. Figures in the coloured boxes denote the ID

of the instance/tile pairs. Illustration: Engelhardt and Dachsbacher [2009].

colour) is assigned to each object and the scene is rendered to a buffer.
Then the visibility can be determined by counting the pixels storing the
respective IDs. Scheuermann and Hensley [2007] demonstrate a fast his-
togram computation on GPUs which can be used for item buffer counting:
The item buffer is bound to the input stage of the graphics pipeline and in-
terpreted as a point list. The vertex shader scatters each point by computing
a bin index from each pixel and a point primitive is rendered (with additive
blending turned on) into the histogram texture. We adapted their method
to the needs in our visibility determination. First, we use a special layout
and compute 2D histogram textures such that we can query the visibility of
objects (and instances) with a granularity of a predefined screen tiling. To
this end, we virtually divide the screen into 2t×2t , t ≥ 0, tiles. Thus the 2D
histogram texture (Figure 6.4) contains one square region of 2t × 2t bins
for each object instance. When rendering into the item buffer, the ID can
be computed in a pixel shader from the base ID of the object, the instance
index and the screen tile where the pixel resides:

I D = baseID+ instanceIndex · 22t + x + y · 2t

where x , y ∈ [0 · · ·2t − 1] denote the horizontal and vertical screen tile
location of the pixel. Please note that an even finer granularity is imagin-
able, e.g. by assigning different IDs to triangle groups or clusters within an
instance.
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Next the histogram is computed from the item buffer; each ID used in
the item buffer refers to a bin in the 2D histogram as shown in Figure 6.4.
In item buffers, pixels containing the same ID are often clumped together.
During the histogram generation these pixels are sent to the same histogram
bin thus hindering GPU parallelization (this problem occurs rarely for image
histograms). To alleviate this, we apply a simple reordering trick to the
scattering operations and process the item buffer pixels in randomized order
using a precomputed index buffer.

Figure 6.4 shows an example for a 2D histogram texture with a layout for
t = 2 and a total of 15 instances from 3 different objects. It can be used to
directly lookup the visibility of each object instance within each screen tile.
We call this method the hierarchical item buffer (HIB), as we can also use
the 2D histogram texture together with its mip maps to efficiently query
visibility of both whole objects and sub-regions: The HIB allows us, for
example, to query the visibility of the first instance in the screen tiles 2, 3,
6, and 7 with a single lookup into mip level 1 (the full resolution texture is
mip level 0) or the total visibility of instances in the mip level 2. The mip
maps can be automatically generated by the GPU with very little overhead.

An interesting fact is that the granularity has no negative effect on the
speed of the histogram generation. If at all, finer granularity creates less
GPU stalls and is even faster. The only consideration is the amount of tex-
ture memory that is required for storing the histogram when many instances
are to be queried.

The HIB method is very easy to implement and does not introduce CPU
overhead, since all ID computation and pixel counting is offloaded to the
GPU. It is worth noting that it is the only method that can be used to query
the individual visibility of instanced geometry fully on the GPU. This is par-
ticularly tempting as – depending on the number of draw calls, shader cost
and pipeline throughput – a tremendous increase in rendering performance
due to instancing has been reported [Dudash, 2007].

6.3 Results and Applications

In this section we present timings and results of our method. We applied
granular visibility queries to a shadow volume implementation using the
GPU to extrude the objects’ silhouettes, and to a displacement mapping
technique intensively using geometry shaders.
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NVIDIA 280GTX
#objs nc SAT HIB pred.
100 53 217 194 217
200 27 99 121 113
300 19 63 87 70
400 14 38 48 37
500 11 26 31 27

Table 6.1: Average frames per second for the shadow volume example achieved

with the SAT and HIB with instancing for a varying number of randomly placed

objects. For comparison, we used Direct3D 10 occlusion predicates and no

culling (nc). All culling techniques use a 5122 resolution render target for

determining visibility. The rendering resolution was 1600×1050, each object

consists of 606 triangles. Table: Engelhardt and Dachsbacher [2009].

6.3.1 Shadow Volume Culling

For testing our method in practical applications, we used it to speed up the
shadow volume algorithm [Crow, 1977], which is best suited for rendering
accurate shadows from point lights, but has also been extended to generate
soft-shadows [Assarsson et al., 2003]. Geometry shaders allow the gener-
ation of the shadow volumes directly on the GPU which is beneficial for
real-time applications, especially with dynamic or deforming geometry. In
addition to the geometry shader, the rasterization of the shadow volumes
is costly as well, as it consumes a lot of fill-rate. One solution to reduce
this cost has been presented in [Lloyd et al., 2004] and a GPU-friendly ver-
sion is described by Eisemann and Décoret [2006]. The culling of super-
fluous shadow volumes can be easily implemented using our methods. In
Figure 6.1 (left images) we show an example scene where we determined
the visibility of each object with respect to the light source in the geometry
shader. Shadow volumes are excluded from rendering if an object is fully
in shadow. Table 6.1 shows the rendering performance and compares it to
predicated/conditional occlusion queries; Table 6.3 (page 90) details the
CPU timings for the SAT method.

6.3.2 Image Space Culling: Displacement Mapping

In our second example we use granular visibility queries to speed up render-
ing by culling subregions of objects. This is possible, as SATs and HIBs do
not only contain information about the number of visible pixels per object,
but also of their spatial distribution.
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culling method full vis. partial vis. occluded
none 71 90 90
predicates, 594× 12 triangles 25 47 149
predicates, 891× 8 triangles 20 30 110
item buffer, 8× 8 tiles 61 30 110
item buffer, 16× 16 tiles 61 105 186
item buffer, 32× 32 tiles 61 123 186
item buffer, 90× 90 tiles 66 131 186
summed area table 57 89 112

Table 6.2: Frames per second measured on a NVIDIA 280GTX for the lizard

displacement mapping for full and partial visibility (Figure 6.1). The results

indicate that HIBs do not suffer from many IDs. Timings for full occlusion are

given to estimate the overhead of the methods. The static scene part consists

of 134414 triangles, the lizard had 7132 triangles. Table: Engelhardt and

Dachsbacher [2009].

We use the granular visibility queries for a displacement mapping tech-
nique [Wang et al., 2004], specifically its adaptation in the DirectX10 SDK
(shown in Figure 6.1), where the geometry shader extrudes triangles and
splits the resulting prism into three tetrahedra. Therein gradients are con-
stant and a fragment shader computes the intersection of a view ray and the
height field. We modified the geometry shader such that it determines the
bounding rectangle of each prism, and next, it determines if any pixel be-
longing to the object is visible within this rectangle. If no visible pixels are
found, the geometry shader terminates without creating geometry. Please
note that we conservatively extrude the triangle mesh in the first render
pass (to create the SAT or HIB) by moving its vertices in normal direction
such that it encloses the displaced surface. When using SATs the visibility
determination computes the intersection with every query in the region set
as described in Section 6.1.2. For the HIBs implementation we test for visi-
bility in all overlapped screen tiles. Table 6.2 shows the measured rendering
performances.

6.4 Discussion

Differentiation: Our method is meant to query the visibility of objects
efficiently after rasterizing many objects, as it is common for all item buffer
methods. That is, stop-and-wait algorithms, e.g. [Bittner et al., 2004], are
orthogonal to our approaches. Similar to GVQs, a software implementation
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overlap split & �error �error
#objs test colouring merge conflicts pixels percent
100 0.01 0.05 0.1 10 1.6 2.3
200 0.35 0.17 0.8 50 1.7 2.6
300 0.6 0.33 3.7 116 2.7 4.4
400 1.1 0.5 11 166 6.3 9.8
500 1.6 0.7 23 249 7.4 11.6

Table 6.3: Detailed timings in milliseconds of the CPU tasks when using the

SAT approach in the shadow volume example. We also give the average relative

and absolute pixel error of the queries. Table: Engelhardt and Dachsbacher

[2009].

of the hierarchical z-buffer method allows the culling of portions of objects.
However, the HZB is bound to the fixed construction scheme as mip maps
are, and thus requires many texture lookups to test for visibility of arbitrary
regions, and counting visible pixels is impractical.

Accuracy: As expected the query results when using SATs show deviations
which are due to the SAT resolution, but mainly due to approximative re-
gion sets (Section 6.1.3). However, we believe that this negligible for many
applications, such as those using aggressive culling strategies. The conser-
vative region sets return more pixels than actually visible and the deviation
and the CPU load grows with the number of conflicts Table 6.3. Thus the
SAT approach can be recommended for a moderate number of query objects
only. Please note that multiple render targets, and thus more than 4 colour
channels, can be used to reduce the number of conflict objects.

Non-binary visibility: Typically the visibility function for a pixel is of a
binary nature – it is visible or not. Interestingly the SAT method does away
with this restriction: Instead of writing purely coloured pixels to query tex-
tures, we can also output pixels with any brightness. We believe that this
has various tempting applications, e.g. to estimate blocking from a trans-
parent occluder, or to accumulate the tolerable visibility threshold as used
with perceptual rendering methods [Drettakis et al., 2007]. A similar result
can be obtained with the item buffer approach by storing a (scalar) value
in addition to the ID per pixel. During histogram computation, we would
sum up the values instead of incrementing the bin by one.
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Me- Granularity CPU Load GPU Load Instan- Accuracy

thod cing

HOQ draw call very low render proxy1 no exact
POQ draw call very low render proxy1 no no feedback

arbitrary additional
SAT sub regions high render target no2 approx.
HIB fixed (screen) additional

tiling very low render target yes exact

Table 6.4: This table compares the properties and possibilities of natively sup-

ported visibility queries and our methods. 1 the scene has to be rendered twice

to resolve mutual occlusion. 2 instancing is possible, if the instance transforma-

tions are evaluated on the CPU. Table: Engelhardt and Dachsbacher [2009].

Querying the visibility on the GPU: By using predicates and standard
occlusion queries (with a read back to the application) we can prevent ge-
ometry from being sent to the graphics pipeline at all, and this is obviously
the fastest method for culling large chunks of geometry. The strengths of
GVQs lie in the culling of individual primitives and the controlling of shader
level of detail in (partly) occluded regions. Geometry shaders are often used
to extrude geometry and subdivide triangles. The rendering performance
does not only depend on the shader instructions but also on the amount
of geometry that is output. GVQs can be used to determine local visibility
information in order to omit primitives and shader output as demonstrated
in our examples. If early-z culling becomes deactivated, e.g. due to shaders
that output depth, GVQs can be used to avoid costly pixel shader execu-
tions: Geometry can be omitted in geometry shaders, or “culled” in vertex
shaders by transforming it outside the view frustum to prevent rasteriza-
tion. As mentioned before, it is imaginable to estimate the number of oc-
cluded pixels per primitive to obtain a fractional visibility and by this control
the accuracy or detail in pixel shader computations. Table 6.4 summarizes
properties of the different query mechanisms.

6.5 Conclusions

We presented two methods for granular visibility queries which allow us to
determine the visibility of objects and subregions of objects in shader pro-
grams on the GPU. We demonstrated how costly rendering techniques, in
particular these relying on geometry shaders, gain significant performance



92 6. Granular Visibility Queries

increases. We also introduced a hierarchical item buffer which enables effi-
cient visibility queries for instanced objects and subregions simultaneously.
This is important for many rendering techniques as geometry is quickly ex-
cluded from being processed by the GPU pipeline. This is especially im-
portant for rendering techniques that themselves perform heavy geometry
processing, such as direct rendering of octahedron environment maps (cf.
Chapter 7). Granular visibility queries and non-binary visibility functions
are particularly interesting for more involved rendering methods, such as
real-time perceptual rendering and level of detail control. We believe that
our method also has potential use in other GPU rendering techniques.



CHAPTER 7

Octahedron Environment Maps

IN this chapter we introduce the octahedron environment map (OEM) as a
scheme to represent environment lighting or light fields for real-time ap-

plications as well as offline rendering systems. 1 Beyond that, environment
maps can be generated at each shading location seen from the camera for
GPU-based final gathering (cf. Chapter 8). Since any kind of information
can be associated with environment maps, they can also store an omnidirec-
tional depth map for visibility from point light sources. This is particularity
useful for techniques that build on virtual point lights, such as our approx-
imate bias compensation (cf. Chapter 10) and screen-space bias compen-
sation (cf. Chapter 11). Environment maps are generated projecting the
entire environment surrounding a point in space into a single quadratic or
rectangular image. This is achieved on the foundation of the octahedron
as a parametrization for the environment. We discuss the creation of OEMs
by the means of two different projection schemes and carry out an analysis
considering rendering performance for interactive applications as well as
quality of representation. To conclude we discuss applications that benefit
from this parametrization over other approaches (cf. Chapter 5).

7.1 The Octahedron Environment Map

The octahedron as a possible parametrization scheme for the spherical do-
main has already been used by Praun and Hoppe [2003], who utilized the
1-to-1 mapping of the spherical domain to a 2D texture to store spheri-
cal geometry images. We examine the octahedron with regard to the use

1This chapter is based on our work [Engelhardt and Dachsbacher, 2008] presented at
the Vision, Modeling and Visualization Workshop 2008 (VMV’08).
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Figure 7.1: The octahedron (a) can be unfolded and packed into a single

quadric (b) or rectangular texture (c). Planar projection (d) first projects a

point p onto the octahedron faces, obtaining p′, and afterwards orthogonally

onto the XY-plane. This yields the final projection p′′. Illustration: Engelhardt

and Dachsbacher [2008].

as environment maps for real-time rendering applications, including the
generation of and look-up to octahedron environment maps (OEMs) with
graphics hardware. Each side of the octahedron represents one octant of
directions, and we describe two projections to map directions to points on
the sides. Further, the octahedron sides may be arranged differently in two-
dimensional textures. In the following, we assume that all coordinates are
given relative to the octahedron’s coordinate system as illustrated in Fig-
ure 7.1d. This of course can be easily achieved setting up the appropriate
transformations during rendering.

7.1.1 Planar Projection

The first projection scheme that we analyse uses a projection similar to a
spherical projection. A point p= (px , py , pz)

T lies on the sphere with radius
r, if p2

x
+ p2

y
+ p2

z
= r2. Similarly, for a octahedron with vertices (±r, 0, 0)T ,

(0,±r, 0)T , (0, 0,±r)T , a point resides on the surface of the platonic solid,
if
�
�px

�
�+
�
�py

�
�+
�
�pz

�
�= r. Hence, the projection p of a point onto the platonic

solid is derived as

p′ =
p

�
�px

�
�+
�
�py

�
�+
�
�pz

�
�
. (7.1)

We denote this projection planar projection. To unfold the octahedron into
a quadratic texture and to obtain texture coordinates, points on the positive
hemisphere, i.e. py > 0, are orthogonally projected onto the XZ-plane (Fig-
ure 7.1). The lower hemisphere is unfolded by splitting all edges adjacent to
(0, 0,−r)T (v5 in Figure 7.1a). Hence two-dimensional texture coordinates
p′′

q
∈ [−1; 1]2 are obtained by the following transformation:
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with σ(x) the sign function:

σ(x) =







1, x > 0
0, x = 0
−1, x < 0

.

Our second unfolding approach maps the octahedron to a rectangular tex-
ture with an aspect ratio of 2 : 1, as shown in Figure 7.1c. First equation 7.1
is applied and next points are projected orthogonally on the XY-plane, and
the coordinates from the 2 hemispheres are mapped into the layout by trans-
formations.
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(7.3)

According to the layout mapping p′′
r
∈ [−2; 2]× [−1; 1]. For rendering, the

unnormalized texture coordinates obtained from either projection scheme
have to be normalized.

7.1.2 Perspective Projection

Cube maps [Greene, 1986] can be generated rasterizing the scene for each
cube face under a perspective projection with a field of view of 90◦. The
same approach can be applied to generate octahedron environment maps.
The scene can be rendered once for each octahedron side, each set up with
its own projection matrix. The frusta in this case are of tetrahedral shape
and have a triangular view port. Since graphics hardware does not support
clipping against such viewports natively, clipping has to be performed either
manually, or in image space.
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a) Octant Overlapp b) Incorrect Projection c) Correct Projection
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Figure 7.2: (a) The triangle overlaps two octants. (b) When ignoring the

octant-overlap rasterization of the projected triangle yields incorrect results.

(c) Splitting the triangle before projection at the principle planes, ensures cor-

rect rasterization results. Illustration: Engelhardt and Dachsbacher [2008].

The look-up to octahedron maps using these projections work analo-
gously to cube maps: First the octant of a look up vector has to be de-
termined, and next the projection transformation and the mapping to the
octahedron layout (as described above) is computed.

We examined this parametrization for the sake of completeness, but
compared to a cube map, there are no advantages to be expected (8 projec-
tions instead of 6, plus additional clipping). Thus, in the remainder of this
chapter, we focus on the planar parametrization, which is simpler and thus
beneficial for some applications.

7.2 Implementation

In this section we describe the creation of octahedron environment maps on
graphics hardware. Look-ups are also discussed. In particular, care must be
taken when filtered texture look-ups are to be used with OEMs.

7.2.1 Direct Rendering of Octahedron Maps

For planar projections we cannot utilize matrix operations, as they do not
support absolute values that are required for this projection (cf. Equa-
tion 7.1). Nonetheless, planar projections can be otherwise realized thanks
to programmable graphics hardware. Unfortunately, triangles overlapping
octant boundaries cannot be handled correctly: Transformations and pro-
jections on graphics hardware are performed per-vertex and scanline con-
version or rasterization (assuming linear triangle edges) produces wrong
results whenever a triangle intersects more than one octant (illustrated in
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// projection onto octahedron
d /= dot(1, abs(d));

// out -folding of the downward faces
if(d.y < 0.0f)

d.xy = (1-abs(d.zx)) * sign(d.xz);

// mapping to [0;1]x[0;1] texture space
d.xy = d.xy * 0.5 + 0.5;
color = tex2D(octaMap , d.xy);

Figure 7.3: Shader pseudo code which computes the texture look-up coordi-

nate for the quadratic layout corresponding to a direction vector d. Illustra-

tion: Engelhardt and Dachsbacher [2008].

