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Abstract
We present a method for the visualization of volumetric caustics in single-scattering participating media. The
caustics beams are generated from a projected grid in light’s image space, making the solution independent from
the geometric complexity of generators. The caustic volumes are extruded in the geometry shader and accumulated
into the final volumetric effect.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Raytracing I.3.7 [Com-
puter Graphics]: Color, shading, shadowing and texture

1. Introduction

Specular surfaces tend to change the distribution of reflected
or refracted photons causing beautiful light phenomena in
their environment. Caustics are high-frequency patterns ap-
pearing on the surface of diffuse objects as the curvature of
the specular surface focuses or defocuses the light. Render-
ing caustics adds a lot of realism to the final appearance of
the image. A glass of drink casts typical focused light to the
table, and it is hard to make an underwater scene believ-
able without the wavy light-patterns on the ground. In this
scenario the specular objects are generally called caustics
generators and the diffuse ones receivers. Being an impor-
tant global illumination effect, many efforts have been made
in recent computer graphics research for plausible real-time
approximation.

While recent work mainly focused on the rendering of sur-
face caustics, the efficient handling of volumetric phenom-
ena requires slightly different considerations. If the specular
surface is enclosed by participating media, the rays of fo-
cused photons become visible to the viewer. The effect can
be experienced under the sea surface, since the sea water al-
ways contains microscopic particles attenuating the light. In
the case of surface caustics, the main challenge is the adap-
tive sampling and filtering of the projected pattern to make it
smooth and continuous on the screen8 9. Volumetric caustics
are less sensitive to the accuracy of filtering, but require the
integration of the inscattered light along the viewing ray for
each pixel.

A common way of rendering volumetric caustics is to sub-
divide the caustics generator to small patches and extrude
them along the directions of the specular photons, forming
the bounding volumes of the caustic beams. One possible
subdivision is the usage of the mesh geometry itself. By ac-
cumulating the contributions of the beams in each pixel, the
volumetric photon distribution becomes visible. The appro-
priate rendering of such volumes was deeply analyzed in the
work of Ernst et al.1, which we used as main basis for our
implementation.

Our contributions include the GPU-based implementation
of the volumetric caustics algorithm and the application of
the projected grid concept to the beam generation. Instead
of using the mesh geometry, our method projects a vertex
grid to the surface in light’s image space and then performs
the extrusion of the beams in the geometry shader. This way
the complexity of the algorithm becomes independent of the
complexity of the specular surface models.

The paper is organized as follows. The next section sum-
marizes recent work on interactive rendering of caustics, and
in particular volumetric effects. Section 3 describes our algo-
rithm in detail. Section 4 highlights some important aspects
of the implementation and section 5 presents the test results,
followed by a discussion.

2. Previous Work

Most of the caustics rendering algorithms can be divided into
two main stages. The first phase starts from the light source,
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Figure 1: The outline of the algorithm. In the first pass, the specular surface normals and positions are stored in the geometry
buffers (I). A regular grid is projected onto the surface (II), from which the geometry shader extrudes the beam volumes (III).
The volumetric caustic effect is reconstructed by ray-marching in the pixel-shader (IV).

and identifies the terminal points of caustic light paths on the
non-shiny surfaces. In the following step, the contributions
of these paths are accumulated at the points visible from the
camera.

Photorealistic off-line rendering algorithms generally rely
on ray-tracing methods, producing extremely accurate caus-
tics for the price of high computational costs. Photon
mapping2 is a popular approach, which stores caustics pho-
ton hits in dedicated photon maps. Later, the enhanced algo-
rithm was able to capture volume caustics3, and Purcell et
al.4 implemented it on the graphics hardware.

By the advent of GPU-based solutions, the interactive ren-
dering of caustics became possible. Caustics mapping can
be regarded as a simplification of the photon mapping algo-
rithm. Since the k-neighbor gather operation does not suit
to the current GPU architectures, the photon hits are stored
in a 2D buffer. Possibilities of representing photon locations
include texture space5, image space7 9, or the coordinate sys-
tem of the caustics generators6.

