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Abstract

We present an efficient runtime cache to accelerate the display of procedurally displaced and textured implicit surfaces,
exploiting spatio-temporal coherence between consecutive frames. We cache evaluations of implicit textures covering
a conceptually infinite space. Rotating objects, zooming onto surfaces, and locally deforming shapes now requires
minor cache updates per frame and benefits from mostly cached values, avoiding expensive re-evaluations. A novel
parallel hashing scheme supports arbitrarily large data records and allows for an automated deletion policy: new
information may evict information no longer required from the cache, resulting in an efficient usage. This sets our
solution apart from previous caching techniques, which do not dynamically adapt to view changes and interactive
shape modifications. We provide a thorough analysis on cache behavior for different procedural noise functions to
displace implicit base shapes, during typical modeling operations.
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1. Introduction

One of the core qualities of procedural modeling is
to enable programmers and artists to pass the modeling
task of creating rich visual complexity on to the com-
puter [7]. Ideally, this results in realistic scenes, natu-
rally unfolding up to unlimited detail, starting from very
small descriptions.

This paper deals with both implicit shape and tex-
ture descriptions, which are of particular interest: un-
like explicit descriptions, they can be evaluated on de-
mand, and are naturally amenable to modeling tech-
niques, such as constructive solid geometry and blend-
ing, suited for both handcrafted, man-made objects, and
organic, soft objects.

However, implicit surface descriptions have two main
drawbacks: first, the outcome of a shape is not as easy
to control as, for instance, it is for explicit meshes; yet
there is a large body of previous research, proposing
manifold modeling environments to regain control, as
the next section shows. Second, it is more difficult to
render implicitly described scenes in real-time than it is
for explicit representations.

With the advent of parallel processing, implicit sur-
faces become viable for direct interactive rendering.
In this paper, we use sphere tracing [10] to render
shapes described by signed distance functions (SDF)

efficiently. Figure 1(a) shows a torus, which, together
with other implicit base shapes, can be easily described
with an SDF and directly rendered on the GPU with
sphere tracing. To move on to more complex, more
interesting shapes, we apply procedural displacement
textures (see Figure 1(b)), as visual complexity requires
these fine-scale details. Most recent and powerful pro-
cedural texturing methods are based on spot noises, ob-
tained by summing a large number of kernels positioned
randomly in space [12]. Alas, evaluating them is very
expensive, and may not happen in real-time anymore.

For this reason, we propose a technique for caching
evaluations of implicit solid textures. Instead of relying
on a fixed, spatially limited grid, our cache adapts to the
view conditions and uses available memory where it is
most useful. Since simple base shapes are sufficiently
fast to evaluate, we cache only the texture part within a
coarse shell, as Figure 1(c) shows. The whole process
happens lazily and seamlessly during rendering, which
couples smoothly into the on-demand evaluation of im-
plicit procedural descriptions. This lets the user model
shapes without invalidating the cache, while the texture
details are efficiently rendered.

Contributions. We propose a novel cache mechanism
equivalent to a sparse grid spanning the entire, infinite
3D texture space, in order to model complex procedu-
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(a) Implicit base shape, (b) with textured surface, (c) base shape acting as a coarse shell.

Figure 1: Our notion of texture throughout the paper. We assume that distance functions describing implicit base
shapes are fast to evaluate. Only the texture part, by contrast, is expensive, and will be cached. The base shape further
acts as a coarse shell, and texture is cached only within the shell. We do not narrow down to color textures; more
importantly, we grasp surface texture in its literal sense, and think of texture as mainly procedural displacements.

ral shapes interactively. The cache is inspired by recent
real-time hashing schemes which we revisit to imple-
ment a cache mechanism. Key-data pairs are inserted in
the hash, new data evicting old data, without having to
explicitly implement a least-recently-used policy. Our
hashing scheme efficiently allocates blocks of data dur-
ing insertions to exploit the native tri-linear interpola-
tion available on graphics hardware. Our scheme is very
easy to use and implement: it does not require complex
communication between CPU and GPU and fits entirely
within OpenGL 4.2 shaders. The technical implementa-
tion has no impact on the procedural functions, i.e., no
modifications to implicit descriptions are required. We
also provide a thorough analysis of the cache behavior
for a variety of modeling examples.

2. Previous work

Implicit surfaces are amenable to ray tracing, but
in the recent past—and without programmable graph-
ics hardware—this was far apart from being feasible
in real-time. Instead, one had to resort to indirect
visualization techniques for rendering, such as vari-
ants of Marching Cubes [15], with intermediate, ex-
plicit representations; interesting level-of-detail (LOD)
techniques can be found in [11]. Specialized tech-
niques have also been proposed: Loop and Blinn [14]
achieved real-time rendering on the GPU by assem-
bling fourth-order piecewise algebraic surfaces, intro-
duced by Sederberg [20].

Hart presented sphere tracing [10] to render distance
functions efficiently. Distance fields can be used to store
explicit distance values, which are then simply queried
instead of evaluated. However, they consume a large
amount of memory; they can be stored hierarchically
using adaptive distance fields (ADF) [8], significantly

reducing memory consumption. Rendering ADFs can
be performed efficiently on the GPU, as proposed by
Bastos and Celes [4]: the field is stored into a perfect
spatial hash [13], a static data structure efficiently ac-
cessed by the GPU (see also Section 3). However, and
contrary to our approach, their data structure is fixed and
suits only for interactive rendering, not modeling, as it
cannot adapt to interactive surface deformations.