Figure 7.2b). This is somewhat similar to the projection errors that oc-
cur rasterizing a paraboloid environment map [Heidrich and Seidel, 1998].
Similarly, we can keep the error low using finely tessellated geometry, but
in order to produce correct results, additional effort is necessary.

Linear interpolation is correct within each octant, i.e. we can solve the
problem correctly by splitting triangles at each octant boundaries. We can
leverage this by using geometry shaders: A triangle is split at the XY-, YZ-,
ZX-planes into smaller triangles (up to 27), such that each output triangle
resides in only one octant. After clipping, the projected coordinates are
computed and the affine transformation according to the layout (quadratic
or rectangular) is applied.

7.2.2 Texture Look-ups

Unfiltered texture look-up: The texture coordinates for the look-up into
an octahedron map for a given direction vector can be computed analo-
gously to the aforementioned projection and layout transformation. The
unfiltered look-up is very efficient when used together with the quadratic
layout. Computing the texture coordinates for a direction vector d given in
the octahedron coordinate system can be achieved with only a few shader
instructions as demonstrated in Figure 7.3

Filtered texture look-up: For a mip map look-up, we need to consider two
aspects. First, when determining the required mip level for a texture look-
up, the decision is based on the extend of the quadrilateral region spanned
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by the screen space pixel cell transformed into texture space. These extends
are derived from the texture coordinates and its partial derivatives [Mi-
crosoft Corporation, 2010]. Please note, that for per-pixel computed reflec-
tions, the mip level is typically computed manually depending on surface
curvature or glossiness. We denote the partial derivatives in texture space
by dX and dY . The mip-map level l is then derived by:

e = max(〈dX , dX 〉 , 〈dY, dY 〉)
l = log2

p
e (7.4)

In the case of the octahedron map the quadrilateral region might cross
two adjacent octants which have been separated due to the unfolding. For
the quadratic layout, this case occurs when the extents of a pixel in texture
space overlaps more than one octant. A possible situation is depicted in
Figure 7.4 (centre) – similar configurations occur for the rectangular layout
as well.

Thus, we need a special treatment when a cell spans to disjoint regions
in the texture space. Fortunately, the symmetry of the octahedron allows us
to reflect the coordinates of pixel cells in the lower to the upper hemisphere,
thus resulting in a contiguous quadrilateral which is then used to compute
the correct mip level (Figure 7.4, right). In practice, we compute the mip
level of both, the original and the mirrored cell, and use the minimum of
both values.
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Figure 7.4: The quadrilateral region in texture space corresponding to a pixel

cell in the negative hemisphere is mapped to disjoint regions (centre). This

yields incorrect mip-levels, however, by exploiting symmetry we reflect at the

XY-plane and obtain the correct area estimate for mip map level determination

(right). Illustration: Engelhardt and Dachsbacher [2008].
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Figure 7.6: This image shows screen-shot of a rendering with SATs created

from octahedron environment maps to adjust surface glossiness at real-time.

The creation of the 512 × 512 pixel SAT takes about 3.3ms on a NVIDIA

8800GTX. Illustration: Engelhardt and Dachsbacher [2008].

The second aspect to considered is that due to unfolding a wrap-around
access to the texture does not yield correctly bilinearly interpolated colour
values for texture filtering (this applies to parabolic, and to some extend to
cube maps as well). This can best be solved introducing a ‘safety-border’,
that is duplicating pixels as shown in Figure 7.5. The border ensures that
samples for bilinear interpolation and mip-mapping are available. For rect-
angular layouts, hardware assisted wrap-around access works only in one
dimension (cf. Figure 7.5).

Please note, that the maximum correctly represented mip level depends
on the width of the safety-border. We also used octahedron maps with
summed area tables for rendering glossy reflections [Hensley et al., 2005].
In this case we used a safety-border width determined by the maximum
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Figure 7.7: Visualization of the sampling ratio compared to uniform sam-

pling over one hemisphere. Dark blue and purple regions indicate areas of

undersampling, while cyan to red mark regions of oversampling.

glossiness of the BRDF (Figure 7.6 shows an example). Please note, that
for accurate BRDF modeling, multiple SAT queries are required which holds
for all spherical parametrizations and (pre-)filtered environment mapping.

7.3 Results

In this section we present results for our OEM. We evaluate quality and
compare to other environment mapping techniques. Further, we asses ren-
dering speed for planar and perspective projection, and discuss our results,
and highlight advantages of our representations and possible applications.

7.3.1 Sampling

In order to evaluate the sampling quality of the octahedron map, we com-
pute the solid angle covered by each pixel (relative to the solid angle of
a sphere over the total number of pixels). Comparisons of the octahe-
dron parametrizations to a cube map [Greene, 1986] and the paraboloid
map [Heidrich and Seidel, 1998] are shown in Figure 7.7. The highest sam-
pling rate is close to the octahedron vertices but stays within an acceptable
range across the entire surface. As expected, the planar projection yields a
more balanced sampling than the perspective projection; the overall quality
is comparable to either cube and paraboloid mapping.
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Figure 7.8: This image shows our test scene for dynamic environment map

generation, which consists of approximately 105k triangles. Illustration: En-

gelhardt and Dachsbacher [2008].

7.3.2 Direct Rendering

We further measure the rendering performance for an adequately complex
scene (Figure 7.8) creating three environment maps of approximately equal
pixel count. We directly render a 512× 512 quadratic layout (QL) OEM, a
rectangular layout (RL) OEM of two 362 × 362 textures and a cube map
of six 209 × 209 textures. For careful performance evaluation, we have
implemented different rendering approaches which are mentioned in the
following.

Strict split: We have implemented both the planar and perspective pro-
jection with explicit clipping in the geometry shader stage as described in
Section 7.2.1. We denote this approach strict split (S-Split).
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Clip mask: As mentioned in Section 7.1.2 the clipping for perspective
OEMs can also be implemented discarding pixels in the pixel shader that
do not fall into the triangular viewport. We call this method Clip Mask.

XY-split: For the rectangular layout we present results for the planar pro-
jection and only examine two less accurate clipping techniques: The clip-
ping performance of the geometry shader (GS) heavily depends on the max-
imum amount of vertices that can be generated and output to the succeed-
ing pipeline stages. This proved to be the bottleneck in our implementation
of the strict split (see above), for clipping potentially creates 27 triangles
which amounts to 91 vertices in total. To relax the pressure on the GS out-
put we opt to generate less vertices in each GS invocation. Exploiting the
fact that the rectangular OEM layout maps both hemispheres to contiguous
regions we only split triangles that overlap the XY-plane. Although this cre-
ates three triangles we can use triangle strips and output at most 7 vertices
in total.

Edge strip: The second approach, we call Edge-Strip, proceeds with the
vertices output by the XY-split in both half-spaces (positive and negative z-
axis) independently. Those vertices form a convex polygon (per half-space)
whose edges are split by the remaining split planes (Figure 7.9, Edge Split).
Afterwards two naïve triangle strips are created from the so obtained points
(Figure 7.9, Triangle Strip). Please note, that while the naïve stripping pre-
serves the correctness of the projection on both polygon boundaries, it does
not guarantee correct interpolation, e.g. of texture coordinates, within the
triangles of those strips. Of course this is not correct, but rather tolerable
than a wrong primitive shape. This approach outputs a maximum of 15
vertices in total.

7.3.3 Applications and Advantages

Despite the difficulties introduced with direct rendering of OEMs, they pro-
vide two unique features. First, OEMs have the ability to generate summed
area tables (SATs) over the the entire spherical domain. When creating SATs
on GPUs, e.g. with the method by Hensley et al. [2005], the input and out-
put parametrization can be chosen independently. This is because multiple
render passes are required for the generation and the first one can include a
reparametrization, i.e. also easily renderable cube or paraboloid maps can
be used as input. Furthermore, a look-up to an OEM is an efficient means
to make directional data available to all shader stages.
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Figure 7.9: This alternative triangle splitting scheme generates primitives

with correct boundaries in the OEM. Less vertices are created, however the in-

terpolation of the interior is not correct. Red vertices are mapped to the upper

half-space (y ≥ 0) while orange vertices are mapped to the lower half-space

(y < 0). Illustration: Engelhardt and Dachsbacher [2008].

The octahedron parametrization also provides compact storage when
multiple (hemi-)spherical domains are to be stored, e.g. (hemi-)spherical
shadow maps for instant radiosity methods [Laine et al., 2007; Ritschel
et al., 2008] or for sparse-sampling of scene radiance [Greger et al., 1998].
Instead of parabolic parametrizations which waste up to 20 percent of tex-
ture space, OEMs can be packed tightly into texture atlases utilizing all
available space.

As OEMs, latitude-longitude environment maps [Blinn and Newell, 1976]
enable the parametrization of the spherical domain over a rectangular tex-
ture, and consequently, they would also enable to compute SATs, provide
compact storage, and look-up in vertex and geometry shaders. However,
sampling is severely distorted in polar regions. Beyond that, the mapping
shows a singularity at each pole, and the look-up requires trigonometric,
and thus expensive, operations. Finally, rendering to latitude-longitude
maps is not possible on GPUs without severe errors or high tesselation, due
to the non-linearity of the projection.

7.4 Conclusions

We examined octahedron environment maps as an alternative for environ-
ment map rendering which represent the entire spherical domain of direc-
tions in a single quadratic or rectangular texture while providing efficient
texture look-ups. Although the planar projection and unfolding transfor-
mations are rather simple, and provide good sampling (comparable to the
cube map), the direct rendering is not yet suitable for interactive applica-
tions due to the geometry shader performance.
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EnvMap FPS[s]
Planar Proj. QL, S-Split 16
Planar Proj. RL, XZ-Split 34
Planar Proj. RL, Edge-Strip 3
Perspective Proj. QL, S-Split 16
Perspective Proj. QL, Clip Mask 95
Cube Map 250

Table 7.1: Rendering performance of our test scene for a screen resolution of

1920 × 1200. All timings were taken on an Intel Q6600 Core2Duo proces-

sor with 2.4GHz, a GeForce 8800GTX running Vista x64 with 4GB of main

memory. Table: Engelhardt and Dachsbacher [2008].

Further, OEMs offer benefits not known from other techniques, namely
the ability to create spherical summed area tables and tight-packing into tex-
ture atlases. Especially the latter allows us to store omnidirectional shadow
maps efficiently. Efficient rendering is also feasible when alternative render-
ing methods are used [Ritschel et al., 2008]. OEMs an be directly applied
to imperfect shadow maps which are particularly useful in global illumina-
tion techniques that build on virtual point light sources (VPL), such as our
approximate bias compensation method (cf. Chapter 10) and screen-space
bias compensation algorithm (cf. Chapter 11). Both algorithms build on
virtual point light sources in order to approximate multiple scattering and
indirect illumination. Furthermore, OEMs can also be used to store indi-
rect illumination at shading points and are therefore an ideal candidate for
micro-rendering (cf. Chapter 8) which relies on directional parametriza-
tions that fit into a single texture or image.



CHAPTER 8

Micro-Rendering

FINAL Gathering is a method for accurately computing indirect illumina-
tion for surfaces visible to the camera. There it evaluates the shading

integral numerically and in order to do so, incident light from other surfaces
in the environment must be determined. Therefore ray tracing is commonly
used to sample the visible surfaces in the environment of the gather loca-
tion, where reflected light is typically computed using a less accurate GI
algorithm, such as photon mapping [Jensen, 1996], or radiosity [Lischin-
ski et al., 1993]. Ray tracing is conceptually simple, but computationally
expensive, as often hundreds of so called gather rays have to be traced per
gather location for high-quality results, making it infeasible for interactive
applications. Alternatively, we can generate low-resolution environment
images (e.g. OEMs) at each shading point employing GPU rasterization,
but the linearity of it forbids importance sampling and setup costs become
predominant.

We opt to lift these restrictions and introduce micro-rendering (MR), an
efficient, scalable GPU-based method, that achieves high-quality final gath-
ering for dynamic scenes at interactive framerates1. Christensen [2008]
demonstrated that point-based representations of the scene are suitable for
global illumination algorithms. Similarly, we make without ray tracing and
employ a point-based rendering technique to rasterize a hierarchical point
representation of the scene into a micro-buffer. The latter is additionally
importance-warped and thereby accounts for BRDF importance sampling,
which is crucial for glossy surfaces. For further acceleration, we combine
MR with GPU-friendly bilateral upsampling to reduce the sampling rate of
gather locations in image space and demonstrate different applications with
multiple indirect bounces and final gathering for photon mapping.

1This chapter is based on our joint work presented at SIGGRAPH Asia 2009 [Ritschel
et al., 2009a]
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8.1 Point Hierarchies for Final Gathering

As mentioned in the introduction, micro-rendering employs a hierarchi-
cal, point-based representation of the scene which is rasterized into micro-
buffers. The advantages of such representations are twofold. On the one
hand, point-based rendering has lower setup and rasterization costs for low
image resolutions compared to conventional triangle rasterization. On the
other hand, efficient level-of-detail rendering is easily incorporated [Dachs-
bacher et al., 2003] based on simple point selection criteria, as are used by
QSplat [Rusinkiewicz and Levoy, 2000]. Similar to QSplat, we construct
a bounding volume hierarchy using bounding spheres for the entire scene.
The leaf nodes store surface elements together with their respective bound-
ing sphere. A surface element is essentially an oriented disc with centre po-
sition p, normal n, and radius r. Internal nodes store an enclosing bounding
sphere for all their children, i.e. the entire collection of surfels, or surface
samples, they represent.

Rasterizing a point hierarchy into a micro-buffer traverses the hierarchy
beginning with the root node. The original QSplat [Rusinkiewicz and Levoy,
2000] algorithm projects the bounding sphere of each traversed node into
screen space and accepts it when its projected size in the image is smaller
than a given threshold (e.g. a pixel). Otherwise the node is further refined
by descending the hierarchy. Micro-rendering proceeds in a similar man-
ner but replaces the ‘size-in-screen-space’-test with a test that is based on
the solid angle a node subtends. This ultimately allows us to incorporate
BRDF importance sampling defining a warped projection scheme, mapping
the micro-buffer pixels to directions where the BRDF has significant contri-
bution.

8.1.1 Point Hierarchy Construction

The point hierarchy is constructed generating surface elements (surfels)
in an offline preprocessing step first. For surfel generation we use a best
candidate sampling pattern to distribute points proportional to the surface
areas of the triangles. These points p are the surfel centres, and the radius
is derived from the initial point density. Because this density is constant,
each surfel is created with the same radius. Additionally we store the tri-
angle index and the barycentric coordinates with each surfel, which allows
us later to recompute position, normal, and surfel radius under deforma-
tion [Ritschel et al., 2008]. The latter is recomputed to compensate for the
thereby induced varying point density.
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Figure 8.1: The surfaces of the scene are stored as point hierarchy. We al-

ways use complete binary tries, because it allows us to traverse and update the

structure efficiently at run-time Illustration: Ritschel et al. [2009a].

In the second step we build the point hierarchy, in which the previously
created surfels become the leaf nodes (Figure 8.1). We construct the hier-
archy using a binary space partition scheme dividing the space at the co-
ordinate axis along which all points have maximum extent. Afterwards, a
splitting plane is placed, so each produced subspace contains an equal num-
ber of points. Then the scheme continues recursively in the same manner
until each subspace contains only two points. In total this yields construc-
tion costs of O(nlog2n) for n points. In our cases, the number of points is
always a power of 2, and hence we always obtain complete trees. This has
one noteworthy advantage: We can place nodes and hierarchy levels con-
secutively in memory (Figure 8.1) and thus avoid storing additional skip-
pointers for traversal in each node. These can be computed on-the-fly.

Consider the example in Figure 8.1. Nodes A to D are the leaf nodes
after sorting. The tree is complete, and nodes A and B are children of E,
and so on. When constructing the hierarchy, we compute the minimum
bounding sphere for enclosing all children, as well as the cone of normals
(stored as direction plus cone angle), and lay out nodes and hierarchy levels
consecutively in memory. The normals and normal cones are used for light-
ing computation and back-face culling during the point hierarchy traversal
(Section 8.1.2).
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Deforming and moving geometry: Since we have stored a triangle index
and barycentric coordinates with each point in the hierarchy, we can restrain
from completely reconstructing it under deforming geometry. Instead we
only update the per-node data at run-time at the beginning of each frame.
This is a bottom-up process: First, we recompute the normal and position of
each node, and second, we successively propagate these changes upwards
in the hierarchy. During propagation we merge two nodes at a time and
thereby adjust their minimum enclosing bounding sphere and its cone of
normals. Because we have to update each leaf node, update costs sum up
to O(n) for n leaves. This scheme cannot handle moving geometry, and we
have to use separate hierarchies for such objects.

8.1.2 Hierarchical Cuts for Hemispherical Rasterization

Final gathering evaluates the shading integral to compute indirect illumi-
nation at each point pc visible to the camera. For this purpose, it must
determine the incident light reflected from the environment visible through
the upper hemisphere at pc. Typically, the reflecting surfaces of the environ-
ment are determined using ray tracing at pc, sampling the visible surfaces in
the environment with gather rays. For good results, several hundred gather
rays are often sufficient. Similar results can be achieved rendering low reso-
lution (24×24) images of the environment using hemispherical projections
(cf. Chapters 5 and 7), but as stated earlier, this becomes inefficient for
rasterization due to repeated geometry processing and triangle setup.

In this section we describe how point hierarchies can efficiently be used
to render a low-resolution image of the environment under hemispherical
projections, the so called micro-buffer and how it is used to compute indirect
illumination in the spirit of final gathering.

