
 

   
Abstract This paper investigates random number 

generators in stochastic iteration algorithms that require 

infinite uniform sequences. We take a simple model of the 

general transport equation and solve it with the application of 

a linear congruential generator, the Mersenne twister, the 

mother-of-all generators, and a true random number 

generator based on quantum effects. With this simple model 

we show that for reasonably contractive operators the 

theoretically not infinite-uniform sequences perform also well. 

Finally, we demonstrate the power of stochastic iteration for 

the solution of the light transport problem. 

 

Index TermsMonte Carlo methods, random number 
generators, stochastic iteration, transport problems.  

I. INTRODUCTION 

Transport problems, such as global illumination, neutron 

transport, etc. often lead to the solution of integral 

equations of the following form 

)()()( xLxLxL e ℑ+= ,  

which expresses the intensity (i.e. radiance of the light) 

L(x) of point x as a sum of the emission L
e
(x) and the 

reflection of all point intensities that are visible from here. 

The reflection is expressed by an integral operator, called 

transport operator 

∫=ℑ dyyLyxKxL )(),()( , 

where K(x,y) is the kernel that expresses the coupling 

between points x and y. We are interested in contractive 

transport operators, where there exists a<1 and function 

norm L such that  

LaL <ℑ . 

The contractive property is usually a consequence of 

energy conservation. 

Solution algorithms can be classified as random walk 

and iteration techniques [1]. 

A. Random walk 

Random walk algorithms are based on the Neumann 

series expansion of the transport equation 
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The terms of this series are ever increasing high-

dimensional integrals that are estimated by Monte-Carlo 
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quadrature in order to avoid the exponential core of 

classical quadrature rules. A sample for the nth term is a 

path of random points x1, x2,…, xn, which  is also called a 

random walk. The convergence of Monte-Carlo quadrature 

is in the order of O(m
-0.5

), where m is the number of paths. 

Random walks are generated independently, thus this 

approach is free from error accumulation and can be easily 

ported to parallel machines. The obtained result will be the 

asymptotically correct solution of the original problem. 

Unfortunately, we have to pay a high price for this 

asymptotically correct solution. Since the paths are 

generated independently, the earlier results cannot be 

efficiently stored and reused in the computations.  

A. Iteration 

Iteration techniques are based on the fact that the 

solution of the rendering equation is the fixed point of the 

following iteration scheme: 

)()()( 1 xLxLxL m
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Iteration converges with the speed of a geometric series, 

i.e. the error from the limiting value is in the order of O(a
m
) 

where a is the contraction of the transport operator. Note 

that iteration uses the estimate of the complete radiance 

function, thus it can potentially exploit coherence and reuse 

previous information. Since the complete function is 

inserted into the iteration formula, parallelization is not as 

trivial as for random walks, and the error introduced in 

each step may accumulate to a large value.  

To store the radiance estimates, finite-element 

approaches should be used which represent the radiance 

function in a finite function series form: 
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where functions bj(x) are pre-defined basis functions and 

parameters Lj  are scalars. 

Comparing random walk and iteration we can conclude 

that random walk requires just one path to be stored while 

iteration needs very many variables, but random walk uses 

practically no coherence information while iteration can 

strongly exploit it. Iteration is slow due to the handling of 

the very many finite elements, while random walks are 

slow due to the lack of the utilization of the coherence. 

Although a single iteration step requires much more 

computation than a single random path, the O(a
m
)  

convergence of iteration still seems to be far superior to the 

O(m
-0.5

) convergence of random walks. However, random 

walk converges to the real solution while iteration to the 

solution of the finite-element approximation of the original 

problem. 

Furthermore, if the transport operator is not exactly 
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evaluated, the limiting value is also distorted by the 

cumulative error. Thus only the initial behavior of iteration 

overcomes random walk. 

II. STOCHASTIC ITERATION 

In order to combine the advantages of iteration and 

random walks, the iteration scheme is randomized, which 

leads to the definition of stochastic iteration [2]. 

Suppose that we have a random linear operator 
*ℑ  so 

that it gives back the effect of the original transport 

operator in the expected case: 

LLE ℑ=ℑ ][ *
. 