During the caustics reconstruction, most of the recent
works applied photon-splatting. The common problem of
splatting algorithms is to find the optimal photon distri-
bution (importance sampling) and splatting size to achieve
high quality results. Wyman and Dachsbacher7 improved the
quality by the adaptive variation of splat sizes. Recent work
of Wyman et al. analyzed the problem of hierarchical sam-
pling during the caustic map generation8 9.

Other researchers proposed alternative reconstruction
methods. Rendering continuous geometry instead of discrete
photon hits can eliminate the discretization artifacts. Ernst et
al.1 applied beam tracing10 to render interpolated caustic tri-
angles to the receiver surfaces. Their algorithm significantly
improved the quality of caustic triangle methods by taking
into account the warped distortions of the beams. However,
it does not handle occlusions, and requires CPU assistance
due to the limitations of graphics hardware at that time. In a
recent work, Umenhoffer et al.6 render caustic triangles on

the GPU using layered distance impostors5 to render smooth
caustics with occlusion information.

For volumetric caustics effects, beam tracing was used by
Nisthita and Nakamae 11 to render underwater volume caus-
tics. Iwasaki et al.12 implemented the former algorithm on
the GPU. For a moderate amount of caustic triangles, their
results had blocky artifacts because of using constant shad-
ing. Ernst et al.1 analyzed the radiance distribution along a
warped triangular beam, and were able to decrease the res-
olution of the generator mesh by using interpolation inside
the beams. The caustic interpolation was implemented in the
pixel shader during the rasterization of the convex bounding
prisms of the warped volumes.

Approximate global illumination algorithms often try to
avoid expensive computations at invisible points of the
scene. Screen space adaptive subdivision is one of the pos-
sible optimization alternatives. In an early application for
the rendering of ocean surfaces13 a regular screen space grid
was projected to the heightmap of the water. Recently Müller
et al.14 used this concept to render arbitrary 3D fluids with
screen space tessellation. The advantage of the method is
that surfaces closer to the viewer get finer geometric details,
while invisible surfaces are not tessellated at all. We have ap-
plied this idea to the problem of beam tracing in this work.

3. Algorithm

Our method for rendering volume caustics breaks down to
two rendering passes (Figure 1). In the first pass the surfaces
of the specular objects are rendered from the light source.
The photon bounces of the surfaces are stored in a set of
render targets. Using these as textures, the second pass gen-
erates the geometry of the beams. For each beam the scat-
tered radiance towards the camera needs to be determined
using the participating media rendering equation. The final
caustics effect is the result of the accumulated rendering of
each beam.
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Since we do not have control over the rendering order of
caustic beams, only single-scattering homogeneous partici-
pating media can be simulated. For real-time applications,
this simplified model is generally satisfactory.

3.1. Beam Generation

The first step of the algorithm captures the caustics gener-
ator surfaces from the light source. Since the beam genera-
tion is independent of the mesh topology, surfaces of arbi-
trary number and complexity can be used as generators in
the same pass. The surface positions, normals and material
properties are stored in geometry buffers. Usually the choice
of a proper coordinate system for these parameters is impor-
tant for the following steps. As we will see later, most of
the computations are performed in a special local space for
each individual beam, therefore any initial representation is
sufficient. Currently we store the world space positions and
normals, but in a caustic shadows solution we can transform
those into cube-map space like Umenhoffer et al.6.

The next step projects a regular grid in light’s image space
to the specular surfaces. Having the previously rendered
geometry buffers, this process is extremely simple. A pre-
generated regular grid is sent to the pipeline, but during ren-
dering the position and normal vertex attributes are replaced
by the sampled values from the geometry buffers. Prior to
rendering the buffers are cleaned to values indicating that the
given pixel is invalid. This will allow the geometry shader to
discard the primitives not covered by the generator surfaces.

The projected grid is then forwarded to the geometry pro-
cessing stage. The geometry shader either discards the tri-
angles which are not bases of caustics beams, or emits new
primitives forming the convex boundaries of the caustic vol-
umes.