Micro-buffers: The environment at a surface point pc is visible in each
directionω. To record the environment in a two-dimensional image, called
the micro-buffer, we define a mapping Φ(x , y) =ω relating a pixel (x , y) to
a gather direction ω. We denote the solid angle subtended by the pixel in
the micro-buffer under this mapping as Ω(x , y) (see Figure 8.2). Although
any hemispherical mapping is possible, we use our own importance-warped
mapping that is described in Section 8.1.3. To keep storage costs for the
micro-buffer low, and in order to correct shortcomings of the hierarchy cuts
(see below), we store an index to the nearest visible surface and its distance
at every pixel, instead of explicitly storing incident illumination. Note this is
similar to geometry-buffers [Saito and Takahashi, 1990]. Visibility is deter-
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Figure 8.2: Every pixel (x i, yi) of a micro-buffer is mapped onto a direction

Φ(x i, yi). Under this mapping, the pixel subtends a solid angleΩ(x i, yi). While

traversing the hierarchy, nodes are refined until a node does not project onto

more than one pixel. Illustration: Ritschel et al. [2009a].

mined first, then shading is executed (cf. Chapter 2.2.2). As stated earlier,
a micro-buffer is typically small, ranging from 8×8 to 24×24 pixels in our
examples.

Point hierarchy cut: In order to determine the visible surfaces in the en-
vironment of p, we compute a point hierarchy cut using a depth-first search.
The search starts at the root node and for each node we evaluate whether
it will be refined, and the search continues, or whether it is sufficient, and
it is accepted in the cut. This decision is based on a simple selection crite-
rion. We compute the direction ωi to the node’s centre and the solid angle
Ωi that it subtends. Using the inverse hemispherical mapping, Φ−1(ωi) we
determine the pixel (x i, yi) the direction ωi maps to:

(x , y) = Φ−1(ωi).

If we detect that the projection will span more than 1 pixel, i.e.

Ωi > Ω(Φ
−1(ωi)),

we will proceed with the child nodes. Otherwise we compare the node’s
distance to the existing depth value in the micro-buffer at pixel (x i, yi). In
case the node passes the depth test, i.e. it is closer to pc than the one in
the buffer, the index and depth values in the micro-buffer are updated.
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On-demand ray casting: It may occur that leave nodes project onto sev-
eral pixels with possible distorted shapes. Unfortunately, they cannot be fur-
ther refined. One possibility is to project them only into the pixel (x i, yi) =

Φ
−1(ωi) that corresponds to the direction towards the node’s centre. How-

ever, we have found that this leads to undesirable artefacts in the final ren-
dering (Section 8.3). Hence we opt to resolve visibility for such nodes ex-
actly. Fortunately, this can easily be computed using ray casting. To this end,
we append such nodes to a post-traversal list which is processed after com-
puting the cut. For each pixel in the micro-buffer, we obtain the according
direction by the hemispherical projection scheme, define a ray, compute the
intersections with all nodes in the post-traversal list, and update the micro-
buffer accordingly. From this we obtain an accurate micro-rendering with
water-tight surfaces (Section 8.3).

Convolution: After ray casting, visibility determination is complete, and
the micro-buffer stores indices to each visible node in the point hierarchy
for every pixel. The next step is to compute incident radiance L(ωi) for
each pixel in the micro-buffer. This in fact is the radiance reflected from
the visible nodes. Reflected radiance can be computed using different ap-
proaches as we show in Section 8.3. For example, we can use primary and
secondary light sources (VPLs) with shadow maps for this purpose, but we
can also precompute reflected radiance using photon mapping (Figure 8.8)
if the nodes are assumed to be diffuse. Then reflected radiance can be stored
within the point hierarchy itself [Christensen, 2008].

After reflected radiance from the visible nodes has been gathered, it is
weighted with the respective solid angle of the according pixel in the micro-
buffer, multiplied with the BRDF, and summed up, yielding indirect illumi-
nation at the visible surface points pc.

8.1.3 BRDF Importance Sampling

So far we have not specified the mapping Φ(x , y) that relates a pixel to
a direction ω. Many mappings can be thought of, for instance Nusselt’s
analog, which is also known in radiosity [Cohen et al., 1993]:

Φ(x , y) =
�

x , y,
Æ

1− x2 − y2
�T

.

Unfortunately, such a simple approach bears a problem. For glossy surfaces,
much of the information in the micro-buffer is virtually irrelevant. This is
due to such BRDFs which reflect incident light mostly within a small solid
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viewer

Figure 8.3: Using a warping function Φ(x i, yi) = ωi we map pixels in the

micro-buffers to directions distributed according to the BRDF. Hence the solid

angle Ω(x i, yi) varies as well. Illustration: Ritschel et al. [2009a].

angle, and consequently only a few pixels in the micro-buffer have a sig-
nificant contribution to the reflected illumination, i.e. most light reflected
towards the viewer stems from only a small number of pixels.

Ray tracing avoids this issue by BRDF importance sampling. This tech-
nique shoots rays preferably into directions from which high contributions
to the reflection are expected according to the BRDF (cf. Chapter 4.2).

We opt to mimic this behaviour, i.e. our goal is to define a mapping that
reserves more pixels for direction for which the BRDF has high contribution.
This is ultimately achieved, defining an appropriate mapping Φ(x , y). For a
given point pc in the scene, we know the BRDF fr(x,ω,ωi) and the viewing
direction ωo. By keeping pc and the viewing direction ωo fixed, we obtain
the 2D light-dependent slice f ωo

r
(ωi) = fr(pc,ωo,ωi).

Additionally we assume a local coordinate system at pc, where the z-axis
is the normal and hence we can parametrize ωi by its x- and y-coordinates,
and thereby the 2D light-dependent slice of the BRDF: f ωo

r
(ωi,x ,ωi,y). This

can then be turned into a 2D probability density function (PDF)

p(ωi,x ,ωi,y) = c f ωo

r
(ωi,x ,ωi,y),

with the normalization constant

c−1 =

∫ ∫

f ωo

r
(ωi,x ,ωi,y)dωi,x dωi,y .

From the PDF, the cumulative marginal and conditional distributions M(ωi,x)

and C(ωi,y |ωi,x) can be derived. By the means of the corresponding inverse
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Figure 8.4: Micro-buffer for a glossy BRDF. From left to right: standard

hemispherical mapping and importance warped mappings for (Phong) N =

20, 5, 1. Using the warping function makes full use of the available space.

Illustration: Ritschel et al. [2009a].

functions we can map uniformly distributed x and y (the pixels) to

ωx(x) = M−1(x) and ωy(y) = C−1(y |ωx(x)).

which are then used to define the importance-warped mapping.

Φ(x , y) =
�

ωx(x),ωy(y),
q

1−ωx(x)
2 −ωy(y)

2
�

.

This parametrization of the BRDF slice implicitly includes the cosine term
ωz, i.e. according to ωi,z fr(p,ωo,ωi). Figure 8.3 illustrates a BRDF-based
mapping function Φ(x , y) and its associated Ω(x , y). A concrete example
for importance-warped micro-buffers with varying glossiness is shown in
Figure 8.4.

For special cases, such as the specular Phong component, this mapping
can be derived analytically. Since we opt to maintain generality, we restrain
from using such specialized solutions and always tabulate the PDF and com-
pute the inverse distributions numerically, which allows us to support any
other reflection model. Besides the inverse mapping Φ−1(ω) = (x , y) that
projects nodes onto micro-buffer pixels, we also compute the forward map-
ping ω = Φ(x , y), which is required for ray casting. Additionally, we need
to compute the solid angle Ω(x , y) that each pixel maps onto in order to
be able make a decision whether to accept or refine a node during traver-
sal (cf. Section 8.1.2). For this we rely on the first-order approximation
by taking the magnitude of the gradient of Φ(x , y). As the micro-buffer is
now importance-warped, a multiplication with the BRDF or the pixel’s solid
angle is no longer required, and we can compute convolved indirect illumi-
nation summing all pixels in the buffer and weighting them with c−1 (see
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above). Further, we also jitter the local coordinate system slightly at every
gather sample to avoid banding artefacts.

Rendering with highly glossy materials is not without problems. The res-
olution of the warping table is limited to the resolution of the micro-buffer,
and consequently the numerically obtained (inverse) projection function
might miss important features, i.e. it effectively limits glossiness. But also
if the hierarchy has been constructed with an insufficient number of point
samples, highly glossy surfaces can make the structure of the hierarchy ap-
parent, because surfels become visible in the reflection. In order to capture
fine details, such as edges and texture plausibly in glossy reflections, more
point samples are required. Lastly, the likelihood of surfels being projected
onto more than only one pixel increases with glossiness and additional ray
casting is required.

8.2 Implementation

Micro-rendering has been designed to exploit the parallelism of GPUs. We
implemented our method using NVIDIA’s CUDA, and thus we will use the
respective terminology in this section.

8.2.1 Data Structures

Micro-rendering requires three data structures: the point hierarchy, the
micro-buffers, and the post-traversal list, which are all stored in contigu-
ous global GPU memory.

Point hierarchy: After the point hierarchy has been created (Section 8.1.1)
it is tightly packed into an array of nodes, where each node consumes 128
bits. We use four half-floats (4× 16 bits) to store position and radius. Nor-
mal and surface albedo are both quantized to 3 × 5 bits each and packed
into a single 32 bit value. After accounting for additional 8 bits for the cone
angle, 24 bits remain unused. We experimented with packing reflected ra-
diance into the unused area but discovered that 8 bits per channel corrupt
the results. Thus we allocate an additional radiance buffer reserving 3×16
bits per colour channel.

Micro-buffers: Micro-buffers also reside in global memory. Each micro-
buffer entry consumes 32 bit for depth (8 bit) and node index (24 bit). The
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latter implies that the total number of nodes is limited to 224, i.e. 223 point
samples, which was sufficient for our examples.

Post-traversal lists: Post traversal lists store indices of nodes that project
to more than one pixel. For each micro-buffer, we allocate an according
traversal list of the same size. Like the micro-buffer, it stores only indices
to nodes.

8.2.2 CUDA Implementation

To exploit the high parallelism of GPUs, we launch one CUDA thread per
gather location. Each thread then performs four tasks. First, the tabulated
BRDF warping is computed (Section 8.1.3). Second, the point hierarchy
is traversed and the cut filling the micro-buffer and the post-traversal list
computed (Section 8.1.2). The third step processes the post-traversal list.
For each pixel in the micro-buffer, a ray is constructed according to the tab-
ulated warping function (Section 8.1.3) and intersected with the oriented
disc a node represents, and if necessary, the micro-buffer is updated. In our
experiments, ray casting was necessary for only 10% to 30% of the micro-
renderings (i.e., the post-traversal list is empty for the other 70%− 90%).
Fourth and finally, the indices in the micro-buffer are resolved and the inci-
dent radiance is gathered from according nodes in the hierarchy, summed
up and handed over to OpenGL for display.

To achieve the highest performance possible, it is crucial that memory ac-
cesses are highly coherent on the GPU. This is expected for micro-rendering
threads that compute similar hierarchy cuts. We ensured this by ordering
the gather locations pc according to a 3D Morton-order space-filling curve.

8.2.3 Bilateral Upsampling

The number of gather locations for which micro-rendering is performed
can still be overwhelming for interactive rendering. A simple but effective
method to reduce workload is computing indirect illumination for a low
resolution image first and then upsampling it to the full target resolution.
This yields acceptable results because indirect illumination is mostly low-
frequency, and artefacts are masked by direct illumination (which is always
computed at full resolution). Filtering over strong normal and depth dis-
continuities must be avoided, as this can lead to perceivable artefacts. Dis-
continuities are detected during bilateral upsampling [Sloan et al., 2007].
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Figure 8.5: The scene consists of 700k triangles and was converted to 1 million

points. Micro-rendering is performed at 0.74 fps. Illustration: Ritschel et al.

[2009a].

Nonetheless, for some pixels bilateral upsampling may fail because no vi-
able information is available in the low resolution image. In these cases all
interpolation weights are (nearly) zero, and we replace the affected pixels
in a second micro-rendering pass, similar to [Dachsbacher and Stamminger,
2005].

Rendering performance was typically 4 to 10 fps for 1/16-th of the tar-
get resolution (1/4-th in each dimension) and 0.5 to 1.0 fps for full sim-
ulations. Unfortunately, the performance gain remained below our expec-
tations, which can be explained with the high overhead due to additional
memory transfers in our CUDA implementation.

8.3 Applications

Micro-rendering is highly flexible and can be used in various ways to pro-
duce high-quality interactive renderings and full-resolution renderings on
par with offline ray tracing methods [Pharr and Humphreys, 2010]. In
this section we outline four applications, one-bounce illumination, multi-
bounce diffuse illumination with (instant) radiosity, and final gathering for
photon mapping. We use Heckbert’s notation [Heckbert, 1990] to assess
the variety of light paths that are supported by micro-rendering.

One-bounce indirect illumination: One-bounce indirect illumination can
be easily realized by micro-rendering in two steps. First, direct illumination
from primary light sources with shadow mapping [Eisemann et al., 2011]
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Figure 8.6: Instead of rendering directly with virtual point lights (left),

the point hierarchy is illuminated instead (middle). Rendering with micro-

rendering (right) removes many VPL typical artefacts. Performance is 0.7 fps

at 512× 512 (full resolution). Illustration: Ritschel et al. [2009a].

is computed for all nodes in the hierarchy. Second, micro-rendering gath-
ers reflected light from the previously lit nodes and thereby accounts for
indirect illumination. Combining indirect illumination with direct illumi-
nation (and shadow mapping) makes it possible to capture all L{S|D}2E

light paths, as shown in Figure 8.5.

Multiple bounces with instant radiosity: Multiple diffuse bounces can
be easily realized using instant radiosity [Keller, 1997]. This technique cre-
ates a set of secondary, so called virtual point light sources (cf. Chapters 4.5
and 10) with which the point hierarchy is illuminated using shadow map-
ping [Ritschel et al., 2008]. This makes rendering of all LD∗{S|D}2E paths
possible, and above all, micro-rendering suppresses typical artefacts such
as bright splotches and shadow aliasing.

Multiple bounces with radiosity: In the spirit of hierarchical radiosity,
micro-rendering can be used for light transport with a Jacobi-iteration [Co-
hen et al., 1993] scheme. First, point samples are initialized with direct
illumination and shadow mapping. Second, final gathering is computed
for each point sample. This adds an additional indirect bounce to reflected
light which can be repeated until a desired number of indirect bounces is
reached or convergence is detected. We have also observed that it is typi-
cally sufficient to perform gathering only for nodes on an interior level and
then updating the hierarchy using push-pull [Cohen et al., 1993]. Finally
we display the radiosity solution performing final gathering at each pixel
(see Figure 8.7). Similar to rendering multiple indirect bounces with in-
stant radiosity, this approach also renders all LD∗{S|D}2E light paths.
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Figure 8.7: Micro-rendering supports multiple diffuse bounces using a Jacobi-

iteration scheme. From left to right: direct illumination, one-bounce indi-

rect illumination, and two-bounce indirect illumination. For multiple bounces

gathering is computed for all 4k nodes on level 12. Using bilateral upsampling

from 1/16-th of the target resolution (512× 512), the example runs at 5 fps.

Illustration: Ritschel et al. [2009a].

Figure 8.8: Final gathering for photon mapping: Density estimation at each

point sample is precomputed offline. Final gathering is performed at 2 fps

using bilateral upsampling from 1282 to 10242. Illustration: Ritschel et al.

[2009a].

Photon mapping: Micro-Rendering enables interactive walkthroughs for
photon mapped scenes. However, photon tracing and density estimation
for each point sample must be precomputed in an offline step. Radiance
values for the interior nodes of the hierarchy are computed using pull steps.
Second, final gathering with micro-rendering is used to display the final
solution at interactive framerates (Figure 8.8).
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8.4 Results

In this section we present our results and findings. All performance mea-
surements were taken on a quad-core 2.4Ghz CPU with an NVIDIA GeForce
280 GTX, for image resolutions of 5122 pixels, and 242 micro-buffer pixels,
if not mentioned otherwise. All images show one-bounce indirect illumina-
tion. Direct illumination for the image and the point samples is rendered
using shadow maps.

Comparision to ISMs and VPL methods: In Figure 8.9 we compare our
method to imperfect shadow maps (ISM) [Ritschel et al., 2008]. Using
bilateral upsampling, we adjust the number of gather locations to roughly
match the speed of the ISM. As can be observed, micro-rendering achieves
more distinct indirect shadows. Beyond that, VPL methods can only handle
low-glossy scenes efficiently. For highly glossy scenes, millions of VPLs are
required [Křivánek et al., 2010].

Bilateral upsampling: The quality of bilateral upsampling heavily de-
pends on the scene’s complexity. Higher geometric complexity and glossy
materials require more samples. This is illustrated in Figure 8.10, which
compares quality for different numbers of gather locations. For diffuse sur-
faces 1/16 resolution yields visually pleasant results. This is not true for
glossy surfaces, where artefacts become apparent resolutions lower than
1/4 are used.

Figure 8.9: Compared to ISMs [Ritschel et al., 2008], our proposed method

achieves higher quality at the same rendering speed (5 fps at 512× 512 reso-

lution). Illustration: Ritschel et al. [2009a].
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Figure 8.10: Final gathering at every pixel (0.83 fps, top), 1/4 of all pixels

(2.2 fps, middle), and 1/16 (4.2 fps, bottom). Preview quality can be achieved

with a very low number of gather samples for diffuse or low-glossy materials.

Illustration: Ritschel et al. [2009a].

Figure 8.11: Using small micro-buffers, the rendering performance increases,

but quality suffers. We use 8×8 (3.2 fps), 16×16 (1.5 fps), and 24×24 (0.7

fps). Framerates shown for 256× 256 resolution. Illustration: Ritschel et al.

[2009a].

Micro-buffer resolution: In Figure 8.11, we compare the influence of the
size of the micro-buffer on rendering quality. 24 × 24 pixels (used for all
other figures) is the maximum we can fit into local memory on our GPU
but even lower resolutions still achieve acceptable results at a higher frame
rate.