During stochastic iteration a random sequence of 

operators 
*

1ℑ , 
*

2ℑ ,…, 
*

iℑ  is generated, which are 

instantiations of 
*ℑ and this sequence is used in the 

iteration: 
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Since in computer implementations the calculation of a 

random operator may invoke finite number of random 

number generator calls, we are particularly interested in 

those random operators which have the following 

construction scheme: 

1. Random value rm is found from a uniform distribution 

in a unit cube. 

2. The uniformly distributed value is transformed to pm to 

mimic a probability density. This density may or may 

not depend on function L. Making the density depend 

on current estimate L allows adaptive Monte Carlo 

approaches. 

3. Using pm a deterministic operator )(*

mpℑ  is applied 

to current function L. Note that the randomness of the 

transport operator stems from pm . That is why we call it 

the randomization point of the operator.  

Using a sequence of random transport operators, the 

value L(x) will also be a random variable, which does not 

converge but fluctuates around the real solution. However, 

the solution can be found by averaging the estimates of the 

subsequent iteration steps: 
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This limiting value gives the solution if the following 

conditions hold: 

• Iterated values Lm
*ℑ are not strongly correlated.  

• The variance of 
e

ikiki L**

1

* ...ℑℑℑ −++  goes to zero as k 

increases with at least the speed of a geometric series.  

 

Stochastic iteration can also be viewed as a single walk 

which uses a single sequence, and the 
e

ikiki L**

1
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terms are included in integral quadratures simultaneously 

for all k. It means that the randomization points should 

support not only single integration, but using subsequent 

pairs also double integration, using the subsequent triplets 

triple integration, etc. Sequences that support k-dimensional 

integrals when subsequent k-tuples are selected are called 

k-uniform sequences [3]. The widely used Halton or 

Hammersley sequences are only 1-uniform, thus 

theoretically they should provide false results. This is 

obvious for the Hammersley sequence, in which the first 

coordinate is increasing. It is less obvious, but is also true 

for the Halton sequence. Due to its construction using 

radical inversion, the subsequent points in the sequence are 

rather far, thus the subsequent pairs will not cover region 

close to the diagonal of the square. 

A truly random sequence is infinite-uniform, but pseudo-

random sequences are usually not, despite to the fact that  

infinite-uniform sequences can be generated by 

deterministic algorithms. According to the Franklin’s 

theorem [3], for irrational number ξ>1, the sequence {ξn}, 
i.e. the fractional part of its nth power, is also infinite-

uniform with probability one. However, as the set of such 

numbers is infinite, if we take a particular irrational number 

(e.g. π), we cannot be sure that its induced sequence will be 

uniform. Another problem is that irrational numbers cannot 

be represented in computers, and we always substitute them 

with finite bits, i.e. with rational numbers in base 2. The 

length of the approximation imposes limits on the length of 

the stochastic iteration. 

In this paper we investigate random number generators 

considering their application in stochastic iteration 

algorithms. In fact, we test how close they are to the 

expectation of infinite-uniform distribution. 

III. TESTING SCENARIO 

In order to test random number generators, we consider a 

very simple scalar “transport equation” 

aLLL e +=  

where the convergence speed can be controlled by value 

a. Similarly to integral equations, we suppose that there is 

no division and we can just approximately multiply by 

value a (in an integral equation, the multiplication by a 

would correspond to an integral, which cannot be inverted 

and can usually be only numerically evaluated, introducing 

some approximation error). In order to guarantee that the 

transport operator is a contraction, we require value a to be 

less than 1. We solve this equation by stochastic iteration 

replacing the multiplication with a by multiplying with am* 

that can be either zero or one, with probabilities 1-a and a, 

respectively. Taking a random value rm uniformly 

distributed in [0,1], we set am*=1 if rm < a, and zero 

otherwise. The stochastic iteration scheme 
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either adds the previous guess or restarts the iteration 

from L
e
. The random numbers are generated with one of the 

following methods:  

• rand() function, which is a standard linear 

congruential generator [4] (rand() in Figures 1-3) 

implementing the following formula: 
32

1 2mod)2531011214013( +⋅=+ nm rr , 

• a true random number generator, which is based on 

quantum effects [5] (true random), 

• The Mersenne twister generator [6] (Mersenne), 

• The  generator called the “mother-of-all-generators” 

[7] (mother). 

 



 

The error curves are shown by Figures 1-3, where value a 

was set to 0.9, 0.99, and 0.99969, respectively. Value 

0.99969 is equal to 1-10/RND_MAX, giving the chance to 

the rand() function to generate random values with value 0. 
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Fig. 1.  Error curves of stochastic iteration when a=0.9. The generators 

behave similarly. 
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Fig. 2.  Error curves of stochastic iteration when a=0.99. The random 

number generators still behave similarly. 