If the vertices of the specular triangle are denoted by v⃗0,
v⃗1, v⃗2 and the caustic photon directions at these vertices d⃗0,
d⃗1, d⃗2, the geometry shader has to extrude a volume bound-
ing the rays v⃗i + tid⃗i, i ∈ {0..2}. In our current solution ti is
a constant value, since we do not consider occlusions yet.
Later on ti should be determined by a depth-texture lookup.

The extrusion of the beams needs special considerations1.
In the general case the geometry of the beams cannot be rep-
resented by a finite set of planar surfaces, since the adjacent
d⃗i rays do not necessarily lie on the same plane, but form the
sides of a bilinear patch instead. Figure 2 illustrates artifacts
raised by the direct emission of the beams in the geometry
shader. From the point of volume caustics, the main artifact
is caused by the additive blending, where the same beam
might render multiple times to the same pixel, resulting in
light streaks. This artifact remains dominant on the screen
even at high grid resolutions.

The task of the geometry shader is to emit a triangular
mesh bounding the bilinear patches. During the extrusion a

Figure 2: The rendering artifacts when extruding along the
photon directions. The non-planar surfaces of the bilinear
patches are approximated with two triangles (left), which
leads to light streaks when using additive blending (right).
The contrast of the image was slightly increased to empha-
size the effect.

touching plane is found for each edge of the specular tri-
angle. Assuming finite beam length, one can always find a
plane that holds the entire caustics volume on its negative
half space1. The extrusion ray for each vertex can be found
as the intersection of touching planes for the adjacent edges.

The volumetric rendering equation is solved in the frag-
ment shader, therefore the geometry processing stage must
encode all the necessary parameters into the emitted vertex
attributes for performing the sampling of the beams. These
parameters are:

• The positions of the caustic vertices
• The directions of the caustic beam edges
• The area of the specular triangle
• The caustic radiance values at the vertices of the triangle

The main task of the fragment shader is to find the radi-
ance at each sample point in the beam. This sampled radi-
ance depends on the initial caustic radiance on the surface
and the area ratio of the specular triangle and the parallel
cross section of the beam at the sample point. We know that
the radiant flux

Φ(∆ω,∆c) =
∫
∆c

∫
∆ω

L(p⃗, ω⃗)cosθdω⃗dA

is constant for every cross section of the beam (∆c is the
caustic triangle, p⃗ is a representative point in the infinitesi-
mal surface and θ is the angle between the surface normal
and ω⃗). If the cross section is parallel to the triangle, the ra-
diance at each point can be computed using the area ratio.
The question is how to get the area of the cross section of
the warped volume?

The double area of the caustic triangle is defined by the
length of the cross product of the edges:

A(∆c) = |(v⃗1 − v⃗0)× (v⃗2 − v⃗0)|
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The calculation of the double area for each sample along the
beam would be very expensive in the fragment shader. It is
desirable to express the area as a function of distance along
the beam. Ernst et al.1 proposed a special coordinate sys-
tem, which we will call beam space in the following, where
the mentioned cross product simplifies to a one dimensional
problem.

Since we are looking for cross sections parallel to the
specular triangle, it is beneficial to use a basis where one
axis is perpendicular to the triangle. Prior to further calcula-
tions, the beam parameters are transformed into a coordinate
system where v⃗0 is the origin, the x-axis is the v⃗0 − v⃗1 edge
and the y-axis is the triangle normal. Normalizing these vec-
tors and choosing their cross product as z-axis gives us an
orthogonal basis in beam space. Another important simpli-
fication is to scale the d⃗i ray direction vectors so that their
y-coordinate equals to one in beam space (Figure 3).
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Figure 3: The basis vectors in beam space. The ray-
marching of the beams is performed in this coordinate sys-
tem.

Using this representation, we can rewrite the area function
into the following form1:

A(y) = |(v⃗′1 + yd⃗′
1 − v⃗′0 − yd⃗′

0)× (v⃗′2 + yd⃗′
2 − v⃗′0 − yd⃗′

0)|

= |(k⃗1 + yl⃗1)× (k⃗2 + yl⃗2)|,

where k⃗i = v⃗′i − v⃗′0 and l⃗i = d⃗′
i − d⃗′

0

Vector v⃗′ is v⃗ in beam space using the new basis. Since k⃗iy =

l⃗iy = 0 ∀i, the length of the cross product will equal to its
y-component.