120 8. Micro-Rendering

Performance: The increase of run-time is sub-linear in the number of in-
put points. This is supported by Figure 8.12. The red curve depicts the in-
crease in run-time depending on the complexity for the dynamic horse scene
(Figure 8.11) while the blue curve shows the hierarchy update time. Up-
dates are sub-linear as well, but we have experienced that the update time
increases significantly at around 220 point samples. We presume hardware
limitations cause this peculiarity. The green curve in Figure 8.12 shows that
more gather samples can be processes per second when the total number
of gather samples increases. This is obviously the case because coherency
for cut computations increases as well. We also show that ordering gather
locations according to a 3D Morton code increases coherency even further,
i.e. more gather locations can be processed than without this sorting. The
computation time of our GPU-based final gathering technique is (roughly)
split as follows. 1.5% is spent on updating the hierarchy, 2% on building the
view-dependent per-pixel mappings Φ(x , y), 18% on evaluating them, 60%
on rasterizing the point hierarchy, 8% on ray casting, and 11% on bilateral
upsampling, tone mapping, and direct lighting.

Quality: Figure 8.13 highlights the importance of post-traversal ray cast-
ing. Without this step, holes appear in the micro-buffers. This becomes
especially noticeable around edges, which are darkened due to missing in-
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Figure 8.12: Left: We show computation time vs. scene complexity, i.e. the

number of points (2N , N: tree depth). The plots indicate sub-linear complex-

ity. The blue curve outlines tree update time. Right: We show the benefit of

using a space filling curve for improving memory coherency. More gather sam-

ples can be processed with the space-filling curve (green) than without (blue).

Illustration: Ritschel et al. [2009a].
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Figure 8.13: Micro-rendering with (2.5 fps) and without (2.9 fps) the post-

traversal ray casting (256×256). Ray casting is an integral step that is needed

for high-quality results, especially around edges. Illustration: Ritschel et al.

[2009a].

cident light. For high-quality renderings, this step cannot be omitted.
In Figure 8.14 we compare micro-rendering with and without bilateral

upsampling (rendered at 1/16-th of the full resolution) to references pro-
duced with the PBRT path tracer [Pharr and Humphreys, 2010]. The dif-
ferences between the approaches are minor. As expected, they are slightly
more perceptible when micro-rendering is used in conjunction with bilat-
eral upsampling. Micro-rendering, however, is interactive, achieving up to
10 fps, whereas the path tracer produces noise-free results within minutes
to hours.

8.4.1 Discussion and Limitations

We have shown, that micro-rendering is a fast, robust method, that can
handle about 150M gather locations in combination with BRDF importance
sampling per second. This is by far not matched by CPU-based ray tracing,
which achieves a maximum throughput of about 10M rays per second per
core for highly coherent rays [Shevtsov et al., 2007]. Even GPU-based ray
tracers do not match our number. It has been reported, that in dynamic
scenes about 20M rays can be traced per second, including dynamically
updating the acceleration structure [Zhou et al., 2008].

Our method, however, does not come without limitations. Naïvly reduc-
ing image resolution and relying on bilateral upsampling afterwards, is not
ideal for glossy materials. In this case, more sophisticated approaches, such
as by Křivánek et al. [2005], should be used. We also mentioned that we
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jitter the local coordinate system to avoid banding artefacts, and thus noise
becomes visible in our renderings. In our implementation radiance exitant
from a node is merely represented by one scalar per channel. This implies
that indirect illumination can only be gathered from diffuse surfaces, and
more than two specular bounces are not possible. Transparent surfaces and
refractions are also not supported.

8.5 Conclusions

We have shown that micro-rendering is a highly scalable GPU efficient method
for computing final gathering for high quality global illumination as well as
interactive previews, which is magnitudes faster than current CPU imple-
mentations. The core of the algorithm is a point-based representation of
the scene which allows us to render environment maps (c.f. Chapters 5
and 7) or light probes at each shading point seen from the camera with
high speed. Because common directional parametrizations are not suitable
for capturing incident light in low-resolution images on glossy surfaces, we
additionally developed an importance-warped projection scheme to make
this feasible. Although multiple scattering in participating media is not nat-
urally supported, we believe that our method can easily incorporate this
functionality, e.g. by holding another set of micro-buffers within the vol-
ume along eye rays.

Despite its advantages, our approach is not without limitations. For ren-
dering highly specular surfaces a sufficient number of point samples is re-
quired. Beyond that, the regular sampling scheme of bilateral upsampling
is not a practical means for improving run-time performance when deal-
ing with highly glossy and specular surfaces. For future work we like to
address this issue building on adaptive sub-sampling schemes based on ra-
diance caching.
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Figure 8.14: This comparison shows (1) fast preview images rendered at 1/16

of the target resolution (512×512) with upsampling, (2) micro-rendering at

full resolution and PBRT path tracing. For simple and purely diffuse scenes

such as the Cornell box, high quality results can be achieved even with bilateral

upsampling. In geometrically complex scenes we can detect slight differences,

which we attribute to the discrete micro-buffers. For the Sponza scene, we can-

not make out visual differences from the reference rendering. In fact, bilateral

upsampling removes noise and produces visually pleasing results. For glossy

scenes our approach achieves results close to path tracing. However, bilateral

upsampling changes the glossy reflection on the sphere slightly. The error im-

ages are scaled by a factor of three. Illustration: Ritschel et al. [2009a].



124 8. Micro-Rendering



CHAPTER 9

Efficient Single Scattering with Epipolar

Sampling

SCATTERING in participating media, such as fog or haze, generates volu-
metric lighting effects known as crepuscular or god rays. This effect

greatly enhances the realism in accurately lit virtual scenes (Chapter 8).
Their appearance, e.g. light piercing through tree canopies, can be plau-
sibly reproduced assuming single scattering media only. This is because
crepuscular rays emerge when in-scattered illumination from primary light
sources is modulated using a textured light source or due to volumetric
shadowing.

Interactive applications typically rely on ray marching [Perlin and Hof-
fert, 1989] to accumulate in-scattered light along eye rays, where illumina-
tion must be computed at each evaluated sample point. Even for modern
GPUs, the computational costs prevents high framerates (≥ 30 fps). A sim-
ple way to reduce the cost is to compute single scattering only for a low-
resolution image and then up-scaling it to the target resolution [Wyman
and Ramsey, 2008]. This blurs the crisp features of god rays which can be
explained by the means of epipolar geometry: the image of crepuscular rays
can be viewed as epipolar lines which emanate radially from the projection
of the light source onto the image plane. Along these lines, the scattering
image varies mostly smoothly, whereas strong variations are visible between
neighbouring lines (Figure 9.1).

In this chapter we present an algorithm based on epipolar geometry
that efficiently renders single scattering effects from point lights in homo-
geneous media.1 As such, it is also directly applicable to VPL methods that
target multiple scattering in particpating media (Chapter 10).

1This chapter is based on our work [Engelhardt and Dachsbacher, 2010] presented at
the Symposium on Interactive 3D Graphics and Games 2010 (I3D’10).
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Figure 9.1: Volumetric shadows and crepuscular rays rendered in real-time

with our method. Placing ray-marching samples along epipolar lines (centre)

reduces computational costs. This strategy is motivated by the observation that

scattering varies mostly smoothly along epipolar lines. This is confirmed by the

frequency analysis (right). Illustration: Engelhardt and Dachsbacher [2010].

9.1 Single Scattering

First recall from Chapter 3.3 that radiance arriving at an observer at x from
direction ω in the presence of participating media is defined as the sum of
attenuated, reflected surface radiance Latt(x,ω) and in-scattered radiance
Lscatt(x,ω) (Figure 9.2):

L(x,ω) = LS(y,ω)τ(x,y)
︸ ︷︷ ︸

=Latt(x,ω)

+

∫ s

0

Li(y+ tω,ω)τ(x,y+ tω)d t

︸ ︷︷ ︸

=Lscatt(x,ω)

.

Here s = ‖x− y‖ is the distance between the point of in-scattering and the
ray origin, and, assuming single scattering,

Li(x,ω) = σs(x)

∫

Ω

fp(x,ω,ωi)τ(x,z)Le(z,ωi)dωi

is light from primary light sources at z scattered once in the medium at x

into directionω. The phase function fp(x,ω,ωi) accounts for the probabil-
ity of the occurrence of a scattering event. In this chapter we always assume
single-scattering participating media with uniform density, i.e. the scatter-
ing (σs) as well as the absorption (σa) coefficients are spatially invariant.
Then the transmittance, the fraction of light that passes the medium with-
out being absorbed or scattered, is expressed by the simple analytic formula
τ(x,y) = e−σt‖x−y‖, with σt = σa +σs being the extinction coefficient.



9.2 Epipolar Sampling 127

contribution from surface reflectance contribution from in-scattering

+

Figure 9.2: The total radiance arriving at x is the sum of attenuated sur-

face radiance Latt (left) and accumulated in-scattered radiance Lscatt (right).

Illustration: Engelhardt and Dachsbacher [2010].

9.2 Epipolar Sampling

In this section we detail how our sampling strategy is derived from the con-
cepts of epipolar geometry. This in particular includes how ray-marching
samples are determined to compute and interpolate in-scattered light Lscatt

for every pixel. Epipolar sampling is inspired by the appearance of crepus-
cular rays that emanate radially from a (textured) light source. The reason
for this can be easily explained with epipolar geometry (see e.g. [Hartley
and Zisserman, 2004]).

camera

textured

spotlight

camera

rays

epipolar line

light

rays

epipolar plane

Figure 9.3: We render crepuscular rays from textured spot lights. Epipo-

lar geometry explains why we can sample sparsely along epipolar lines (when

detecting discontinuities properly). Illustration: Engelhardt and Dachsbacher

[2010].
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Lscatt along epipolar line

spotlight

camera

camera view

L
s
c
a
tt

epipolar line

Figure 9.4: Left: shadowed regions do not contribute to in-scattering. Right:

Consequently, the in-scattered light Lscatt reaching the camera exhibits abrupt

changes (plot). Illustration: Engelhardt and Dachsbacher [2010].

Looking at a set of rays from the camera going through pixels that lie
on one of these crepuscular rays, which are epipolar lines on the screen
(Figure 9.3, left), then we observe that these rays map to another epipo-
lar line on the “image plane” of the spot light (Figure 9.3, right). That is,
when computing the in-scattered light, these camera rays all intersect the
same light rays. All these intersections form an epipolar plane. The only
difference is how far these intersections are away from the light source, and
thus how much light was attenuated on its way to the intersection. Attenu-
ation varies smoothly for camera rays along an epipolar line while camera
rays on another epipolar line intersect different light rays and thus poten-
tially produce different in-scattering. In the presence of occluders, however,
the in-scattered light along an epipolar line can also exhibit discontinuities.
This is because of two reasons (see Figure 9.4): the distance to the first vis-
ible surface along a camera ray changes abruptly from one ray to another,
and shadowed regions in space do not contribute to the ray integral. Taking
advantage of these observations our method for placing the ray-marching
samples requires three steps:

1. Selection of a user defined number of epipolar lines, and refinement
of an initial equidistant sampling along these lines to capture depth
discontinuities (Section 9.2.1).

2. Ray marching all samples (in parallel on the GPU; Section 9.2.2)

3. Interpolation along and between the epipolar line segments (Section
9.2.2).
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Figure 9.5: Left: The light source projects onto a point in the image and

epipolar lines are equidistantly placed. Right: The light projects to a point

outside the image region. Invisible lines (red) are culled, all visible lines (yel-

low) are clipped against the screen. Illustration: Engelhardt and Dachsbacher

[2010].

9.2.1 Generating Epipolar Lines

The integral step of our method is to place samples along epipolar lines,
and thus we have to determine these first. The construction of epipolar
lines depends on the projection of the light source onto the image plane,
for which we have to consider the following cases.

Light source in front of the camera: In the simplest of all cases, the light
source is in front of the camera, and we project the light source’s position
onto the image plane. Then we create a set of epipolar lines, connecting
equidistantly sampled positions on the border of the screen with the pro-
jected position of the light source (Figure 9.5, left). If the projection of the
light source is outside the screen borders, some epipolar lines are invisible
and are culled prior to the subsequent steps. Epipolar lines that map to
outside of the light frustum are omitted from further computation as well.
For the remaining lines, we compute the location where they enter and exit
the visible part of the image plane (Figure 9.5, right).

For each epipolar line, we create a low number of
initial samples along the epipolar lines, typically 8 to
32, which is enough the capture the variation of the in-
scattered light in absence of occluders. This divides the
rays into epipolar line segments (right).
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Light source behind the camera: If the light source is behind the camera,
its projected position is the vanishing point where the (anti-)crepuscular
rays converge at infinity. As our sampling does not distinguish whether
rays emanate from, or converge to a point, we can proceed exactly as in the
aforementioned case.

Light source and camera coincide: If the camera and the light source
coincide then the crepuscular rays and the camera rays are parallel. In
this barely happening case the epipolar lines degenerate to points, and our
sampling scheme reduces to a naïve screen space sub-sampling [Wyman
and Ramsey, 2008].

9.2.2 Sampling Refinement

After the generation of the epipolar lines and the initial samples, we need
to detect depth discontinuities along the line segments. The in-scattered
radiance might change abruptly at discontinuities (Figure 9.4), and thus
we need to place an additional sample directly before and after these loca-
tions, otherwise distracting interpolation artefacts appear. For this we use
the depth buffer of the scene and linearly search along each epipolar line
segment for adjacent locations that exhibit a large threshold. Of course we
have to generate the depth buffer first, but we have to render the scene
anyway in order to account for attenuated surface radiance. Instead of
a linear search, we also experimented with 1-dimensional min-max depth
mip maps along epipolar lines to detect discontinuities (similar to [Nichols
and Wyman, 2009], but in 1D). Obviously, this produces the same results,
but as we need to detect each discontinuity only once, the construction of
the mip map did not amortize, presumably as it requires additional render
passes. Beyond that, we have also experimented with a different refinement
criterion, taking the difference of in-scattered light at the end points of an
epipolar line segment in order to detect discontinuities in the in-scattering
term. However, this has two inherent problems: first and foremost, this
criterion might miss volumetric shadows if the line segment spans a shad-
owed region (for example in situations like the one depicted in Figure 9.4).
Second, this criterion requires the computation of the in-scattered light to
be interleaved with the sample refinement. Our experiments showed that
this is hard to parallelize efficiently on a GPU.

The resulting sampling then matches the observations that we made
from the appearance of the crepuscular rays: we have more samples close
to the light source where the angular variation of the in-scattered radiance
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screen
pixel

sample by projection sample along epipolar line

l

l

Figure 9.6: We interpolate the in-scattered radiance for a pixel on the screen

using a bilateral filter sampling the closest two epipolar lines. If these taps

are invalid, we move to the next outer epipolar lines (sample taps shown with

dashed lines). Illustration: Engelhardt and Dachsbacher [2010].

is stronger, a predefined minimum sampling to capture the attenuation of
the in-scattered light, and additional samples to account for discontinuities.

9.2.3 Ray Marching and Upsampling

After the sample placement, we compute the in-scattered radiance for all
samples on the epipolar lines. From these samples we obtain a piecewise
linear approximation of accumulated Lscatt along each epipolar line. From
this sparse sampling of the image plane, we need to reconstruct the in-
scattering for each pixel of the final image by interpolation. We found that
a bilaterial filter, drawing the filter taps directly from the epipolar lines, is
well-suited to interpolate the ray-marching samples while preserving edges
at the same time.

In order to compute the in-scattered radiance for a pixel on the screen we
first determine the two closest epipolar lines. We then interpolate bilater-
ally along, followed by another bilateral interpolation between the epipo-
lar lines. First, we project the pixel’s location onto the two closest lines
(white dots in Figure 9.6) and denote the distance between the two pro-
jected points as l. Along each of these two epipolar lines we use a 3 to 5
tap 1D-bilateral filter. The filter taps are taken at distances with a multiple
of l along the epipolar lines towards and away from the light source, where
Lscatt is interpolated linearly from the ray-marching samples (that have been
placed along the epipolar lines). The filter weight for the i-th tap is deter-
mined by its distance (li, a multiple of d) and depth difference di to the
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pixel. We compute the weight by a multiplication of two radial basis func-
tions taking the li and di as input, respectively. We tried weighting similar
to Shepard’s scattered data interpolation as wS(x) = ax−2, using a Gaussian
wG(x) = e−ax2

(a is a user-defined, scene-dependent constant), and simple
thresholding (for di only). We found that all three yield comparable results
once the appropriate parameter is adjusted.

The interpolation along each epipolar line yields an interpolated colour
and we also keep track of the sum of weights, denoted as wle f t and wri ght .
Next we interpolate bilaterally between the two colours, according to the
weights. However, it may occur that no suitable sample taps are found
along an epipolar line (i.e. all taps have weights close to 0), in particular in
situations where object discontinuities are aligned with the epipolar lines.
In these cases wle f t or wri ght are obviously (close to) zero as well, and we
take the respective next outer epipolar line to obtain valid taps for the screen
pixel.

This rather simple bilateral filter yields visually pleasing results in most
cases. Of course, any such interpolation can cause artefacts due to missing
information in some geometric configurations. We also experimented with
a bilateral filter that bases its decision on a distinction of taps whose depth
is close to the pixel’s depth, significantly larger or smaller (similar to the
implementation of Wyman and Ramsey [2008]). We found that this yields
comparable results, however at increased computation cost. Note that this
approach might be more suitable to favour one sort of artefacts over others,
e.g. by preferring distant taps to close ones and thus preventing dark pixels.

9.3 Implementation

In this section we detail the individual steps of the implementation of epipo-
lar sampling. Our method has been designed with modern graphics hard-
ware in mind and implemented using Direct3D 10. The rendering of the
final image comprises 3 steps: (1) rendering the scene with direct light-
ing into an off-screen buffer, (2) determining the in-scattered light for the
entire image using epipolar sampling and interpolation, (3) and additively
combining both contributions while accounting for attenuation.