Schmidt et al. presented ShapeShop [19], an inter-
active, sketch-based modeling environment for implicit
surfaces. They achieve interactivity by caching the
scalar fields in dense grids [18]: caching nodes are
manually placed into the well-known BlobTree [21].
This significantly increases rendering performance (by
an order of magnitude at that time) at the expense of a
large memory consumption. Our schemes address this
issue—while providing similar functionality—further
exploiting that a given viewpoint uses only a small frac-
tion of the total data.

Reiner et al. [17] recently presented a direct visual-
ization approach for an interactive implicit modeling
environment based on signed distance functions. As
they rely on purely analytical forms, they support high-
frequency detail, but complex textures can no longer be
evaluated interactively. Our cache provides significant
improvements to this approach.

Finally, the Gigavoxel framework [6] could be used
for caching implicit distance fields. Gigavoxel is a hi-
erarchical data structure which can be efficiently tra-
versed by rays. Rays stop when encountering missing
data, which is produced before tracing resumes. In con-
trast, our scheme exploits the fact that the data is im-
plicit, seamlessly balancing between computation and
memory storage. In particular we can render frames
which would not fit entirely within the cache. Contrary
to Gigavoxel, our scheme does not require maintenance
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of a pointer-based hierarchy, resulting in a simpler im-
plementation. Our scheme also exploits the hash evic-
tion mechanism (see Section 3) to avoid implementing
an explicit least-recently-used policy, removing entirely
the need for tracking data usage at every frame.

3. Background on parallel spatial hashing

Our cache scheme is inspired by recent work on par-
allel spatial hashing. Here, we present the basis of these
approaches, which is a core element of our algorithm.

Spatial hashing schemes work with key-data pairs. A
key is a unique identifier for the data, typically the x, y, z
coordinates. Keys are used to insert and retrieve data
from the hash table, which stores all key-data pairs. The
hash algorithm computes the location within the hash
table from the key.

Lefebvre and Hoppe [13] proposed a hashing scheme
for computer graphics for storing texture data around
a surface. While access to the data was efficient—
requiring two memory accesses and one addition—the
construction process was sequential and much slower,
requiring in the order of minutes.

Alcantara et al. [2] proposed a parallel hash construc-
tion inspired by Cuckoo hashing. Keys can be inserted
in a fixed number of locations (typically, four) within
the table. Each thread inserts a key, evicting the pre-
viously stored key. The thread is then responsible for
inserting the evicted key to its next location. This pro-
cess continues until the last evicted key finds an empty
location. All threads insert in parallel and compete for
empty slots. Using four locations, the process termi-
nates with high probability if the table is less than 90%
full. While construction is much faster, access now re-
quires to test all possible locations for the key. This
however remains very fast on modern hardware.

Garcı́a et al. [9] improved the construction and ac-
cess performance by relying on a Robin Hood strategy.
Keys now have a full sequence of possible insertion lo-
cations. The age of a key is the position along the se-
quence which was used to insert the key. During inser-
tion, keys can only be evicted by older keys: young keys
make room for older ones. This allows to fill the table at
a higher density, without hindering access performance.
In addition, the authors propose an insertion sequence
which preserves memory coherence, greatly improving
performance for coherent access patterns.

Our scheme is based on both the latest work of Al-
cantara et al. [2, 3] and Garcı́a et al. [9], but we modify
these in several ways: first, our cache allows for keys
to stream in and out of the hash at every frame during

rendering, keys with new data evicting keys with older
data. Second, contrary to these schemes, our universe is
unbounded—coordinate records are not limited to 32 or
64 bits. Finally, we introduce an allocation/indirection
scheme to avoid having to move data around the table
when keys are evicted. This reduces the required band-
width significantly when large data records are used.

4. Overview

Our implicit surfaces are defined as the zero-crossing
of real-valued scalar fields. We render the surfaces us-
ing sphere tracing [10], and assume that the scalar fields
are obtained from functions which are Lipschitz contin-
uous: there exists a constant Λ so that |x − y| < δ ⇒
| f (x) − f (y)| < Λδ.

We note f the function defining the surface, and t the
function defining the texture. The final shape s is ob-
tained as s(p) = f (p) +α t(T p), with p a point in space,
α a weight, and T a transformation from world to texture
space. The texture function has a bounded influence:
There exists M so that for all p, |t(p)| ≤ M. Therefore
we do not evaluate t when sufficiently far away from the
surface since it has no influence. Throughout this paper,
we assume that t is much more expensive to compute
than f .

The sphere tracing pseudo code for a single pixel is:

1 step = Infinity
2 p = Eye
3 l = 0
4 while ( step > Epsilon) {
5 if ( outside coarse shell ) {
6 eval = f (p) // evaluate distance to coarse shell
7 } else {
8 // inside coarse shell , evaluate also texture
9 eval = f (p) + α ∗ cached t(T ∗ p)

10 }

11 // march evaluated distance along ray
12 step = eval ∗ StepSize
13 p = p + step ∗ RayDirection
14 l = l + step
15 if ( l > FarClip) {
16 pixelColor = BkgColor
17 }

18 }

19 pixelColor = shade(p)

In this algorithm, Eye is the current eye position,
RayDirection is the direction of the ray from the eye
through the pixel center, Epsilon controls the accu-
racy of the ray-surface intersection, StepSize avoids
over-stepping and depends on the Lipschitz property of
the function, FarClip is the maximum distance after
which we stop marching and BkgColor is the back-
ground screen color. Finally, cached t is the cached
texture function. If the cache has sufficient resolution,
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this is equivalent to calling t(p) directly, but results in
better performance through reuse of previous computa-
tions.