Expanding the formula we get a second order expression
over y in the form of ay2 +by+ c, where:

a = l⃗1z l⃗1x − l⃗1x l⃗2z,

b = k⃗1z l⃗2x − k⃗1x l⃗2z + l⃗1zk⃗2x − l⃗1xk⃗2z,

c = k⃗1zk⃗2x − k⃗1xk⃗2z

The a, b, c area coefficients are computed in the geome-
try shader and stored in a vertex attribute. The new coordi-
nate system must also be forwarded to the fragment shader,
which evaluates the volumetric rendering equation by ray-
marching in beam space.

Figure 4: The direct projection of the regular grid results
in false triangles around depth discontinuities. Using sim-
ple heuristics based on the triangle normals and the light’s
direction vectors, these triangles are eliminated.

The geometry shader must also remove triangles which
would result in incorrect caustics, for example by not lying
on the same surface. The projected grid is independent of the
scene, therefore it is possible that some triangles go through
extreme distortions. We use the dot product of the triangle
normal n⃗∆ and the light direction vector d⃗l as heuristics for
discarding "wrong" triangles. We assume that if n⃗∆ is almost
parallel to d⃗l then the caustics effect is the most accurate,
while if they are "almost" perpendicular to each other, the
triangle must be discarded. In figure 4 we visualized the pro-
jected grid using the normal heuristics.

3.2. Ray-Marching Caustics Volumes

The fragment shader must first intersect the camera-ray with
the beams, then solve the volumetric rendering equation in a
set of sample points inside them. For homogeneous partici-
pating media this equation takes the following form:

L(⃗ω) =
∫
∆x

e−σt (s1+s2)σsP(⃗ω · ω⃗′)Lin(ω⃗′)ds

where L(⃗ω) is the radiance seen from the camera, ∆x is the
interval of the ray-beam intersections, σt is the extinction co-
efficient, σs is the scattering coefficient, P is the phase func-
tion, and s1 + s2 is the travel length of caustic photons from
the specular surface to the camera. The notations are visi-
ble in Figure 5. Ray-marching is a numerical approximation
of the above integral. In the case of volumetric caustics, we
have found that it is enough to take a single sample in the
middle of the ∆x interval. The simplified numeric approxi-
mation becomes

L(⃗ω)≈ ∆xe−σt (s1+s2)σsP(⃗ω · ω⃗′)Lin(ω⃗′)

The sampling in the fragment shader is performed in three
steps (The whole process is illustrated in figure 5):
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Figure 5: Intersecting the caustic volume with a ray. The in-
tersection of the beam edges and the ray-plane defines a tri-
angle. Using 2D line-line intersections, the distance which
the ray takes inside the volume is determined. The partici-
pating media equation is evaluated at a sample point inside
this ∆x-long interval. To get the caustic radiance values, the
area function is evaluated at the corners of the intersection
triangle.

• Transform the viewing ray into beam space.

The basis of the new coordinate system is given as
a vertex attribute.

• Intersect the beam with a plane containing the viewing
ray.

The normal of such a plane is determined by:

n⃗p = ⃗rview × ( ⃗rview × n⃗∆)

where ⃗rview is the viewing vector and n⃗∆ is the triangle
normal (the y basis in beam space). By intersecting the
d⃗0−2 caustic photon directions with this plane, we get a
triangle in the same plane as the viewing ray.

• Intersect the resulting triangle with the ray and trilinearly
interpolate the radiance at sample point p⃗.

The radiance values at the corners of the intersection-
triangle are determined efficiently by evaluating the area
function. Since the area coefficients were precalculated
in the geometry shader, the fragment shader only has to
evaluate the dot product (y2,y,1) · (a,b,c)T .
Since the triangle and the ray lie in the same plane, the
2D intersection simplifies to finding the intersections with
the edges (2D line-line intersection), and interpolating be-
tween the caustic radiances at the triangle corners. If the
ray does not intersect the triangle, the fragment is dis-
carded.