The epipolar sampling and the computation of the in-scattered light con-
sist of the following steps:

• Determine the epipolar lines and place the initial samples.

• Detect all discontinuities along the epipolar lines and determine for
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Figure 9.7: Each epipolar line is mapped to one row in a 2D texture. Each

pixel represents one sample along one of these lines. Illustration: Engelhardt

and Dachsbacher [2010].

which samples in image space the in-scattered light has to be com-
puted using ray marching and where an interpolation is sufficient.

• Compute the in-scattering with ray marching and interpolate along
the epipolar lines. Finally interpolate between epipolar lines to obtain
Lscatt for the entire image.

9.3.1 Epipolar Line and Initial Sample Generation

For efficient computation and interpolation, we store the in-scattered light
along the epipolar lines in a 2D texture: each texture row corresponds to
one epipolar line, and each column corresponds to one location along that
epipolar line (Figure 9.7). The number of columns in this texture deter-
mines the maximum number of ray-marching samples along that line. How-
ever, we do not necessarily ray march for every sample as the in-scattered
radiance might also be interpolated for a texel (typically it is interpolated
for most of them).

The first step is to relate the texels in this 2D layout to coordinates on
the viewport and store this information in the coordinate texture. For this
we setup the epipolar lines in a pixel shader as described in Sect. 9.2.1:
each texture row corresponds to the epipolar line from the projected light
source position to one location on the screen’s border (Figure 9.7). Next,
these lines are clipped against the light frustum and the viewport to obtain
the contributing epipolar lines and the respective visible segments thereof.
After clipping, we know the entry and exit locations of each line and com-
pute the location of every texel by interpolation between the segment’s end-
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points. Recall from Sect. 9.2.1 that line segments that do not overlap the
viewport are excluded from subsequent computation. We use the stencil
buffer to mask these epipolar lines and rely on the GPU to automatically
omit computations in later render passes.

9.3.2 Discontinuity Detection and Sampling Refinement

After the construction of the epipolar lines, we determine for which samples
the in-scattered light, Lscatt, has to be computed using ray marching (ray-

marching samples) and for which interpolation is sufficient (interpolation

samples). For interpolation samples, we also need to determine from which
other two samples the in-scattered light is interpolated. This information is
stored in another 2D texture (interpolation texture) with the same layout as
the one described above.

Our implementation carries out the classification of texels and the de-
termination of interpolation sources in a single pixel shader. For each texel
in the interpolation texture we regard the entire line segment to which it
belongs (line segments are determined by the initial sample placement).
For every sample in the segment we copy the depth values from the scene’s
depth buffer at the corresponding locations (obtained from the coordinate
texture) into a local array.

Next we determine from which samples in that segment we interpolate
the in-scattered light for the currently considered texel. The case that this
texel becomes a ray-marching sample is detected in the same procedure
(see below). The following pseudo-code illustrates the search for the in-
terpolation samples (indexed by left and right) in the local depth array
depth1d of size N, for the current texel at location x (Figure. 9.8):
✞ ☎

left = right = x;
while ( left > 0 ) {

if(abs( depth1d[left-1], depth1d[left] ) > threshold)
break;

left --;
}
while ( right < N-1 ) {

if(abs( depth1d[right], depth1d[right+1] ) > threshold)
break;

right ++;
}
✝ ✆

Note that if no discontinuities are found then the detected interpolation
samples are the endpoints of the initial line segment. If the epipolar line
crosses a discontinuity at x, then the corresponding sample will detect it-
self as interpolation sample. Samples that interpolate from themselves ob-
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Figure 9.8: For each pixel in the interpolation texture we search depth dis-

continuities along the epipolar line segment to which it belongs. Samples that

require ray marching are marked, and for all other samples we store from

which other samples we interpolate the in-scattered radiance into the interpo-

lation texture.Illustration: Engelhardt and Dachsbacher [2010].

viously are the ray-marching samples. The number of texture accesses re-
quired for the discontinuity search for every epipolar line is: the maximum
number of samples per epipolar line times the samples per initial line seg-
ment. Note that for typical settings this has negligible cost on contemporary
GPUs.

9.3.3 Ray Marching, Interpolation, and Upsampling

The next step is to determine the in-scattered radiance for every sample
along the epipolar lines. These values will be stored in a third texture (again
the same extent as the aforementioned textures) that we name radiance tex-

ture. After the discontinuity detection some texels have been classified for
interpolation while others are marked for ray marching. For the latter we
need to execute the costly ray marching operations, but we do not want the
GPU to spend time on the other samples. We experimented with render-
ing point primitives to trigger ray marching operations for individual sam-
ples, but this approach showed bad performance. Again the stencil buffer
proved to be the best choice, and we mark the texels corresponding to ray-
marching samples first. Following that we render a full-screen quad over
the entire radiance texture (which is bound as render target) using a pixel
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shader that performs the ray marching. The early-z optimization of GPUs
takes care that this shader is only executed where required. Next, a simple
shader performs the interpolation: for every texel it looks up both interpo-
lation sources and interpolates according to its relative position. Note that
we can use the (already existent) stencil buffer to distinguish between the
sample types, but in the discontinuity detection all ray-marching samples
detected themselves as interpolation source anyway. We always ray-march
at a fixed step size restricted to the light frustum (i.e. we do not ray march
in definitely unlit parts of the scene).

At this point we generated all information that is necessary to determine
the in-scattered radiance for all pixels in the final image. This procedure is
illustrated in Figure 9.9. First we compute the ray from the projected light
source position to the pixel and intersect this ray with the border of the
screen. Next we determine the epipolar line that is closest to this intersec-
tion. To facilitate this computation, we use a small 1D texture that stores
the closest epipolar line for every pixel on the screen border. Note that this
texture depends on the number of epipolar lines only and is precomputed
and stored once.

Finally, we project the pixel’s location onto the two closest epipolar lines
to obtain the taps for the bilateral filter. The filtering needed to obtain
the interpolated in-scattered radiance is implemented exactly as described
in Sect. 9.2.3: after interpolating bilaterally along each of those epipolar
lines, we interpolate in-between. If no suitable taps, i.e. no taps with large
weights, are found on one of the two closest epipolar lines, we move to the
next outer line. In our experiments, this procedure was sufficient to find an
appropriate radiance sample except for very rare cases.

9.4 Results

We implemented our method in Direct3D 10 and measured all results us-
ing an ATI Radeon HD4850 on a 2.4GHz Core2Quad processor; all timings
are measured for rendering at 1920×1080 resolution using the scattering
model by Hoffman and Preetham [2003]. The major cost in the render-
ing is ray marching which indicates that the epipolar sampling (including
line generation, depth discontinuity search, and interpolation) introduces
a small overhead only. The detailed timings for the left image in Figure 9.1
are: epipolar line generation 1.2ms, discontinuity search 6.0ms, ray march-
ing 16.7ms (500 steps per ray), interpolation 4.4ms, for 1024 epipolar lines
and 32 initial ray-marching samples (recall that the initial segment size
influences the cost for searching discontinuities); less then 120.000 ray-
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1D Lookup Texture:

     maps location on screen border 

           to row in radiance texture

Figure 9.9: For interpolation of the in-scattered radiance for a pixel we de-

termine the closest epipolar line using a 1D lookup texture.Illustration: Engel-

hardt and Dachsbacher [2010].

marching samples have been generated, i.e. ray marching was performed
for only 5.8% of the pixels in the image. To our knowledge there is no
other method reducing the ray-marching samples in a non-naïve manner.
To this end, we measure the performance gain over brute-force rendering
(ray marching for every pixel) and naïve sub-sampling, and it naturally in-
creases with the number of steps for the ray marching, as we significantly
reduce the number of ray-marching samples itself.

Figure 9.10 shows renderings of the “yeah right” model comparing epipo-
lar sampling to naïve sub-sampling. With the settings used for the top-
right image in Figure 9.10, our method yields results indistinguishable from
per-pixel ray marching (65k samples), while our method ray marches only
about 17k rays. Figure 9.11 demonstrates the influence of the number of
epipolar lines; as expected, fewer lines yield blurrier images.

Note that the images rendered with epipolar sampling show a crisper ap-
pearance which is due to the sample placement that matches the frequency
content of the image (see Figure 9.1, right). However, our method tends
to oversample along crepuscular rays when the light source is close to the
screen border and some epipolar lines are short (noticeable in Figure 9.7,
right). This is because we place a fixed number of initial ray-marching sam-
ples along each line. Although this can be easily adjusted, we opted for an
as-simple-as-possible implementation. It would also be possible to further
optimize the discontinuity search by using larger depth thresholds for dis-
tant parts of the scene (similar optimizations have been proposed by Wyman
and Ramsey [2008]). When using our method in dynamic scenes, e.g. under
light and camera movement, we observed stable and flicker-free rendering.
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Figure 9.10: Top left: naïve sub-sampling and ray marching (150 steps) with

256×256 samples at 40 fps. Top right: epipolar sampling with 1024 lines and

8 initial samples per line yields much better and crisper results at comparable

speed (46 fps) using only about 17.000 ray-marching samples. Bottom: the

locations where discontinuities are detected (green), and the radiance texture.

Illustration: Engelhardt and Dachsbacher [2010].

When using a lower number of epipolar lines, we have to pre-filter the light
texture accordingly.

9.5 Conclusions

Epipolar sampling naturally places ray-marching samples where they are
required and significantly reduces the cost for rendering single-scattering
participating media effects with (textured) point-light sources in real-time.
The implementation is simple and can be easily integrated into existing
renderers and combined with other per-ray optimizations. So far, our im-
plementation is limited to a single light source. An extension to support
multiple light sources would be to place ray-marching samples preferably at
the intersection of the epipolar lines of both light sources. Many-light tech-
niques for rendering participating media also benefit from our approach.
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bruteforce, 150 steps per ray epipolar, 1024 lines, 150 steps per ray

14fps 36fps

256 lines, 200k samples, 54fps 512 lines, 273k samples, 48fps 1024 lines, 443k samples, 36fps

Figure 9.11: Top left: brute force rendering with 150 ray marching steps per

pixel. 150 steps are still too few in this case (please zoom in to see the arte-

facts). Top right: our method yields smoother results with the same number of

steps, due to the interpolation along the epipolar lines. Bottom line: close ups

with increased contrast of renderings with 256, 512, and 1024 epipolar lines,

and the respective number of ray marching events.Illustration: Engelhardt and

Dachsbacher [2010].

These methods approximate multiple scattering successively accumulating
the single scattering contribution from virtual point light sources (cf. Chap-
ter 10). Therefore our algorithm can be directly applied in a successive
manner. Heterogeneous participating media pose a challenge as an exten-
sion is difficult. This is because distributing ray-marching samples sparsely
in image space easily misses important features of the varying transmit-
tance.
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CHAPTER 10

Approximate Bias Compensation

IN the previous chapter, we have shown that scattering effects contribute
immensely to the realism of a scene, but single scattering is not sufficient

for most scenes. Instant radiosity [Keller, 1997] (IR) approximates indirect
illumination and multiple scattering [Raab et al., 2008] using a distribution
of virtual point light sources (VPLs). The combined direct illumination and
single scattering from primary and secondary (VPL) light sources yields full
global illumination with multiple scattering. This makes the approach ideal
for GPU acceleration because (1) preprocessing costs are minimal, (2) vol-
umetric shadow mapping [Salvi et al.] can be used for visibility, (3) it is
highly scalable, and (4) does not require complicated data structures.

Despite these striking advantages, rendering with VPLs suffers from lu-
minous splotches in the image because VPLs have a high contribution to
nearby shading points (Figure 10.1b). To avoid these artefacts, the contri-
bution of a VPL is artificially bounded, which also eliminates short distance
light transport. Bias compensation counters this effect and recovers the
missing energy (Figure 10.1c) but requires costly ray tracing and thereby
ruins the GPU-friendliness of IR.

In this chapter1 we develop a GPU-friendly approximate bias compensa-

tion algorithm for efficient rendering of multiple scattering in scenes with
heterogeneous media, and in the next chapter we extent our discussion to
surface bias compensation. To derive our algorithm, we investigate differ-
ent sampling strategies for the compensation energy to reduce noise in the
final image and analyse various simplifications that greatly speed up the al-
gorithm and make GPU implementations feasible. Our results show that
the proposed simplifications yield results visually indistinguishable from
ground truth.

1This chapter is based on our work [Engelhardt et al., 2012] presented at Pacific Graph-

ics 2012
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(a) (b) (c)

Figure 10.1: (a) Unbiased rendering of heterogeneous smoke. (b) Rendering

multiple scattering with VPLs causes characteristic splotches. These can be

avoided by clamping, however, this removes a significant amount of energy

(c). Illustration: Engelhardt et al. [2012].

10.1 Instant Radiosity with Participating Media

The volumetric measurement equation was introduced in Chapter 4 as an
integration over light carrying paths, concisely describing light transport in
the presence of participating media. This equation computes the response

I∗
j
=

∞∑

k=1

∫

Pk

W j
e
(x0←x1)G

∗(x0↔x1)V
∗(x0↔x1)T

∗(xk)L
∗
e
(xk→xk−1)dµ(xk).

(10.1)

of a virtual sensor to incident light, and serves as theoretical foundation for
many light transport algorithms, such as instant radiosity [Keller, 1997]
among others. Instant radiosity (IR) approximates indirect illumination
by a collection of virtual point lights (VPLs), and accumulating the illu-
mination from primary light sources and VPLs yields full global illumina-
tion [Keller, 1997]. This method can easily be extended to participating
media [Raab et al., 2008], where the combined single scattering from pri-
mary light sources and VPLs yields full volumetric illumination.

This can be easily derived from the measurement equation for indirect

illumination and multiple scattering (for path length k ≥ 3):
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light path vertex eye path vertex virtual point light

eye

(a)
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(b)

Figure 10.2: (a) VPL-methods split light paths into light sub-paths and eye

sub-paths. Path vertices either lie on a surface or in the volume. (b) Light

path vertices are replaced by VPLs. Direct illumination and single scattering

from primary light sources and VPLs (connection to eye path vertices) yields

full global illumination with multiple scattering.

Î∗
j
=

∞∑

k=3

∫

Pk

We(x0←x1)G
∗
v
(x0↔x1)T

∗(xi)L
∗
e
(xk→xk−1)dµ(x)

=

∞∑

i=1

∫

P1

∫

Pi

We(x0←x1)G
∗
v
(x0↔x1) f

∗
r
(x0→x1→y0)

︸ ︷︷ ︸

eye subpaths

G∗
v
(x1↔y0)
︸ ︷︷ ︸

connection

· f ∗(x1←y0←y1)T(yi)L
∗
e
(yi→yi−1)

︸ ︷︷ ︸

light subpaths

dµ(y)dµ(x1). (10.2)

The integral is split into eye paths and light paths (Figure 10.2a). Factoring
out the light paths, we obtain the function

L̂∗(x1←y0) =

∞∑

k=1

∫

P

· · ·
∫

P
︸ ︷︷ ︸

k-times

f ∗(x1←y0←y1)T
∗(yi)L

∗
e
(yi→yi−1)dy1 · · · dyk.

(10.3)

Here P denotes the set of all surface and volume points. This function can
be approximated in a preprocessing step using Monte-Carlo random walks,
which will be described in Section 10.1.1. If the generalized scattering func-
tion f ∗(.) is a constant, i.e. either resolves to a diffuse BRDF or an isotropic
phase function, the directional dependency on x1 vanishes, and it can be
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included in the precomputation. This also means L̂∗(x1←y0) is constant
and consequently can be represented by a (virtual) point light.

Replacing light subpaths in Equation 10.2 by the previous definition of a
VPL (Equation 10.3) yields the IR formulation of indirect illumination and
multiple scattering:

Î∗
j
=

∫

P1×P

We(x0←x1)G
∗
v
(x0↔x1) f

∗(x0←x1←y0)G
∗
v
(x1↔y0) L̂

∗(x1←y0)dµ(x1)dy0.

Rearranging terms and resolving generalized functions, we observe that in-
scattering from VPLs in the medium is computed as follows:

L̂M(x0←x1) =

∫

P

σs(x1) fp(x0←x1←y0)G
∗
v
(x1↔y0) L̂

∗(x1←y0)dy0. (10.4)

Similarly, the reflected surface radiance is computed as:

L̂S(x0←x1) =

∫

P

fr(x0←x1←y0)G
∗
v
(x1↔y0) L̂

∗(x1←y0)dy0. (10.5)

Practical applications compute the radiance arriving at a pixel along eye
rays parametrized by the image plane and the camera’s origin x0, i.e. the
measurement equation is reformulated as an integration over direction. As-
suming We(x0,ω0) = 1 we obtain the radiance L̂∗(x0,ω0) at x0 arriving
along an eye ray into direction ω0 (Figure 10.2b).

L̂∗(x0,ω) =

∫ t

0

τ(x0↔x1) L̂M(x0←x1)ds

︸ ︷︷ ︸

multiple scattering

+τ(x0←x′1) L̂S(x0←x′1)
︸ ︷︷ ︸

indirect illum.

, (10.6)

where x′1 is determined using the ray casting function, i.e. x′1 = h(x0,ω).
The position x1 = x0 + sω lies on the eye ray between the camera origin x0

and the visible surface point x′1 (Figure 10.2b).

Direct illumination and single scattering: Our derivation excluded di-
rect illumination and single scattering, which can be trivially added again:

Ld(x0,ω) =

∫ t

0

τ(x0↔x1)L
d
M(x0←x1)ds

︸ ︷︷ ︸

single scattering

+τ(x0←x′1)L
d
S(x0←x′1)

︸ ︷︷ ︸

direct illum.

, (10.7)
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with in-scattering Ld
M from direct light sources:

Ld
M(x0←x1) =

∫

P

σs(x1) fp(x0←x1←y0)G
∗
v
(x1↔y0)L

∗
e
(x1←y0)dy0.