Our goal is to cache the expensive evaluation of t so
that the overall rendering time is decreased. Through-
out modeling the user may modify f , or may change α
and T: these operations do not invalidate the cache. If
the user changes the overall procedural description of t,
however, the cache has to be discarded.

Each time cached t is called, our cache is queried
for data. The cache is equivalent to a sparse grid cov-
ering the entire texture space, storing information in its
cells. This produces a discretized, tri-linearly interpo-
lated version of t (Section 6.1). The cache cells have to
be small enough to properly capture the details of t. In
our implementation, the user has to specify the cell size
manually; we use (1/192)3 in all our examples.

For each query, we check whether data is available in
the cache. If data is available, we return it directly. If
not, we compute the new data and insert it in the cache.
In our implementation, we insert only the last cache
miss encountered along a ray; this limits the number of
insertions to one per pixel at most. At the next frame,
this data will be available with high probability and the
cache miss is unlikely to occur again.

Depending upon the current viewing condition, the
inserted data point may evict older data, or fail to insert.
Note that even if a data point fails to insert, it will have
another chance at the next frame if still visible. We ex-
ploit this observation to obtain a simpler, more efficient
algorithm.

From the rendering point of view, this entire pro-
cess is transparent. Thanks to latest advances in graph-
ics hardware, we can implement the entire process in
OpenGL 4.2 shaders, avoiding slow CPU/GPU commu-
nication.

5. Cache mechanism

Rendering at each frame is performed in three steps:

1. Raymarch: All rays are traced. For each pixel the
intersection (if any) is computed, as well as the last
cache miss position (if any). During ray marching
the cache is read only.

2. Insert: A new slot is reserved in the hash table for
each pixel which has encountered a cache miss.

3. Produce: The data for each newly inserted key is
evaluated and stored in the cache.

Our cache data structure is organized around a hash.
The hash stores information about each key: the age of
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Figure 2: Our cache data structure. A point p is en-
closed within cell k in texture space. The cell is stored
at age i within H, its data and coordinates respectively at
D[H[l].stu] and C[H[l].stu] with location l = hi(k).

the key, the key’s 3D coordinates, and the data associ-
ated with the key. In practice, this information is stored
in different tables: C stores the spatial coordinates of the
keys, D stores the data records, and H stores the age of
the keys as well as the location of their data in the other
two tables. All tables have the same size and are 3D ar-
rays. The cumulative size of the tables correspond to the
amount of memory allocated for caching. This is inde-
pendent from the virtual resolution of the sparse cache
grid in space.

Given a key k at age i, the hash computes a location
l = hi(k). The key information can be found at H[l]. The
key spatial coordinates are at C[H[l].stu] and its data at
D[H[l].stu], with stu the location of the records for the
key in C and D. This indirection lets us move keys in
H without having to update C and D, which is a unique
advantage of our hashing scheme. This is summarized
in Figure 2.
The pseudo code for cached t is given below:

1 cached t ( p, H, C, D ) {
2 k = texture2cell ( p )
3 d = access ( p, H,C,D )
4 if ( d == null ) {
5 // cache fault , record for insertion
6 LastCacheMiss = p
7 // compute the value instead
8 return t ( p )
9 } else {

10 // data is in cache!
11 return d
12 }

13 }

The function texture2cell computes which cell of
the cache grid encloses p. It translates the continuous
positions into coordinates within the cache grid. This
function defines the cache resolution—in fact resolution
in this context refers to the size of a cache cell in space
since the cache’s spatial extent is unbounded.
LastCacheMiss records the position of the last

cache miss. It is later used to insert data into the hash.
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5.1. Accessing keys

Our hash follows the open addressing scheme of
Garcı́a et al.: each key k is associated with a sequence
of possible insertion locations noted hi(k). The insertion
algorithm (discussed Section 5.2) ensures that the max-
imum insertion age is bounded: if a key is present in the
table, then it is at location hi(k) with i < A. A is called
the maximum age for the table. In our implementation,
it is arbitrarily fixed to a value of 4.

Retrieving a key simply amounts to walking along the
sequence hi(k), until either the key is found, or the max-
imum age is reached. The pseudo code for retrieving a
key is given below:

1 access ( p, H, C, D ) {
2 k = texture2cell ( p )
3 for ( int i = 0 ; i < A ; i ++) {
4 p stored = C[ h(k, i ) ]
5 if ( texture2cell ( p stored ) == k ) {
6 return D[ H[h(k, i )]. stu ]
7 }

8 }

9 // key not in hash
10 return null ;
11 }

The hash function h is the coherent hash function of
Garcı́a et al., which is a random translation added to k
and determined by i:

hi(k) = (k + O[i]) mod N,

where O is a precomputed table of random offsets and
N the size of the hash table. All these quantities are 3D
vectors, and vector operations are performed indepen-
dently on x, y, z.

The coherent hash function significantly improves ac-
cess performance over randomizing functions [9]. Note
also that keys with a younger age are faster to retrieve.

5.2. Inserting keys

The heart of our method is the insertion algorithm.
Our goal is quite different from a typical hashing
scheme, and the following paragraphs enumerate these
differences.