4. Implementation

We implemented the algorithm in DirectX 10 using HLSL
shaders, with our test platform equipped with Nvidia
Geforce GTX 260 graphics card, Intel Core i7 920 CPU and
6 GB RAM.

The geometry buffer generation is a straightforward pro-
cess. Note that instead of storing the data in textures, the
geometry could have been rendered directly into the grid
vertex buffer. This would avoid the execution of the ver-
tex shader program in the second pass with multiple texture
lookups. However, we did not use this solution for flexibility
reasons: in the future we plan to implement adaptive hier-
archical beam generation in the geometry shader which will
make texture lookups necessary anyway.

The second rendering pass which performs the actual vol-
ume caustics rendering must be executed once for each caus-
tic effect. For example if we want to visualize both reflec-
tive and refractive caustics the projected grid is to be ren-
dered two times. Two sided refractions are not supported yet.
The output format of the beam geometry shader is unusu-
ally complex, since it must encode the entire beam into one
vertex – the fragment shader gets these parameters as inter-
polated attributes. The beam parameters are packed into 10
float4 vertex attributes as shown in table 1.

Table 1: Vertex attributes.

In the Params0-2 attributes the beam geometry is stored
in beam space. Note that we do not need to store the coor-
dinates of v⃗0 and any y-components since these are zero in
this basis. Params2 also stores the double area of the caus-
tic triangle. L0-2 holds the caustic radiances at the corners
of the specular triangle. Basis0-2 are also very important,
since they encode the transformation into beam space. Fi-
nally wpos is the world position of the vertices (the viewing
ray is the difference between the world position and the eye
position) and AreaCoeffs holds the area coefficients.

5. Results

The test renderings used for performance measurement are
shown in figure 6. The results are summarized in table 2.
Note that the test scenes contain other shaders not related
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to our method, like a naive implementation of volumetric
shadows with ray-marching.

Table 2: Frame times of the paraboloid scene (figure 6) with
different grid resolutions. The first three columns are in mil-
liseconds. Besides the total frame time, we measured sep-
arately the time of rendering the caustic beams (Caustics)
and the time without the caustics pixel shader (Without PS).
Note, that the high fill-rate is the bottleneck of the algorithm.

To measure the performance of the geometry shader –
which is definitely a critical stage on Shader Model 4 GPUs
– we also run the tests without the costly ray-marching pixel
shader. These results can be read under the caption "without
PS".

6. Discussion and Future Work

Using the projected grid concept the performance is not sig-
nificantly influenced by the geometric complexity. The main
problem of rendering volume caustics is finding the golden
mean between shading quality and fill-rate. When using a
large grid resolution, the caustic effect becomes accurate,
but several beams are rasterized to the same pixel. On the
other hand, reducing the grid resolution introduces sampling
artifacts which are particularly noticeable at geometric dis-
continuities (silhouettes).

As a future work, we would like to add shadowing sup-
port and multiple specular bounces to our implementation.
An important form of the latter is the support of double-sided
refractions. During the geometry shader execution, approx-
imate ray-tracing methods can be used to determine the ter-
mination points for the caustic beams.

The other main future direction is the implementation of
the adaptive hierarchical sampling in light’s image space,
similarly to Wyman’s work9. Initially using a coarse vertex
grid, the geometry shader can look for discontinuities in the
geometry buffer to refine the resolution of the projected grid.
Since we are using the grid for beam extrusion and not for di-
rect rendering, the cracks introduced by such subdivisions do
not cause artifacts. An adaptive algorithm would also reduce
the overhead of discarded triangles in the geometry shader.

The next important way to attack the fill-rate bottleneck
is off-screen rendering. Instead of rendering caustics to the
screen directly, the beams can be rendered into a downsam-
pled buffer, significantly improving the performance, while
only slightly degrading the quality.
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rendered in 900×600.
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