Direct illumination is computed using the reflection integral (cf. Chapter 3).

Ld
S(x0←x1) =

∫

P

fr(x0←x1←y0)G
∗
v
(x1↔y0)L

∗
e
(x1←y0)dy0.

Full light transport: With the previously defined terms, full light trans-
port is simply the sum of indirect illumination and multiple scattering, and
direct illumination and single scattering:

L(x0,ω0) = Ld(x0,ω0) + L̂∗(x0,ω0). (10.8)

10.1.1 Generating VPLs

As stated earlier, the function L̂∗(x1←y0) (Equation 10.3) can be precom-
puted and represented by VPLs. Practically, this is done using a particle
tracing algorithm [Arvo and Kirk, 1990]. At each location a particle is re-
flected (surface) or scattered (volume), the algorithm creates a VPL. This
process is described in detail by Pharr and Humphreys [2010] assuming vac-
uum, but the extension to participating media is trivial. For completeness
it is described in the following:

1. First, a starting position from which to shoot a particle is sampled on
the light source with probability p(y0). Second, a shooting direction is
sampled with probability p(ω0). In the presence of participating me-
dia, a particle does not necessarily reach the point returned by the ray-
casting function h(y0,ω) because it may be absorbed or scattered by
the medium. Hence an additional free distance tk ≤ ‖y0 − h(y0,ω0)‖
along the tracing direction is sampled with probability p(t0). In ho-
mogeneous media, analytic sampling formulas exist [Lafortune and
Willems, 1996]. In media with non-uniform density, rejection sam-
pling techniques are used [Woodcock et al., 1965; Raab et al., 2008;
Yue et al., 2010]. After determining these three factors, a particle

α1 =
τ(y0↔y1)

p(y0)p(ω0)p(t0)
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is created at the position y1 = y0+t0ω0. Subscripts denote the number
of bounces and scattering events that occurred so far. This particle is
then turned into a VPL:

L̂∗(x1←y1) = f ∗
r
(x1←y1←y0)α0 L∗

e
(y0←y1).

As previously mentioned, the generalized scattering function f ∗(.) can
be premultiplied, if it is constant. Otherwise this function can be ex-
plicitly stored together with the VPL for later evaluation.

2. To continue particle tracing, a new tracing direction ωi and the free
distance t i (t i ≤ ‖yi − h(yi,ωi)‖) are sampled with probabilities p(t i)

and p(ωi). Then a new particle

αi+1 =
1

qi+1

τ(yi↔yi+1) f
∗
r
(yi−1→yi→yi+1)C

∗(yi→yi+1)

p(t i)p(ωi)
αi

at yi+1 = yi + t iωi is created. The factor q−1
i+1 is introduced because of

Russian roulette [Arvo and Kirk, 1990]which terminates particle trac-
ing. Therefore an acceptance probability qi+1 is defined and a random
number ξ ∈ [0; 1] is drawn. If ξ > qi+1, the particle αi+1 is discarded
and particle tracing terminates. Otherwise it is accepted and a VPL is
created:

L̂∗(x1←yi+1) = f ∗
r
(x1←yi+1←yi)αi+1 Le(y0→y1).

3. After N particles have been traced (and M ≥ N VPLs have been cre-
ated), each VPL is reweighted:

L̂∗(x1←yi) =
L̂∗(x1←yi)

N
.

10.1.2 Rendering with VPLs

After particle tracing, in-scattered light from VPLs must be accumulated
along the eye ray and (attenuated) indirect illumination must be computed
(Equation 10.6).

Indirect illumination: Indirect illumination (Equation 10.5) is approxi-
mated accumulating and attenuating the contribution of all VPLs:

L̂∗(x0←x1)≈ τ(x0↔x1)

M∑

j=1

fr(x0←x1←y j)G
∗(x1↔y j)V

∗(x1↔y j) L̂
∗(x1←y j)
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Here y j is the position of the j-th VPL. The contribution of indirect illumi-
nation is attenuated through the medium (Equation 10.6), and we must
compute transmittance τ(x0↔x1) to account for the fraction of light that
reaches x0. In a homogeneous medium, we can compute this factor analyti-
cally, whereas we require numerical approaches in media with non-uniform
density. Therefore we can either use ray-marching [Perlin and Hoffert,
1989] or Woodcock tracking [Jarosz et al., 2011].

Multiple scattering: Inside the volume the illumination from all VPLs
must be integrated along the eye rays. For this, we use Monte-Carlo in-
tegration with importance sampling. We could employ the method of Kulla
and Fajardo [2011] and sample according to the (unbounded) geometry
term, which is analytic and thus efficient. Although originally developed
for computing single scattering from area light sources, this method is also
suitable to accumulate the contribution of a VPL along an eye ray. Sam-
pling according to the unbounded geometry term places samples on the
eye ray, where a VPL has high contribution. However, as we clamp the
geometry term (cf. Section 10.1.3), this sampling strategy would oversam-
ple the region in which clamping occurs. Instead, we sample according to
the transmittance along the ray (i.e. either analytically or using Woodcock
tracking), as this can significantly contribute to reducing the variance of the
Monte-Carlo estimator:

L(x0,ω0)≈
S∑

s=0

M∑

j=0

τ(x0↔x1) fp(x0↔x1↔y j)G
∗
v
(x1↔y j) L̂

∗(x1←y j)

S p(t1)
.(10.9)

Here x1 = x0 + t0ω0 denotes a sample on the eye ray, and S denotes the
total number of samples that are used for each of the M VPLs. L̂∗(x1←y j)

is the emitted radiance of the j-th VPL at position y j towards the sample x1

on the eye ray.

10.1.3 Bias Compensation

Lighting as described in Section 10.1.2 leads to unbiased solutions, but suf-
fers from bright splotches in the rendering due to a singularity in the gener-
alized geometry term. In order to avoid these artefacts, the geometry term
is bounded:

G∗
b
(x↔y) =min(G∗(x↔y), b),

using some bound b > 0, which defines the spherical bounding region in
the volume with radius r = G

1
2 . This bound depends on the size of the
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scene and the number of VPLs that have been created [Kollig and Keller,
2006]. Unfortunately, it also introduces bias because it eliminates a certain
amount of transport energy with in this region. Fortunately, there exists
a closed formula to account for the energy loss, i.e. the bias [Raab et al.,
2008]:

L∗
r
(x←y) =

∫

P

f ∗(x←y←z)max(0, G∗(y↔z))V ∗(y↔z)L(y←z)dz.

(10.10)

Equation 10.10 is an integration over area and volume, i.e. the singularity
is still present. However, it can be avoided reformulating Equation 10.10
as an integration over direction. Then with z= y+ tω it becomes:

L∗
r
(x←y) =

∫ u

0

∫

Ω

f ∗(x←y←z)B∗(y↔z)τ(y↔z)C∗(y↔z)L(y←z)d tdω.

(10.11)

Here u = ‖y − h(y,ω)‖ is the closest intersection along the ray with ori-
gin y and direction ω. Raab et al. [2008] showed that this reformulation
introduces the weighting factor

B∗(y↔z) =
max(0, G∗(y↔z)− b)

G∗(y↔z)

which accounts for the compensated energy. By the means of this correc-
tion term, unbiased global illumination is the sum of direct illumination
and single scattering Ld(x←y), bounded indirect illumination and multi-
ple scattering from VPLs L∗

b
(x←y), and the compensation term. Hence it

becomes:

L(x←y) = Ld(x←y) + L∗
b
(x←y) + L∗

r
(x←y) (10.12)

The definition of the correction term (Equation 10.11) depeonds on the
unbiased solution L(y←z) computed according to Equation 10.12 which
implies that compensation is evaluated recursively and the entire algorithm
starting at a shading point x0 becomes [Kollig and Keller, 2006; Raab et al.,
2008]:

1. Compute illumination from primary light sources and bounded illu-
mination from all VPLs at point x0.
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Figure 10.3: (a) Bias compensation creates compensation points for each

shading point. (b) Compensation is only computed for points within the

bounding region. Therefore illumination from primary and secondary light

sources are accumulated, and compensation continues recursively.

2. Compute the bias numerically according to Equation 10.11. Therefore
a ray is shot into a random direction ω and a free path with distance
t is sampled to find the compensation point x1 = x0 + tω. Because
compensation depends on an unbiased solution of light transport, it
is computed repeating the algorithm starting with step 1 at x1. This
recursion terminates when weighting factor B(xi↔xi+1) evaluates to
0.

10.2 Approximate Bias Compensation

The bias compensation technique according to Raab et al. [2008] is very
costly as it requires recursive ray casting to find compensation points, ac-
cess to all VPLs at every compensation point, and in the worst case, it de-
generates to (bidirectional) path tracing [Davidovič et al., 2010].

In this section we analyse the energy recovery due to bias compensa-
tion and derive several optimisations by analysing Equation 10.11, different
sampling strategies, and simplifying assumptions. In this way we can derive
a more efficient, approximate bias compensation (ABC) technique that yields
results visually indistinguishable from ground truth. We illustrate and mo-
tivate our proposed simplifications for ABC using plots of the brightness of
the scanline highlighted in Figure 10.4 and renderings with different set-
tings to assess the image quality (Figures 10.5, 10.6, and 10.8).



150 10. Approximate Bias Compensation

bias compensation

1 compensation step

2 compensation steps

singularities

reference

clamped

0 50 100 150

0.0

0.2

0.4

0.6

0.8

0 50 100 150

0.0

0.1

0.2

0.3

0.4

0.5

Figure 10.4: Plots show the highlighted scanline. As can be seen from the cen-

tre plot, unbounded accumulation of VPLs causes high intensity peaks. Clamp-

ing, however, removes energy which darkens the image significantly. The left

plot shows that after two compensation steps most energy is recovered and the

result is indistinguishable from the reference (computed with full bias compen-

sation). Illustration: Engelhardt et al. [2012].

10.2.1 Limiting Recursion Depth

Bias compensation is a recursive process because the bounded contribution
of VPLs is gathered at each compensation point. However, the compen-
sation integral convolves the gathered radiance with the generalised scat-
tering function f ∗, thus removing high frequencies. More importantly, the
contribution drops exponentially with each additional compensation step.
Figure 10.4 shows that already after one compensation step most of the
eliminated energy has been recovered and matches the behaviour of the
ground truth curve quite well. It can also be seen that after two compen-
sation steps the result is virtually indistinguishable from the ground truth
solution. The conclusions we draw from this observation is that we limit
recursion depth in our bias compensation algorithm to three steps at most.

10.2.2 Path Generation and Locally Homogeneous Media

To create new compensation points Raab et al. [2008] choose a random
ray with a direction ω and sample a distance along it using free path sam-
pling, e.g. Woodcock tracking [Woodcock et al., 1965]. This strategy creates
compensation points with possibly zero contribution because they might be
created outside the clamping region, i.e. B(.) = 0. This in turn leads to high
variance in the compensation estimator. The variance can be reduced creat-
ing substantially more compensation points, but it also implies a substantial
sampling overhead as there is no possibility in heterogeneous participating
media to restrict sampling according to the transmittance within a given dis-
tance. We avoid this issue by introducing the assumption that the medium
is locally homogeneous around the compensation point.
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One key ingredient to our ABC is that we generate the new compensa-
tion points always inside the bounding region where clamping occurs. The
radius d of the spherical bounding region can be derived from the bound b

as d = b−
1
2 . Assuming a locally homogeneous medium with extinction coef-

ficient σt , the probability density function for sampling a distance t (for the
new compensation point xi+1) from xi within the bounding region reads:

p(t) =
σt e

−σt t

1− e−σt d
. (10.13)

Using the inversion method we compute the distance as:

t =
ln(1− ξ(1− e−σt d))

σt

, (10.14)

with a uniform random number ξ ∈ [0; 1). For σt we use the average
extinction coefficient within the bounding region, which can be efficiently
obtained from a downsampled version of the medium, i.e. if stored in a 3D
texture. Note that if there is a surface intersection occurring closer to y than
t, this intersection becomes the new compensation point. The assumption
of local homogeneity does not compromise the results. In fact, it only affects
the placement of the new vertex xi+1, and the computation remains unbi-
ased as long as we correctly evaluate the transmittance τ(xi↔xi+1). Never-
theless, we take the assumption one step further and also approximate the
transmittance τ(xi↔xi+1) = exp(−σt


y− y′

), effectively avoiding costly

evaluation (e.g. by Woodcock tracking [Jarosz et al., 2011]).
In all our test scenes, this yielded results visually indistinguishable from

ground truth (see Fig. 10.5), although the assumption can theoretically fail
at locations with strongly varying extinction. Note that these locations could
be easily detected if necessary using the gradient of σt(y).

10.2.3 Integration Strategies

In this section we analyze different sampling strategies for bias compensa-
tion. Each of the strategies focuses the computation on different parts of
the compensation. In Fig. 10.6 we compare the results at roughly equal
rendering time. A corresponding plot of the RMSE induced by the different
strategies is shown in Fig. 10.7.

1-to-N: Raab et al. [2008] propose to connect each compensation vertex
to all VPLs. This has two implications. First, because of free path sam-
pling along the compensation ray, the compensation point may be sampled
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Accurate compensation Locally homogeneous Difference x16

Figure 10.5: Bias compensation with accurate transmittance, using our lo-

cally homogeneous assumption, and the 16× difference (green means too dark,

red means too bright). Illustration: Engelhardt et al. [2012].

outside the bounding region, and compensation is entirely discarded. This
approach can lead to high variance, since the compensation integral (Equa-
tion 10.11) is severely under-sampled (Figure 10.6 1-to-N). Second, each
compensation step requires access to all VPLs, making the approach GPU-
unfriendly because a shadow map must be stored for each VPL.

N-to-1: We found that noise can be substantially reduced by creating more
compensation vertices but connecting each of them to only one VPL (Fig-
ure 10.6 N-to-1). Unfortunately, this increases the number of rays that need
to be traced thereby increasing run-time significantly. To ensure a fair com-
parison, we adjusted the number of eye ray samples to achieve roughly
equal rendering time for all compensation strategies. However, as shown
in the equal-time comparison in Fig. 10.6, the N-to-1 approach still exhibits
lower variance than [Raab et al., 2008].

1-to-1: By always creating only a single compensation vertex connected
to the VPL that is currently evaluated along the primary ray, we signifi-
cantly reduce the cost of the compensation, and thus we can take more
samples along the eye ray and further reduce the noise due to transmit-
tance. This approach is also GPU-friendly because VPLs can be processed
independently: we can compute the contribution of a single VPL to all pix-
els (including BC), accumulating the results progressively over time. Con-
sequently, we need to store only a single shadow map in memory at a time.

1-to-1 locally homogeneous: The 1-to-1 approach discards many com-
pensation rays because of free path sampling. Ideally we would like to
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outside bounding region
compensation vertex

Insets with adjusted
gamma correction
visualizing the variance

1-to-N (Raab et al.)Full GI

870 s 816 s 809 s 813 s

N-to-1 1-to-1 1-to-1  locally homogeneous

sample on the eye ray

Figure 10.6: Different compensation strategies: Raab et al. connect all VPLs

to a single compensation vertex (1-to-N). Lower variance can be achieved by

generating more vertices while connecting each of them to a single VPL (N-to-

1). A similar, but GPU-friendly approach is to generate only one vertex con-

nected to a single VPL (1-to-1). By assuming a locally homogeneous medium

we avoid expensive evaluation of the transmittance and ensure that vertices are

always created within the bounding region, thus minimizing divergent code

paths on the GPU. Rendering time is controlled by adjusting the number of

samples along the eye ray: 3, 1, 115, and 78 for 1-to-N, N-to-1, 1-to-1, and

1-to-1 locally homogeneous, respectively. The 1-to-1 discards roughly half of

the compensation vertices compared to the loc. hom. approach in this case.

Illustration: Engelhardt et al. [2012].

create all compensation vertices within the bounding region. This can be
assured using our locally homogeneous assumption. Additionally, it ensures
that parallel execution paths do not become divergent, which is favourable
for GPU implementation.

10.2.4 Omitting Visibility and Local Visibility

Computing visibility between a point x, that requires compensation, and a
compensation vertex x′ is crucial for overall performance. Obviously, the
path x to x′ can only be occluded when x is close to a surface, but not in
“free space”.

Figure 10.8a illustrates the case when not computing visibility causes
artefacts. To asses how often these artefacts appear and their influence
on the resulting images, we set up a series of experiments. Interestingly,
it was not easy to produce visible artefacts at all – this can be explained
by considering the circumstances that have to coincide to cause artefacts
(Figure 10.8a): (1) x must be close to a thin opaque object and (2) the
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Figure 10.7: RMSE plot for different compensation strategies (see Sec. 10.2.3)

used in Figure 10.6, computed against a reference solution (converged 1-to-N

strategy proposed by Raab et al. [2008]). The 1-to-1 strategy clearly outper-

forms other strategies. Illustration: Engelhardt et al. [2012].

medium must not be too dense otherwise sampling a distance through the
opaque object is unlikely. Note that if x and x′ are further apart (yet within
radius r), the quadratic decrease of the compensation term with the dis-
tance also suppresses light bleeding. Figure 10.8b shows one of our test
scenes; artefacts become visible only after scaling the brightness by at least
2 orders of magnitude. Note that a somewhat similar assumption (ignoring
visibility on short distances) has also been used for global illumination on
surfaces [Arikan et al., 2005; Davidovič et al., 2010].

10.3 Implementation Details

We integrated our approximate bias compensation technique in a custom
offline renderer to evaluate our assumptions (Figures 10.4, 10.5, 10.6, 10.8).
For further acceleration we implemented a progressive GPU renderer using
Direct3D 11 (Figures 10.9, 10.10, 10.11, 10.12, 10.13).

Random walks for creating VPLs are always carried out on the CPU using
ray tracing. For acceleration, we use a kD-tree built with the surface area
heuristic.
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eye

(d)

(c)(a) (b) x512

x512

Figure 10.8: Compared to the accurate computation (c) ignoring visibility

to compensation vertices causes artefacts (d) only revealed with high scaling

(×512). Illustration: Engelhardt et al. [2012].