Cache policy. While the hash table is empty at the start
of the application, it quickly fills up with new data at
each frame. Once full, new data should still be accepted
but will have to erase some older data (see Figure 3). In
addition, we would like the histogram of ages to be fa-
vorably biased toward recently inserted data: it is more
likely to be useful for the next viewpoints, and younger
ages imply faster access.
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Figure 3: Cache insertion: point p generated a cache
miss. It is enclosed within cell k1. The cell is inserted
at age 1 within H. The slot is already occupied by k2,
which is evicted. This generates a second eviction, and
the last key k3 cannot be reinserted: it is hence deleted
from the cache.

Existing spatial hashing schemes are meant to build a
hash table from a predetermined set of keys, seeking to
fill the hash table entirely (Garcı́a et al. report fill rates of
up to 99%). Once the table is full, all further insertions
would fail. This implies that our cache would never be
updated beyond this point. A possible approach would
be to implement an explicit least-recently-used strategy,
keeping track of which keys are accessed every frame.
However, this would require a lot of bandwidth during
rendering: each thread should write in the hash at every
access. Instead, we would like to have the access to be
very fast, so that the cache is overall beneficial.

Our first intuition was to exploit a modified Robin
Hood policy, comparing the ages of keys. However, a
policy inspired by Cuckoo hashing provides a simpler
and better answer. Similarly to Cuckoo hashing, we
blindly evict keys. A new key therefore always evicts a
key already in the hash. The evicted key is tested for its
next location, but is only allowed to evict a key which
was also already in the hash (i.e., not inserted within
the current frame). We limit the number of iterations,
so that only a few successful evictions can occur before
the key falls out of the cache. This process is illustrated
in Figure 3. In addition, any key reaching the maximum
age automatically falls out of the cache. The result is
an increased probability of falling out of the cache for
older keys, as revealed by the histograms in Figure 4.

Data storage. Another important technical issue is that
existing schemes store the data along the keys. This
is convenient, since keys and data can be stored si-
multaneously in 64 bits words: A single atomic op-
eration both evicts and inserts the key-data records
(atomicExchange for Alcanatara et al., atomicMax for
Garcı́a et al.). These algorithms are designed around
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this idea: without atomic operations, a value should
first be read, tested, and only then would the hash ta-
ble be written. In-between the read and write, another
thread could change the table, producing inconsisten-
cies. Atomic operations avoid this issue by performing
the entire process within a single atomic call.

As we shall see in Section 6.1, efficient tri-linear in-
terpolation requires large data records. This data is too
large for being stored and moved along with the key, and
must be kept in a separate table. Keeping both tables
synchronized is similarly difficult: in-between writes to
both tables, another thread may change the first table,
again generating inconsistencies.

We introduce a new hash algorithm which avoids hav-
ing to move data records around, while ensuring that the
data structure is consistent at all times. In our scheme,
the data of a key k remains stored at the same location in
table D, as long as the key is in the hash and regardless
of the number of times the key moves within H due to
evictions. This location, noted stu, is stored along the
age of the key in H.

An additional benefit is that our keys are no longer
limited to coordinates fitting within 32 bits: we can store
the coordinates in table C, again at the stu location. We
thus can rely on 32 bits coordinate triples (96 bits): our
cache covers the full unbounded 3D space.

Duplicated keys. Neighboring pixels are very likely to
generate similar cache misses, and will therefore try to
insert the same keys simultaneously into the hash. Our
cache insertion is robust to these cases and ensures that
keys stored in the hash are unique. This mechanism is
discussed in more detail throughout the next sections.

Algorithm. Next, we give the entire pseudo code of our
algorithm for inserting a single key, and provide a line-
by-line walkthrough.

The algorithm takes the following parameters: p is
the coordinates of the insertion point, d the data to be
stored, H is the hash table, C stores the x, y, z coordinates
of the inserted keys, and D stores the data. H is a table of
32 bits storing the age (4 bits) and the data coordinates
stu (24 bits). In our implementation the remaining 4
bits are unused.

All new keys detected within the frame are inserted
in parallel, each thread running the insertion algorithm.
New keys in the table are flagged by having their stu
coordinate set to null. After insertion, the algorithm re-
turns the location of the key in H along with the stu

coordinates for its data in C and D. Note that the stu

record of the key in H is not updated immediately. All

insertions for the frame must terminate first. This syn-
chronization ensures that if other insertion threads are
still running, they still detect the key as new (stu ==

null).

1 insert (p,d,H,C,D) {
2 inserted l = null
3 inserted stu = null
4 k = texture2cell ( p )
5 key info .age = 1
6 key info . stu = null
7 iter = 0
8 while( iter ++ < A ) {
9 l = h( k, key info .age )

10 prev = H[ l ]
11 if ( prev == empty || prev . stu != null ) {
12 // evict the key
13 read = atomicCAS( & H[ l ] , prev , key info );
14 if ( read == prev ) {
15 // atomic insertion succeeded
16 if ( inserted l == null) {
17 inserted l = l ;
18 }

19 if ( read == empty ) {
20 // this was an empty slot
21 inserted stu = l ;
22 // we found an empty slot , return
23 break
24 } else {
25 // a key was evicted , try to re− insert
26 k = texture2cell ( C[ prev . stu ] )
27 key info .age = prev .age
28 key info . stu = prev . stu
29 inserted stu = prev . stu
30 }

31 } else {
32 // conflict during write
33 if ( key info . stu == null) {
34 break // exit if inserting a new key
35 }

36 }

37 } else {
38 // a new key concurrently inserted is encountered
39 if ( key info . stu == null) {
40 break // exit if inserting a new key
41 }

42 }

43 // try next location
44 key info .age ++

45 if ( key info .age >= A) {
46 break
47 }

48 }

49 // done, return insertion location and stu
50 return ( inserted l , inserted stu )
51 }

We now describe each step of the algorithm. Please
keep in mind that any key which fails to insert, or falls
out of the cache, will have another chance at the next
frame if it is still used. Therefore, one of our design
principles is to reject keys aggressively to keep the al-
gorithm simple.