 

 

 0.01

 0.1

 1

 10

 100  1000  10000  100000  1e+006  1e+007  1e+008

rand()
true random

Mersenne
mother

 
 

Fig. 3.  Error curves of stochastic iteration when a=0.99969. The linear 

congruential generator deteriorates, but others still perform well.  

 

Inspecting the error curves, we can note that despite the 

fact that pseudo-random number generators cannot produce 

infinite-uniform sequences, they perform fairly well for 

reasonable contraction ratios. Even the linear congruential 

generator is quite good when contraction a is less than 0.99 

and it fails only when the contraction is really close to 1. 

Interestingly, the Mersenne twister and the mother of all 

generators are good even at pathological cases. The 

explanation is that the contraction ratio also expresses the 

importance of higher order uniformity. The error of the 

estimation using k-uniform samples is weighted by a
k
, 

which quickly ignores the error of the higher order tems 

when a is reasonably less than one. 

IV. LIGHT TRANSPORT DEMONSTRATION 

In order to demonstrate stochastic iteration in a real 

transport problem, we applied it to find the global 

illumination solution of the Cornell box (Figure 4). The 

light transport operator has been randomized in different 

ways.  

The first algorithm selects a uniform random direction in 

each iteration step taking two random values, and transfers 

the radiance of all surface elements along this random 

direction. In this case, the randomization point is two-

dimensional, which means that two subsequent pseudo-

random numbers are needed in each iteration step. The 

randomization point (i.e. the direction) is independent of 

the current radiance function, thus the random transport 

operators are statistically independent. We also tried two-

dimensional 1-uniform low-discrepancy series, such as the 

Halton (base 2 in one dimension and base 3 in the other 

dimension) or Hammersly (regular steps in one dimension 

and base 2 in the other dimension) sequences. 

 

  
 

Fig. 4.  The Cornell box after 100 stochastic iteration with random 

directions generated with the rand() function (left) and the converged 

image (right).  
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Fig. 5.  Error curves of stochastic iteration working with random 

directions generated from random and quasi-random numbers. 



 

 

Figure 5 shows the error curves with respect to different 

uniform sequences. We can see that the Hammersley 

sequence gives completely wrong result and the Halton 

sequence also deteriorates from the real solution. The two 

random generators (rand and drand48), however, performed 

well. The figure also included quasi-Monte Carlo sequence 

{πn}. This is believed to be (but has not been proven to be) 

infinite-uniform [4]. 

 

 
 

Fig. 6.  The Sierpienski-set scene rendered with stochastic iteration 

using random directions. 

 

Figure 6 shows another scene rendered with the same 

method using the rand() function. 
 

 

 

 
 

Fig. 7.  A cloud model after 10 (top), 50 (middle), and 90 (bottom) 

stochastic iterations. 

 

Figure 7 depicts the convergence of the similar stochastic 

iteration method solving the light transport problem in 

participating media (a cloud), after 10, 50, and 90 iteration 

steps, respectively. Here, in a single iteration step, the light 

is transferred between neighboring particles in 128 quasi-

randomly selected directions. 

A. Non-independent randomization and combined 

strategies 

In order to show that stochastic iteration works even 

when the randomization points are not statistically 

independent of each other, we also implemented another 

randomization strategy. In a single iteration step a single 

point is selected and the power of the scene is shot from 

this point toward all other points that are visible from here. 

According to the concepts of importance sampling, the 

shooter point is selected proportionally to its radiance, 

which makes its selection dependent of previous choices.  

The result after 100 iterations and the converged image 

are shown in Figure 8. 

 

  
 

Fig. 8.  The Cornell box after 100 stochastic iteration with random 

shooter points obtained with the rand() function (left) and the converged 

image (right).  

V. CONCLUSIONS 

This paper investigated random number generators in 

stochastic iteration algorithms. Theoretically, we need 

infinite-uniform sequences, but the simple test model and 

the light transport simulation demonstrated that stochastic 

iteration is robust enough and theoretically not infinite-

uniform sequences can also be safely used. Even the simple 

linear congruential generators can be used if the contraction 

of the transport operator is reasonably less than one.  
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