The CPU implementation of our method is shown as pseudo code in
Section10.7. In this section, we restrict ourselves to the peculiarities of the
GPU implementation, which is outlined in Figure 10.9. We split the compu-
tations into evaluating contributions from primary light sources and from
secondary light sources, i.e. VPLs. First we render a geometry buffer filled
with all relevant information such as BRDFs, positions, and normals. Af-
terwards we evaluate single scattering and direct illumination with visibil-
ity computed using shadow maps (with resolutions of 5122 up to 40962).
Transmittance towards the light sources is evaluated analytically in case
of homogeneous media and numerically in heterogeneous media using ray
marching (the offline renderer uses slower but unbiased Woodcock track-
ing).

VPL lighting: After the contributions from primary light sources have been
computed, our renderer iterates over all VPLs and accumulates their con-
tribution, one per iteration. Apart from conventional shadow maps, we
also compute a variant of adaptive volumetric shadow maps [Salvi et al.].
Since lookups into regular AVSMs involve a costly search for nearby trans-
mittance samples, we resample the AVSM at fixed intervals. Although this
approach might miss prominent features in the transmittance function, we
have not noticed any artefacts arising from this approximation. Looking up
the transmittance then boils down to a single access to an array of fixed
size. Finally, we accumulate the contribution of a VPL to the surfaces and
the volume. The latter we evaluate using adaptive ray marching, i.e. the
number of samples depends on the ray segment that intersects the volume.
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Figure 10.9: Data flow in our progressive GPU renderer. The first iteration

computes the geometry buffer, single scattering with bias compensation from

primary light sources, transmittance and direct illumination. In each subse-

quent iteration the contribution of one VPL to multiple scattering, bias com-

pensation and indirect illumination is accumulated. The final step composes

all individual results to the final image. Illustration: Engelhardt et al. [2012].

Bias compensation: We split the compensation integral into two terms:
one for compensating from the primary light sources and the second gath-
ering compensation energy from VPLs. This allows us to evaluate compen-
sation from the primary lights directly in the single scattering shader, which
is executed only once in the first iteration. For that we generate a buffer
that contains a set of random directions and additional random numbers
used to sample a distance along the compensation ray. Our assumption of
locally homogeneous medium and neglecting visibility allow us to sample
the new compensation vertices always within the bounding region. This, in
contrast to the original BC Kollig and Keller [2006], avoids branching and
divergent execution paths, substantially accelerating the GPU implementa-
tion. Bias compensation gathering illumination from VPLs is handled in a
similar spirit: for each VPL and each sample point along the ray we create
a single vertex within the bounding region and compute its contribution to
the correction term.

10.4 Results

We evaluated our method using several test scenes with homogeneous and
heterogeneous participating media. All timings have been recorded using
an Intel Core i7 6-core hyperthreading system with 3.2GHz and a GeForce
GTX 580 GPU.
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Reference Clamped One-step ABC Two-step ABC

Diff. 8 Diff. 8Diff. 8

4,3 ms per VPL 11,8 ms per VPL 18 ms per VPL

~14 minutes (CPU)

Figure 10.10: Room with a heterogeneous smoke (σs = 0.9, σa = 0.001)

rendered with 6800 VPLs. Clamping removes a remarkable amount of energy,

which is almost completely recovered using just one ABC step. The insets vi-

sualise lost energy (green), and overcompensation (red). Differences on the

edges are due to different sampling of primary visibility on the CPU and GPU.

Illustration: Engelhardt et al. [2012].

Accuracy: Figure 10.10 shows a visual comparison of our approximate
bias compensation algorithm. The reference image with 5122 pixels has
been computed with full bias compensation [Raab et al., 2008] in the par-
ticipating medium and 6800 VPLs in the entire scene. As can be seen, our
approximate bias compensation recovers most of the lost energy already
after the first compensation step.

Comparison to photon mapping: In Figure 10.11 we show an equal-time
comparison between our bias compensation algorithm executed on the GPU
and photon mapping using the beam radiance estimate [Jarosz et al., 2008]
for images with 10242 pixels. Photon mapping and the beam radiance es-
timate (BRE) require hierarchical data structures which do not map well
to the GPU, and we used our CPU implementation. The reference image
was computed using full bias compensation. For the equal-time compari-
son we fixed the number of VPL paths to 1536 yielding 7887 VPLs, and that
of the volume photons to 1 million. In order to match rendering times, we
controlled the performance of the photon mapper by setting the maximum
number of radiance estimation photons to be searched for (using adaptive
nearest neighbour search) to 117. Shooting photons and building the kD-
tree took 3 seconds. The BRE requires an additional search data structure
which is constructed in 22 seconds. Rendering using beam queries took 110
seconds for 12 rendering threads. The ABC method finished in 125 seconds.
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ReferenceReference BREBRE ABCABC

Figure 10.11: Equal-time comparison for volumetric illumination. Left: ref-

erence CPU solution with full bias compensation. Middle: beam radiance

estimate (BRE) Jarosz et al. [2008] with 1 million volume photons. Right:

GPU-accelerated ABC with 7887 VPLs and 2 approximate compensation steps.

Illustration: Engelhardt et al. [2012].

Photon mapping still shows the typical artefacts that arise from an insuffi-
cient number of photons in the volume or used in the estimate, while ABC,
in contrast, is nearly indistinguishable from the reference solution.

Anisotropic media: Our algorithm also supports anisotropic scattering
media, as shown in Figure 10.12. This scene was rendered at 10242 with
4320 VPLs and two bounces of compensation. The average shading time
per VPL was 16 ms.

g = -0.7g = -0.7 g = 0g = 0 g = 0.7g = 0.7

Figure 10.12: The Buddha in a homogeneous medium (σs = 0.075, σa =

0.001) with varying g parameter of the Henyey-Greenstein phase function.

From left to right, images are rendered with backward, isotropic, and forward

scattering medium. Illustration: Engelhardt et al. [2012].
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(a) (b)

Figure 10.13: ABC supports full multiple scattering in complex environments

with image-based illumination. (a) Indirect illumination and multiple scatter-

ing in Crytek Sponza (262k triangles) rendered with 118k VPLs, two-bounce

compensation. (b) City scene (823k triangles) with image-based illumina-

tion. Geometry and clouds are procedurally generated and both accounted for

in light transport. Illustration: Engelhardt et al. [2012].

0% 20% 40% 60% 80% 100%

City

Sponza

VPL Shadow Map Adapive Volumetric Shadow Map

Indirect Illuminaion Muliple Scatering + 2 Bounce ABC

Figure 10.14: Shading time per VPL for the city and sponza scenes: Indirect

illumination is negligible. Computing (volumetric) shadow maps is costly and

accounts for 60% in the city scene. Multiple scattering with two bounces of

approximate bias compensation accounts for about 35 − 38% of the entire

cost. Illustration: Engelhardt et al. [2012].

Complex scenes: We also tested our algorithm with complex scenes and
image-based lighting (Figure 10.13) for high quality rendering. Both the
Sponza scene (262k triangles, 118k VPLs) and the city scene (823k trian-
gles, 108k VPLs) were rendered with 2 bounces of ABC. The shading costs
per VPL vary with the complexity of the scene (number of triangles) and are
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mainly due different resolutions of the 3D density textures for the hetero-
geneous participating medium. A detailed analysis of the per-VPL shading
costs is shown in Figure 10.14.

10.5 Discussion

In this section we describe findings from experimenting with our method,
which we believe are important to assess its strengths and limitations and
discuss its robustness and use in complex scenes.

IR and participating media: Similar to IR for surfaces we sub-sample the

path space. The result images are typically close to ground truth because
single scattering and transmittance are computed at high precision using
ray marching, which preserves crisp features. The quality of the “global”
light transport heavily depends on the number of VPLs. We observe that
more VPLs are required for dense and heterogeneous than for thin or ho-
mogeneous media. For surfaces, the link between the scene geometry and
materials and the number of required VPLs has been extensively studied
by Křivánek et al. [2010]. Deriving similar dependency on the parameters
of the medium is an interesting future work.

Complex scenes: Scenes with large extent benefit from bi-directional VPL
generation [Segovia et al., 2006a] to create enough VPLs that actually con-
tribute to the image. In our implementation we use a variant of the method
of Georgiev and Slusallek [2010]: we create a larger number of paths and
keep only those VPLs that contribute the most to the image. This is evalu-
ated by simply considering whether they are close to the camera. This sim-
ple approach is surprisingly well-suited for scenes with participating media,
such as those in Fig. 10.13.

Phase functions: Our method supports anisotropic phase functions, but
strong backward or forward scattering causes problems similar to glossy ma-
terials with IR. This is because sub-sampling the path space assumes smooth
illumination, which is only valid for isotropic and moderately anisotropic
scattering. To achieve artefact-free renderings of highly anisotropic media,
a large number of VPLs is required.
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Animated scenes: Temporal changes to primary light sources or scene
geometry inherently change the distribution of VPLs in each frame. This
becomes noticeable as flickering if an insufficient number of VPLs is used.
Since our method directly depends on the VPL distribution, this effect is
carried over. To reduce the temporal artefacts, a sufficient number of VPLs is
necessary (several thousand for small scenes). To further improve temporal
coherence, the VPLs can be distributed using the same sequence of random
numbers in every frame.

10.6 Conclusions and Future Work

We have presented a novel method for rendering global illumination in-
cluding multiple scattering in heterogeneous media, which is based on in-
stant radiosity, thus requiring no precomputation. Key to our method is the
approximate bias compensation technique thaxt enables rendering images
close to ground truth. While the visual impact of all our approximations is
indistinguishable from the original BC, our technique is more efficient and
also amenable to GPU acceleration.

Unfortunately, due to the high number of VPLs required for good re-
sults, our technique is not interactive. This is mainly because typical low-
resolution rendering techniques are not applicable to volumetric render-
ing. For future work we like to research these techniques and devise new
methods, that make upsampling and interpolation of volumetric illumina-
tion in screen space possible, which is an important step towards interac-
tivity. Then our approximate bias compensation could be easily combined
with our GPU-friendly scree-space bias compensation for compensation on
surfaces (cf. Chapter 11) to obtain full global illumination including short
distance light transport between surfaces and media.
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10.7 ABC Pseudo Code

The following pseudo code outlines the computation of compensation en-
ergy at an arbitrary point. For brevity we do not include surface compen-
sation, which is thoroughly described in Kollig and Keller [2006]. We focus
on the new N-to-1 and 1-to-1 strategies.
Color compensate(Point p, VPL vpl , int rec) {

if(isSurface(p))
return compensateSurface(p,vpl ,rec);

Direction w = samplePhaseFunction(p);
Surface s = infinity;
Distance d = 0;
Ray ray = Ray(p,w);

// Limiting recursion depth (Section 4.1)
if(rec > 3)

return 0;

// Ignore Visibility (Section 4.4)
if(! ignoreVisibility)

s = intersect(ray);

// Local homogeneous assumption (Section 4.2)
d = sampleDistance(ray , isLocallyHomogeneous );
Color T = transmittance(ray , d, isLocallyHomogeneous );

// Phase Function
Color P = phaseFunction(p,w);

Point next_p = p + d * w;
if(isOutsideBoundingRegion(next_p ,p))

return 0;

// Compensation weight (Raab et al.)
Real G = 1;
if(isSurface(next_p ,s))

G = dot(NormalAt(next_p),-w);

G /= (d*d);
G = max(0,G-bound) / G;

if(1-to -1)
{

// 1-to -1 (Section 4.3)
return G * P * T * (evalVplAt(next_p) + compensate(next_p , vpl , rec +1))

/ (pdf(d) * pdf(w));
}
else
{

// N-to -1 (Section 4.3)
Color C = none;
foreach(VPL v)

c += evalVplAt(next_p , v) + compensate(next_p , v, rec +1);

return G * P * T * C / (pdf(d) * pdf(w) * N_vpls );
}

}



CHAPTER 11

Screen-Space Bias Compensation

IN the previous chapter we have exploited the amenity of instant radios-
ity [Keller, 1997] (IR) to derive a highly efficient, GPU-friendly algo-

rithm for rendering multiple scattering in the presence of (heterogeneous)
participating media. As pointed out, volume illumination with VPLs suffers
from singularities due to the illumination with virtual point lights (VPLs).
The same is true for lighting nearby surfaces: lighting from VPLs causes
bright splotches due to the singularity in the illumination from point lights.
Those artefacts are typically suppressed by bounding (or clamping) the con-
tribution of a VPL to shading points in its proximity, eventually trading
one artefact for another. Bounding removes energy from the light trans-
port, which on surfaces becomes visible especially near edges, corners, and
creases, leading to incorrect darkening in such regions.

In Chapter 10 we developed reasonable approximations to efficiently
correct the bias for volume illumination based on the generalized compen-
sation term [Raab et al., 2008]. This approach cannot be directly applied to
surface compensation because it depends on light reflected from other sur-
faces, i.e. visibility cannot be ignored. Then, bias compensation requires
Monte-Carlo ray tracing which is infeasible for efficient solutions without
sophisticated spatial index structures.

In this chapter we present a GPU-friendly algorithm for bias compensa-
tion in screen space that recovers energy lost due to clamping from nearby
surfaces in screen space.1 This becomes possible reformulating the render-
ing equation which allows us to cast the bias compensation onto a simple
post-process. This can be accelerated on modern GPUs, and we show results
nearly indistinguishable from ground truth rendered at interactive speed.

1This chapter is based on our joint work [Novák et al., 2011] presented at the Sympo-

sium on Interactive 3D Graphics and Games 2011 (I3D’11).
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Clamped

Our technique Screen-Space BC

Figure 11.1: Our SSBC algorithm improves the quality for VPL methods,

which typically clamp the contributions of VPLs to avoid artefacts. SSBC re-

covers the thereby lost short distance illumination operating only from illumi-

nation present in screen space. This correction takes only about 27 ms in both

scenes, which render at interactive speed including all lighting effects (Dragon

scene: 10 fps, Happy Buddha: 7.2 fps). Both results are nearly indistinguish-

able from offline renderers which are magnitudes slower. Illustration: Novák

et al. [2011].

11.1 Global Illumination with Instant Radiosity

Recall from Chapter 3.2 that light transport can be formulated as a Neu-
mann series

L =

∞∑

n=0

Tn Le.

For our purposes, the transport operator is the shading integral defined over
area using the three point notation [Veach, 1997]:

(TL)(x←y) =

∫

A

fr(z→y→x)V (y↔z)G(y↔z)L(z→y)dz.

This operator depends on the BRDF fr(z→y→x), the binary visibility term
V (y↔z), and the geometry term

G(y↔z) =
cos+θy→z cos+θz→y

‖y− z‖2
.

11.1.1 Instant Radiosity and Bias Compensation

Instant radiosity [Keller, 1997] computes global illumination in two passes.
In the first step, IR distributes VPLs by the means of Monte-Carlo particle
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Figure 11.2: Bias compensation is computed in screen space (a). Therefore

we first determine the bounding region in which all surfaces contribute to the

compensation (b) and use a hierarchical integration scheme traversing a mip-

map hierarchy of the G-buffers (c,d). Samples spanning discontinuities or

subtending a large projected solid angle are refined (R), until their contribution

can be estimated accurately (1), or drops to zero (0). The total number of

processed samples for each pixel for the Crytek Sponza scene is shown in (e).

Illustration: Novák et al. [2011].

tracing, creating VPLs at each location of particle impingement (cf. Chap-
ter 4.5). The second pass lights the scene with the VPLs and thereby ap-
proximates indirect illumination. The full solution of light transport is then
the sum of emitted light, direct illumination from primary light sources,
and indirect illumination. The latter is approximated as direct illumination
from all VPLs ( L̂), or in the terms of the Neumann-series

L = Le
︸︷︷︸

emission

+ TLe
︸︷︷︸

direct illum.

+ T L̂
︸︷︷︸

indirect illum.

. (11.1)

As stated earlier, lighting with VPLs exhibits artefacts that become visible as
bright splotches and high intensity peaks if VPLs are close to shading points.
This is induced by the inverse of the squared distance between the shading
point and the VPL in the unbounded geometry term G(x↔y). A typically
followed approach to avoid those artefacts is to introduce a bounded geom-
etry term Gb(x↔y) = min(b, G(x↔y)) and the corresponding bounded

transport operator Tb, that only differs in the geometry term from the un-

bounded transport operator T.

11.1.2 Efficient Compensation using Residual Transport

In the following, we will derive a new transport operator that enables us
to formulate bias compensation as a post-process in image-space. First we
shall compute the residual transport operator as the difference between the
bounded and the unbounded transport operators:

Tr = T− Tb.
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Similarly to Tb, the residual operator Tr differs from T only in the geom-
etry term: Gr(x↔y) = max(G(x↔y) − b, 0). Now we can express the
unbounded transport operator as the sum of the residual and the bounded
operators (T= Tr+Tb). Plugging this expression into Equation 11.1 yields:

L = Le + TLe + Tb L̂ + Tr L̂.

Note that the residual operator is also prone to singularities when applied to
illumination from VPLs ( L̂) directly. This is because of the definition of the
residual geometry term Gr (see above). We observe that instead of using
VPL illumination L̂, we can replace it with general reflected illumination
(L − Le) which does not depend on the point light sources, removing the
source of VPL typical artefacts. Then the full unbiased illumination becomes

L = Le + TLe + Tb L̂ + Tr(L − Le). (11.2)

Expanding this equation recursively, yields the full unbiased rendering equa-
tion for instant radiosity:

L = Le +

∞∑

n=0

Tn
r
(TLe + Tb L̂). (11.3)

The key of this reformulation is that direct illumination and indirect illu-
mination from VPLs with clamping has to be computed only once for all
surface points (n = 0), and then the residual operator can be applied re-
cursively for an infinite number of times to obtain an unbiased solution.
Therefore no re-evaluation of VPLs is required for the n-th addend as the
previously computed illumination obtained by the (n − 1)-th addend can
simply be reused.