Line 2–3: inserted l records where the new key will
be inserted in H. inserted stu records which slot will
be allocated for the data of the new key in C and D. It
will be known only after the algorithm unfolds.
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Line 4–6: k is the key: the coordinates of the cache cell
enclosing p. Since the insertion request was generated
on a cache miss, k is new: it is not in the hash when the
insertions start. key info is a 32 bits bit-field storing
the age of the key being inserted and its stu coordi-
nates. stu is null since it is unknown for the new key.

Line 7–8: The insertion algorithm will run for only a
maximum number of iterations. We set this number of
iterations to the maximum age A. Any key still not in-
serted at the end falls out of the cache (deletion). This
always happens once the cache is full: an old key must
be deleted to make room for a new key.

Line 9: An insertion location is computed from the key
coordinates and its age. The age is incremented every
iteration, line 44.

Line 10: The hash table is read at location l, and the
result is stored in prev.

Line 11: We test whether the key can be inserted at the
current location. It is the case if the current slot is empty,
or if it is occupied by a key that can be evicted. We do
not allow the eviction of empty keys (stu == null).
The main reason is that unless an empty slot is found,
we will give the stu of the last evicted key to the new
key. Therefore, only keys with a valid stu can be safely
evicted. Section 5.3 discusses this in more details.

Line 13–14: The key is tentatively written in H line 13,
using an atomic operation. The atomic compare and
swap (CAS) only writes key info if the value in H is
still prev. The value read by atomicCAS in H is re-
turned and tested line 14. If the value is still the same,
the write succeeded: the key already there has been
evicted and we try to reinsert it in lines 15–30. If the
value has changed, no write occurred: another thread
wrote in H since our first read in line 10. We then check
whether we must stop in lines 33–35. This is important
to avoid duplication, as explained in Section 5.3.

Line 16–18: We record the location where the first
(new) key is inserted. We will return this value to the
caller at the end of the eviction sequence.

Line 19: In case of a successful insertion, two cases can
occur. In the first case we inserted the key on an empty
location (lines 20–23) and the insertion terminates. We
record the location of the empty slot in inserted stu

as the location for the data of the new key. In the second
case we inserted the key by evicting another (lines 25–
29). We have to re-insert the previous key, and therefore
re-initialize insertion. Note that we read the coordinates
of the evicted key in C (line 26). This is correct since

we never evict new keys for which an entry in C is not
yet available (see line 11). We keep track of the stu

record of the evicted key in inserted stu (line 29). If
the key cannot be reinserted, it will disappear from the
cache. We will then reuse its stu location for the new
key we initially inserted.

Line 32–35: The write in H failed due to a concurrent
write. We must stop if we are currently inserting the
new key. This avoids duplicated insertions as will be
explained in Section 5.3.

Line 38–41: The current slot in H is occupied by a new
key inserted in parallel by another thread. We must stop
if we are currently inserting the new key. This avoids
duplicated insertions (Section 5.3).

Line 44: The age of the current key is increased. The
algorithm will try to insert it at its next location at the
next iteration.

Line 45–47: The maximum allowed age is reached for
a key: the algorithm stops and the key falls out of the
hash table (deletion).

Note that this entire process runs for a limited number
of iterations. Many keys will fall out of the hash. How-
ever, if the cache is large enough and if the viewpoint
stops moving, the process stabilizes after a few frames.

5.3. Correctness

The algorithm has to ensure two important proper-
ties: 1) no key appears more than once, despite several
threads trying to insert the same key; 2) no stu coordi-
nate is used twice.

Avoiding duplicates. Duplicated keys are detected dur-
ing insertion. If a new key is encountered while the
thread is also trying to insert a new key (line 39), this
could be a case of duplication. Since the table C is not
yet updated for new keys, we cannot check the coordi-
nates. We therefore blindly stop in this case (line 40).

If a write conflict occurs while inserting a new key
(line 33), we also have to stop. If the conflict is with a
new key, it could be a duplication. If the conflict is with
an older key evicted by another thread, we again must
stop. Indeed, let us assume that we anyway insert the
new key at its next location: if another thread is trying to
insert the same key later, it will evict the older key which
created the conflict before detecting the duplication.

This guarantees that inserted keys are unique. Note
that these tests are only necessary for new keys, since
keys being evicted are always unique. In any case, the
new key which failed to insert will get another chance
at the next frame.
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Allocation of data slots. The stu locations are allo-
cated to new keys based on the following observation:
At the end of a full insertion sequence we either 1)
have found an empty slot, or 2) removed a key from
the cache. Let us assume the new key was successfully
inserted (otherwise we had no data to store). In both
cases, we are given a slot for storing the data of the new
key:

1. If an empty slot is found, we simply set stu to the
location of the empty slot (line 21).

2. If a key falls out of the hash, we erase its data by
reusing its stu data location for the data of the new
key (line 29).

Note that by construction we are guaranteed that
empty slots in H correspond to empty slots in D and C:
A key reaching an empty slot in H fills the correspond-
ing locations in H, C, and D. Slots in H are never emptied
once occupied. Therefore, slots in C and D cannot be
occupied while empty in H. This ensures that we never
erase data which is in use.

5.4. Producing data

The last step of the algorithm, after ray marching and
insertion, is to produce the data associated with the keys.
All threads are synchronized before producing the data.
This ensures that all insertions terminated. The stu co-
ordinates of successfully inserted keys are then written
at the key locations in H. Next, the key coordinates are
written in C, and their data records are produced in D at
their allocated stu coordinates. We discuss the content
of each data record in Section 6.1.

6. Implementation

We implemented our scheme using OpenGL 4.2.
Each of the three steps Raymarch, Insert and Produce
corresponds to one shader. We perform the three steps in
sequence. Temporary results are stored in OpenGL ren-
der buffers: LastCacheMiss after the Raymarch step,
and inserted l, inserted stu after Insert. The three
passes are necessary to synchronize all threads.

We exploit the shader image load store exten-
sion to write directly into textures when updating the
hash and producing data. This extension also provides
the atomicCAS operation required by our approach.

6.1. Efficient tri-linear interpolation

Implementing tri-linear interpolation explicitly in a
shader requires eight accesses to our data structure. In
our case this implies eight possible cache misses and

eight possible insertions, at each step along the ray.
While this is possible, our tests resulted in very poor
performance, in fact much slower than eight times the
cost of a single access.

Lefebvre and Hoppe [13] faced a similar problem for
texture interpolation. Their solution was simple and el-
egant, despite a significant increase in memory usage.
Rather than storing single data points, they proposed to
store interpolation cells made of 23 samples. Since these
cells are stored in a volume texture, native hardware in-
terpolation can be used within a cell. However, neigh-
boring cells are not stored together, implying a signifi-
cant overhead since each data point now potentially ap-
pears 8 times in different interpolation cells. This over-
head can be reduced by relying on larger blocks.

We follow the same approach. In our case the over-
head is however limited: our cache adapts to the view.
We therefore designed our cache algorithm for this
blocking scheme, which is the reason for the support
for large data records. Each data record is in fact a full
23 floating point precision block.

During the Produce step of our algorithm, we com-
pute the 8 values at the corners of the cache cell en-
closing the inserted point. This implies that each data
point is computed up to eight times more often (once
per interpolation cell). One possibility would be to
maintain a separate cache for single data points. Us-
ing larger blocks would also reduce this overhead since
only boundary samples would be duplicated.

7. Results

We first analyze the behavior of our cache, and then
present results of interactive rendering and modeling
sessions. Please also refer to our accompanying video
sequences for illustrations of these modeling sessions.

7.1. Setup
We test our hash mainly by displaying a textured

icosahedron (Fig. 5), filling the viewport, at varying ro-
tation speeds. Implicit base shapes, such as an icosahe-
dron, can be easily obtained using generalized distance
functions [1]. Because the hash cannot fit the entire
data, keys will get inserted and deleted from the cache
at every frame. Depending on the rotation speed, more
or less cache misses will occur in-between frames. In
all technical tests we use the same spot noise: spheri-
cal kernels, carving out from the surface, are randomly
placed in space. The viewport resolution is 800 × 800.
Unless otherwise specified, the maximum age is A = 4.

All our results were obtained on an Nvidia GTX 580
graphics card, running with driver version 295.51.
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Figure 4: Histograms showing the distribution of the ages of cache entries, after 0, 200, 400, and 600 frames. The
histogram stabilizes after this point. Note the bias toward younger keys.

7.2. Histogram of ages
As explained in Section 5.2, one of our objectives

is to bias the histogram of keys toward younger keys.
Figure 4 shows the age distribution of cache entries ob-
tained for a rotation speed of 2 radians per second. The
maximum age is discussed next.

7.3. Maximum age
We investigate the effect of changing the maximum

age A. The tradeoff is that a higher maximum age leads
to a more efficient insertion—and hence less deletions
from the cache—but slower access. Figure 6 shows the
behavior of the cache for different values of A. The
shape is rotating on screen so that a similar amount of
new data appears at every frame.

Note that the number of deletions is very high for
A = 2: the cache deletes keys aggressively, among
which many are in use for the current view. The overall
rendering time suffers from this missing data. A = 4
behaves similarly to A = 8, A = 12 after 40 seconds.
Before that point it is more difficult to insert keys and it
needs more time until stabilization.

The rendering time for A = 8 and A = 12 is accept-
able after 20 seconds, but then slows down after 40s: the
cache is able to keep more keys in the hash, but has to
push them further away along their sequences, reducing
insertion and access performance for little benefit.

We experimentally selected A = 4 as a good tradeoff.

Figure 5: Textured icosahedron and implicit base shape.
This object is used for the histograms in Figure 4, and
throughout the analysis spanning Figures 6, 7, 8, and 9.

7.4. Hash table size

For a fixed cache cell size (1/192)3 in texture space, we
analyze the impact of a decreasing hash table size. The
rotation speed is fixed to 2 rad/s. The number of cache
misses and the render time are given in Figure 8.

Clearly, a larger hash table size directly benefits ren-
dering by strongly reducing the number of cache misses.
The constraint here is essentially how much memory
can be allocated by the host. In our implementation
we use a hash table size of 1283, which requires a to-
tal size of 80 MB for all tables. Several such caches
could therefore easily fit on a GPU, caching different
procedural textures.