Because the bounded geometry term occurs in each addend, an unbiased
solution is only obtained at infinity. This, however, is not practical and we
only evaluate a finite number of iterations. Consequently an error εN is
introduced. It can be computed considering only the first N iterations, and
it is the sum over all omitted higher order terms:

εN = |TN+1
r
(TLe + T L̂)|.

An important observation is that the energy gain due to compensation is
(N+1)-times convolved with the BRDF, and therefore it is dropping expo-
nentially with increasing N . This is an important observation for practi-
cal applications. Because of this rapid convergence rate, the bias decreases
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quickly and all visible bias is removed after 1 to 3 iterations. In our examples
this yielded nearly indistinguishable results from our unbiased reference so-
lutions. Based on our novel reformulation of the IR rendering equation, we
can derive an algorithm with bias compensation that operates in two steps:

First, we compute global illumination using direct illumination from pri-
mary light sources (TLe) and bounded indirect illumination from secondary
light sources (Tb L̂). Second, we correct the bias in the image applying our
residual transport operator to the reflected illumination in the scene repeat-
edly (TN

r
(L − Le)) until all visible bias is removed.

This would require storing shading points over all scene surfaces, which
is cumbersome. In the following section we outline how to simplify the
problem using only the visible surfaces in screen space for compensation.

11.2 Screen Space Bias Compensation

A screen space algorithm has one noteworthy advantage: All information
about visible surfaces is present in G-buffers [Saito and Takahashi, 1990]
and no complicated data structures are required. This is also true for bias
compensation and beyond that, surfaces that are close to a shading point in
3D world space, thereby contributing to the compensation, are also close in
2D screen space. This allows us to implement SSBC as a simple post-process
behaving like a convolution with filter of limited support.

11.2.1 Integration in Screen Space

The transport operators, including Tr , are actually integrals defined over
surfaces, but are not analytically solvable. Hence we approximate these
integrals numerically, computing a weighted sum over a finite number of
pixels (we discuss how to handle the inherent limitations of screen space
approaches in Section 11.2.3).

Each pixel corresponds to a world space finite element, or surface patch,
Pi with position zi, normal ni, and surface area Ai stored in the G-buffer.
The area is computed using screen space derivatives. Similar to radiosity
we have to sum up the contribution integrated over each of the M finite
elements in the image:

Tr L̂ =

M∑

i

∫

Pi

fr(zi→y→x)Gr(y↔zi)V (y↔zi)L(zi→y)dzi. (11.4)
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Assuming the area Ai of the finite elements is sufficiently small, we can
further assume the integrand to be constant which yields the approximation

Tr L̂ ≈
M∑

i=1

fr(zi→y→x)Gr(y↔zi)V (y↔zi)L(zi→y)Ai. (11.5)

As previously mentioned, only surfaces nearby y contribute to the compen-
sation. This follows directly from the definition of the residual geometry
term Gr(y↔zi), which evaluates to zero for surfaces beyond a certain dis-
tance r. Recall from chapter 4.5 that this distance in 3D world space can be
conservatively estimated as

r =
1
p

b
.

This follows directly from the definition of the bounded geometry term, as-
suming the contained cosine-terms evaluate to 1. This assumption is neces-
sary because detecting the maximum cosines for tight bounds is not feasible
as it would require costly searches over all surfaces nearby. The fact that
the residual geometry term is non-zero only for nearby surfaces allows us
to exploit an observation made by Arikan et al. [2005]: nearby surfaces are
rarely occluded and thus we omit the visibility function.

So far, we have only estimated the bounding radius in 3D world space,
but for a screen-space method we require the bounding radius rs under
perspective projection with a field of view δ:

rs =
r

�

tan(0.5 ·δ)

x− y


� .

This implies that rs varies with the distance between the camera at x and
the point y. The shorter the distance, the bigger the radius rs, and hence
more pixels contribute to the compensation. Due to this dependency it may
occur that the screen-space bounding regions span several thousands of
pixels (see Figure 11.3b). This high number deteriorates interactive per-
formance and in the following we derive a hierarchical screen space inte-
gration scheme that helps to maintain efficiency.

11.2.2 Hierarchical Integration

As stated earlier, it is infeasible to evaluate thousands of pixels per compen-
sation while simultaneously maintaining interactive frame rates. For this
reason, we opt to reduce the number of arithmetic operations and memory
accesses during computation and develop a hierarchical integration scheme
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that is inspired by hierarchical radiosity [Hanrahan et al., 1991]. Hierar-
chical radiosity makes use of a surface patch hierarchy, which is used to
refine patches if the form factor between two patches exceeds a user de-
fined threshold.

Similarly, we adopt this simple but powerful approach. First, we build
a hierarchy on the pixels (each corresponding to a finite element) con-
structing a mip-map chain for the G-buffer which contains positions, nor-
mals, pixel area, material properties, and illumination computed from the
bounded light transport, i.e. the colours of the pixels. Since the mip-map
averages over all properties, and we want to avoid integrating over sharp
edges and depth discontinuities, we additionally construct a discontinu-
ity buffer (and a mip-map chain thereof), similarly to Nichols and Wyman
[2009].

Second, we use this hierarchy for our integration scheme. Integration
begins with the coarsest level in the mip hierarchy (typically a resolution
of 642 for an image resolution of 10242), and we decide whether it is suf-
ficiently accurate or if the current level must be refined further, proceeding
to the next mip level. In order to avoid spatial and temporal artefacts in
dynamic scenes, we refine the integration if at least one of the following
criteria is met:

1. The projected solid angle of a surface corresponding to a sample ex-
ceeds a given threshold (0.08 sr in our examples) because it is too
large or too close to the shading point y.

2. The current sample spans a discontinuity. Then the position, normal,
and area were averaged and do not represent the original geometry
accurately.

In those cases, integration proceeds with the information on the next finer
mip-level. Unfortunately, the second criterion may cause unnecessary re-
finement for surfaces with negligible contribution (e.g. distant surfaces).
Thus we specify an additional criterion and only refine at discontinuities
only if the projected solid angle is higher than a user specified threshold
(0.04 sr in our examples). We have not noticed any artefacts stemming
thereof, as only samples with low contribution are affected.

11.2.3 Avoiding Screen-Space Integration Artefacts

There are inherent problems that are common to all screen space approaches.
On the one hand, a G-buffer stores only information about the front-most,
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visible surfaces, but hidden surfaces potentially contribute to the compen-
sation, too. They can possibly be included in the compensation using depth
peeling or multi-fragment rendering. However, this would make the ap-
proach more complicated and less efficient. Other issues in our screen-
space bias compensation can arise from pixels that represent surfaces which
are nearly perpendicular to the viewing direction. In those cases, the area
such a pixel represents is very large and the approximate residual operator
(Equation 11.5) is no longer valid, and we should rather fall back to its ex-
act variant (Equation 11.4). This, however, involves numerical integration,
which is infeasible for our purposes. Thus we rely on a simple but effi-
cient alternative. Overestimating a patch’s contribution leads to brighten-
ing, which would sometimes be even more distracting than the non-clamped
contribution of a nearby VPL, therefore, we decay the contribution of pix-
els with the angle between their normals and the viewing direction greater
than 80 degrees by a quadratic falloff.

11.3 Implementation Details

We implemented our screen-space bias compensation algorithm entirely on
the GPU. The only exception is VPL generation, which is executed entirely
on the CPU using ray tracing in conjunction with a pre-built bounding vol-
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ume hierarchy for static parts of the scene. For dynamic objects we use a
separate BVH that is rebuild each frame. This in fact never proofed to be
the bottleneck even for up to a few thousand of VPLs.

On the GPU our method first creates the G-buffers, shadow maps for
primary light sources, and imperfect shadow maps [Ritschel et al., 2008]
for VPLs. Then direct illumination and indirect illumination from VPLs is
computed and stored in temporary textures. Before we step into bias com-
pensation, the mip-map hierarchy and discontinuity buffers are built. Fi-
nally bias compensation is executed in a compute shader because it allows
us to handle hierarchical refinement efficiently maintaining a stack placed
in group-shared memory. Optionally, we apply an edge-preserving bilat-
eral Gaussian blur to the compensation result to avoid block artefacts that
can appear when using the hierarchical approach with very few samples. If
we perform multiple compensation steps, we have to use the illumination
buffer from the previous step and therefore must also update its mip map.
These steps are also detailed in Figure 11.4.

For further performance improvements, we can exploit the fact that in-
direct illumination varies smoothly over surfaces and compute indirect illu-
mination at half resolution in each image dimension. Afterwards a full res-
olution image is constructed by the means of bilateral upsampling [Sloan
et al., 2007] to avoid blurring over sharp edges and depth discontinuities.
Finally we execute our bias compensation shader once more for defective
pixels, i.e. those for which all upsampling weights are (nearly) zero.
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a) Rendering without BC b) with BC akin [Kollig and Keller 2004] d) BC akin [Kollig and Keller 2004] e) 3 SSBC stepsc) with 3 SSBC steps

Figure 11.5: We compare SSBC to the ground-truth offline BC solution [Kollig

and Keller, 2006]. (a) Rendering without BC takes about 20 minutes for our

offline renderer without any compensation and additional 10.9 hours with

BC (b). A visually indistinguishable image can be obtained with 3 steps SSBC

running entirely on the GPU (c). The energy recovered from both compensation

methods is shown in (d) and (e), respectively. Illustration: Novák et al. [2011].

11.4 Results

In this section we show the benefits of our screen-space bias compensation
algorithm. We analyse it regarding rendering performance and quality and
assess the importance of bias compensation. All renderings have been com-
puted using an ATI Radeon HD 5870 running on an Intel Core i7 860 with
2.8 GHz with 8 GB of RAM.

Performance: Figure 11.3a demonstrates the benefit of hierarchical inte-
gration. Without hierarchical integration, the compensation requires up to
four thousand samples for every pixel. When enabling hierarchical integra-
tion, the number of pixels that need to be processed decreases quickly with
each additional level. Figure 11.3b reports the relative time spent on the
individual parts of the pipeline. Here we always used hierarchies with 6
levels computing the compensation for 1024× 768 images and performing
two compensation steps (green and yellow).

Quality: In Figure 11.5 we assess the quality of SSBC. For a fair com-
parison we replace GPU shadow maps with ray traced shadows to rule out
any potential artefacts stemming from insufficient visibility sampling. The
ground-truth solution, rendered with offline bias compensation [Kollig and
Keller, 2006], took about 16.5 hours to render results with an acceptable
level of noise. Screen-space bias compensation with three compensation
steps achieves results of comparable quality at interactive frame rates (3
SSBC steps at highest quality settings take 550 ms).
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single compensation step typically suffices, whereas glossy surfaces benefit from
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resolution of 1024× 768. Illustration: Novák et al. [2011].

Importance: Figure 11.6 demonstrates the importance of bias compensa-
tion. Clamping removes a significant amount of energy from short-distance
transport and darkening of edges becomes clearly visible. As can be ob-
served, recovery of lost energy is mostly sufficient after only one SSBC step
for diffuse surfaces. Glossy surfaces, in contrast, greatly benefit from addi-
tional compensation steps.
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11.5 Conclusions

In this chapter we presented a novel algorithm for rendering high-quality
global illumination with virtual point light methods. We have shown how
bias compensation can be cast into a simple post-process working entirely
on a generated image, neither requiring access to all VPLs during the com-
pensation, nor requiring any GPU-unfriendly ray tracing. Despite the as-
sumptions and simplifications necessary in screen space, we have demon-
strated, that our method computes results that are nearly indistinguishable
from the ground-truth solution, but are generated orders of magnitudes
faster. This makes our approach also suitable for offline renderers. The ef-
ficiency of our method is due to the fact that it can be implemented as a
simple post-process that can be accelerated on the GPU, and, because we
made use of an involved hierarchical integration scheme, it allows us to
reduce the overall arithmetic cost.

Beyond that, we have discussed strategies to avoid artefacts that are
stemming from the screen-space approach. For future work, we opt to re-
veal hidden surfaces in screen space using depth peeling or multi-fragment
rendering.
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Conclusions

In this thesis we have presented several contributions that target specific
light transport phenomena such as one-bounce indirect illumination or sin-
gle scattering. Our algorithms are highly efficient to compute, which is
because of two major aspects: (1) efficient computation and exploitation of
visibility and (2) being amenable for highly parallel architectures, such as
GPUs. Within these limits we heavily focused on many light or VPL-based
methods as the foundation of our contributions. One of the key advantages
is that they map exceptionally well onto GPUs. Illumination from point
lights is trivially computed for all pixels in parallel using shadow maps in
order to resolve visibility. Further, they support a wide variety of illumi-
nation effects, such as soft shadows from area light sources, diffuse and
moderately glossy indirect illumination, colour bleeding, and even multiple
scattering.

(Hemi-)spherical visibility: With VPL methods in mind we investigated
a parametrization for (hemi-)spherical visibility from which we derived our
octahedron environment maps (Chapter 7). These are applicable in many
different scenarios, e.g. image-based lighting. But besides storing the light
field at an arbitrary (surface) point, they are also a viable means for storing
omni-directional shadow maps for (virtual) point lights. We have demon-
strated two projection schemes that guarantee optimal usage of texture
space, i.e. no space in the omni-directional shadow map is wasted. Al-
though direct rendering of octahedron environment maps using rasteriza-
tion proved to be challenging, they can be created efficiently using point-
based algorithms [Ritschel et al., 2008].

The efficient computation of hemispherical visibility is also key to our
micro-rendering algorithm (Chapter 8) for high quality final gathering at



176 12. Conclusions

interactive framerates. Although this method has been primarily designed
to compute only one-bounce indirect illumination, we have shown that suc-
cessive applications of the method make it possible to compute an arbitrary
number of light bounces. Beyond that, we have shown that various global
illumination algorithms, such as photon mapping [Jensen, 1996] or instant
radiosity [Keller, 1997], benefit from our approach. Final gathering dimin-
ishes the typical artefacts these algorithms suffer from to a point where low
frequency noise from photon mapping or bright splotches from virtual point
lights become invisible.

Approximate visibility: Artefacts from VPLs arise due to the inverse square
distance in the illumination term at nearby surfaces. A more efficient way
than final gathering to avoid these artefacts completely is to bound their
contribution artificially, which on the other hand introduces bias. Fortu-
nately, this bias can be computed but requires a procedure that is akin to fi-
nal gathering [Kollig and Keller, 2006]. Although micro-rendering could be
used for this purpose as well, it still depends on a hierarchical data structure
of the entire scene which limits its complexity and requires sophisticated
treatment of dynamic objects.

A key insight in bias compensation is that only light reflected from sur-
faces in the close proximity of a shading point contributes to the compensa-
tion term. We exploited this fact and developed a screen-space bias compen-
sation algorithm (Chapter 11). This method reconstructs an approximation
of the visible surfaces at a shading point solely from the image the point is
contained in. Thereby our screen-space method does not depend on sophis-
ticated hierarchical data structures, is output sensitive, and supports fully
dynamic scenes at the same time. Despite the fact that the accuracy of this
reconstruction is limited by the amount of information available in screen-
space, we have demonstrated that we can render fully dynamic scenes at
interactive speed with full indirect illumination from thousands of VPLs.

VPLs can not only be used to simulate indirect illumination. In the pres-
ence of participating media, multiple scattering becomes possible accumu-
lating the single scattering contribution of each VPL. This approach suffers
from the same VPL-typical artefacts as surface illumination. As before, it
can be remedied bounding the contribution and recovering the short dis-
tance light transport through bias compensation at each volume shading
point [Raab et al., 2008]. There it becomes exceedingly more expensive
because visibility is no longer binary and evaluated hundred times over com-
pared to the surface-only case. In Chapter 10 we have introduced several
approximations and improvements that require less visibility evaluations
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and employ appropriate approximations to make bias compensation more
efficient without introducing noticeable errors in the final image. Addition-
ally, our method is easily parallelized on GPUs and generates high quality
images of multiple scattering effects in a matter of seconds.

Visibility coherence: These aforementioned approximations only bene-
fit the compensation step, but single scattering from (virtual) point light
sources is also costly because in-scattering is computed and integrated at
multiple samples along each eye ray. In Chapter 9 we have demonstrated
how this process can be accelerated exploiting visibility coherence along
light rays in order to derive an optimised subsampling algorithm. Our
method generates epipolar lines in screen space and exploits the fact that
all eye rays intersecting a line share the same visibility with respect to the
light source. Consequently in-scattered light observed along an epipolar
line varies only slowly and which allowed us to replace most expensive op-
erations by screen-space interpolation.

Culling: Finally, we have not only investigated visibility with respect to
light sources or the environment but also presented an algorithm that ac-
celerates the image generation process with respect to the camera. This
becomes important for algorithms that heavily rely on screen-space repre-
sentations of the scene, e.g. screen-space bias compensation (Chapter 11).
Our granular occlusion queries (Chapter 6) make it possible to cull invis-
ible geometry from the rendering pipeline of arbitrary granularity within
a single draw call. We have demonstrated that rendering techniques that
heavily rely on geometry amplification in the geometry shader particularly
benefit from our approach.

Summary: In summary we have presented several new algorithms, that
tackle the visibility problem in scenes with participating media from differ-
ent angles. Our studies focused on increasing the efficiency of virtual point
light methods for highly parallel hardware architectures as found on GPUs.
In the process we have addressed visibility for (1) image generation (Chap-
ter 6), (2) efficient storage and computation of (hemi-)spherical visibility
for indirect illumination (Chapters 7 and 8), (3) exploiting visibility co-
herence for improved subsampling of single scattering from (virtual) point
lights (Chapter 9), and (4) efficient visibility approximations for fast bias
compensation on GPUs for multiple scattering (Chapter 10) and indirect
illumination (Chapter 11).
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