7.5. Cache misses and render time

We now analyze how the number of cache misses and
the rendering time evolves for varying rotation speeds.
For a given rotation speed, the values are averaged over
400 frames to allow for the cache to stabilize. Results
are given in Figure 7. Slower rotations are faster to ren-
der, but note how the curves flatten as rotation speed in-
creases: faster rotations do not require to refill the cache
entirely, since many keys remain shared between con-
secutive frames. This is a good property for modeling,
where rotating objects is a very common operation.

7.6. Procedure complexity and cache benefit

We analyze the benefit of using the cache for different
procedural complexities. To this end, we significantly
increase the number of impulses of our spot noise. We
set the texture weight low so that the shape geometry is
not significantly modified. The resulting performance
ratio between using the cache or not is shown in Figure 9
for a rotation speed of 1 rad/s.

This shows that increased complexity leads to a larger
performance ratio. However, this difference depends on
the rotation speed. It is maximal for a fixed viewpoint—
once everything is in the cache the rendering time is the
same—and the difference decreases for larger rotation
speeds. If many new keys appear, a complex procedure
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Figure 6: Number of cache deletions (left) and rendering time (right)
for varying maximum ages A. (Icosahedron, rotation speed 2 rad/s.)
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Figure 7: Cache misses and rendering
time as a function of rotation speed.
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Figure 8: Number of cache misses (left) and rendering time (right) for
a varying hash table size. (Icosahedron, rotation speed 2 rad/s.)
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Figure 9: Cache speed-up ratios for dif-
ferent complexities of noise. (1 rad/s.)

will again provide less benefit that a simple one due to
the large production of data.

In the first few frames the speed-up ratio is below one,
since the cache has to be filled with a large number of
missing data. Please also note that the speed-up is rela-
tively low due to the rotation—it can be seen in Figure 7
that the speed-up is much larger at low rotation speeds.

7.7. Precision and shading
The cache stores a discretized version of the tex-

ture, which is tri-linearly interpolated. This results in
a slightly different surface when enabling the cache, as
shown in Figure 10. Our examples use a cell size of
(1/192)3, with the object fitting exactly into the unit cube.
In practice we did not find the differences visually dis-
turbing. Visual popping, however, may occur when keys

are deleted or inserted. This could be entirely avoided
by artificially limiting the resolution of the analytical
function, evaluating it on a lattice with interpolation.

Figure 10 visualizes the loss of precision both in
screen space and on the object’s surface. Center: sub-
tle shading differences (blue) and silhouette mismatches
(red) appear in screen space. At the green curves, the
deviation is 15 times a cell length along the view ray.
Right: enabling the cache yields a low-distortion sur-
face. We numerically computed the Hausdorff distance
by sampling one surface and performing a gradient de-
scent onto the other (and vice versa). For all our ex-
amples and for a variety of cell sizes the Hausdorff dis-
tance levels out at roughly 65% of a cell length. Red
areas indicate that the Hausdorff distance is about to get
reached. Of course, this is assuming that the cell size
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Figure 10: Left: surfaces compared with cache enabled/disabled. Center: for each pixel on the image plane, the
Euclidean distance between these surfaces along the view ray is visualized; silhouette mismatches are red. Right: on
the uncached surface, the distance to the cached version is mapped; in red regions the Hausdorff distance is reached.
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Figure 11: Modeling a more complex shape during a longer session: a fountain is constructed step by step. To the
right, an extensive graph gives an insight into cache behavior throughout the eight minutes long session.

specified by the user is small enough to capture high fre-
quencies. If it is not the case, the Hausdorff distance can
be much higher as thin features may be entirely missed.

Computing the surface normals has a significant im-
pact on performance. Using central differences requires
six additional texture queries after surface intersection.
Using forward differences halves the amount of queries,
but results in less smooth, artifact-prone shading (see
Figure 12). However, performance then almost doubles
from 30 to 58 fps for the the icosahedron with increased
spot noise impulses, and with caching enabled. Without
caching, performance increases from 12 to only 14 fps.

Still, we opted for higher quality central differences
for all examples and during performance measurements.

7.8. Long-term cache behavior

An important question is whether the cache behavior
remains consistent in time. Figure 11 presents a com-
plex modeling session, with a step-by-step construc-
tion of a fountain. It is assembled using two inter-
sected generalized distance functions for the core base
shape, followed by two pairs of intersected boxes to
form the hexagonal border. Another two pairs of in-
tersected boxes model the ground. The basin of the
fountain is carved out by a difference operation. Two
cylinders, another box, and another difference operation
form the central column. Two more intersected boxes
are used for the water. This sums up to 15 shapes and
8 CSG operations. A complex procedural stone texture,

Central
differences

Forward
differences

Figure 12: Using forward differences causes inferior
shading, but improves cache performance significantly.

which features both color and displacement, is applied
to the base shape during the entire session.

To analyze the cache behavior over a longer period
of time, we scripted a modeling session during which
the fountain is assembled. This script allows us to play
back the same session repeatedly, profiling the cache
with different choices of parameters.

Every 20 seconds, a new shape is added or a CSG
operation is performed. Each new shape is inserted off-
center and then gradually translated into place to emu-
late a typical modeling operation. Three of the boxes
appear only for associated, following CSG operations
and thereafter disappear. These boxes are large in spa-
tial extent and thus have a heavy impact on the cache
while they are visible on the screen. During the session,
the camera constantly rotates at 0.5 rad/sec.

Please consult Figure 11 for our following analysis
of three different cache sizes during the eight minutes
long session. On the very top a histogram shows the
proportion of fragments visible in the viewport. This di-
rectly influences performance, as ray marching is an im-
age order rendering technique. Note the three plateaus;
this is when extensive CSG proxy geometry is visible.
The next plot reveals that the smallest cache (size 643,
red curve) fills up within the first minute and then suf-
fers clearly from insertions and involved evictions. The
largest cache (size 1283, blue curve), by contrast, has a
generous amount of memory at it’s disposal and never
fills up entirely during the session; consequently, little
evictions occur inside the largest cache, but almost half
of its allocated memory remains unused. In between,
a cache with size 963 (green curve) becomes entirely
used, does not waste memory, yet generates few evic-
tions: this mid-sized cache offers a good tradeoff and is
most efficient. The cache size is the decisive factor for
the amount of evicted keys, which is clearly reflected in
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the center plot. This in turn impacts the performance,
as the bottom plot reveals. The cache remains benefi-
cial throughout the entire session: note how the green
curve gradually catches up with the blue curve, again
and again after each change in the scene. Large proxy
geometry used for CSG is visible between minutes 4:00
and 5:00. Hereafter, the mid-size cache, even though
entirely full now, still provides a large benefit, despite
the evictions required to fit in newly inserted data; in
addition, it does not waste memory as the largest cache
does. Even if full, the caches quickly evict old data to
adapt to abrupt large changes automatically, thus pre-
serving performance.

In the end performance is slightly lower than initially,
but note how the “no cache” curve also goes down: this
highlights that there is no inherent cache degeneration,
instead, the model just gets more and more complex.

7.9. Interactive modeling sessions

Figure 13 shows the evolution of cache misses when
displaying a stone arch. Without the cache the arch is
rendered at 11 fps, against 36 fps with the cache (fixed
view, 800 × 800 resolution). Next, the same arch is be-
ing interactively deformed: the arch is parametric and
the user changes its thickness and the height of its base.
Thanks to the cache, only the modified parts require fur-
ther computations. During this interaction performance
ranged from 15 to 27 fps, depending on the magnitude
of the changes. Performance is at its maximum when
the user performs small, precise adjustments: this is an
important property, because then a higher frame rate is
most needed for fast visual feedback.

This also suits well for sketch-based applications; in
Figure 14, to the left, the user sketches “SMI”, which is
extruded while sketching, and simultaneously inserted
into the cache. On the right, an example is given where

Figure 13: Top row: the first five frames after clearing
the cache. Cache misses appear in red. Bottom: the user
increases the radius of the arch and then lowers the base.

Figure 14: More examples: a sketching application and
a scene with three independently cached textures.

we independently cache three different noise textures
for multiple objects. This allows the user, for instance,
to adjust the placement and shapes of apples, without
influencing other, unassociated caches.

In Figure 15, an expensive tree bark texture is applied
to a cylinder. After enabling the cache, performance
raises from barely 6 to almost 40 fps. The user can
adjust a variety of parameters, controlling the final ap-
pearance. Changing these does not invalidate the cache,
which stores the base noise used to generate the bark ap-
pearance instead of the final result. Additionally, inter-
action remains smooth while the user can stretch, bend,
and rotate cracks: we access already cached values for
different positions in screen space with a simple trans-
formation of the texture domain.

8. Limitations and future work

There are several limitations in our current approach.
First, the spatial resolution of the cache is homogeneous
in space: on large extent scenes the cache quickly satu-
rates due to distant surfaces. A typical solution to this
issue is to rely on a multi-resolution cache [4, 5]. This
would also accommodate for cases where the data ex-
hibits a non-uniform resolution across space.

A second limitation is that large disocclusions create
peaks in misses, generating a large number of insertions.
This may reduce performance for a few frames below
the performance obtained without the cache. We believe
this problem could be alleviated by further limiting the
maximum number of insertions per frame. Optimizing
insertions further would also reduce this issue.

Section 7.7 revealed that shading has a significant im-
pact on performance. It should be investigated whether
efficiently caching texture derivatives can help to accel-
erate surface normal approximation.

There is, of course, a more fundamental limit to the
benefit of a cache: as it exploits spatio-temporal coher-
ence, any change in the definition of the texture triggers
a cache-wide refresh, and all prior values have to be dis-
carded. There is little to be done about this issue.
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Figure 15: Modeling with a complex tree bark texture;
interaction remains smooth while adjusting parameters.

9. Conclusions

Our runtime cache is a first step toward significantly
accelerating the rendering and modeling of textured im-
plicit surfaces. It integrates seamlessly into the on-
demand evaluation of implicit procedural descriptions;
with lazy evaluation, we seek for the best balance be-
tween computation and memory by exploiting spatio-
temporal coherence between consecutive frames.

Performance is currently limited by technical factors;
OpenGL 4.2 is at an early stage of development, and we
believe many optimizations will be available soon.

Our algorithm is very general and could be used to
cache many other quantities in space, such as light-
ing, opacity, or eventually full hypertextures [16]. Fur-
ther procedural modeling techniques even extend to
the highly (or fully) automated creation of landscapes,
whole cities, and diversified natural scenes; it would be
interesting to adapt our work to accelerate key parts of
these techniques as well. We believe this work will find
many applications for rendering and modeling high-
quality, highly detailed surfaces.
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