
Parallel Computation and Interactive Visualization of
Time-varying Solvent Excluded Surfaces

Michael Krone
Visualization Research Center

(VISUS)
University of Stuttgart

Allmandring 19
70569 Stuttgart, Germany

krone@vis.uni-stuttgart.de

Carsten Dachsbacher
Computer Graphics
Karlsruhe Institute of

Technology (KIT)
Am Fasanengarten 5

76131 Karlsruhe, Germany
dachsbacher@kit.edu

Thomas Ertl
Visualization and Interactive

Systems Group (VIS)
University of Stuttgart
Universitätsstraße 38

70569 Stuttgart, Germany
ertl@vis.uni-stuttgart.de

ABSTRACT
Molecular dynamics simulations are a principal tool in the study
of molecules. The efficient investigation of the structure and dy-
namics of the simulated molecular systems benefits from interac-
tive high-quality visualizations. Molecular surfaces are among the
most common representations for visual analysis of the properties
of these molecules, especially when studying proteins and other
biomolecules. In this paper we evaluate the suitability of parallel
graphics hardware (GPUs) for interactive computation and visual-
ization of the Solvent Excluded Surface. This surface consists of
spherical and toroidal geometric primitives, which can be rendered
using ray casting on the GPU, thereby obtaining unsurpassed vi-
sual quality at interactive frame rates. The key, however, is the
efficient calculation of the Reduced Surface that defines the occur-
rence and location of these primitives. The Reduced Surface can
be computed quite efficient and allows for a partial update of the
surface in regions where changes occur. However, the original al-
gorithm to construct the Reduced Surface cannot be parallelized
straightforward. We introduce a novel, parallel algorithm, lever-
aging programmable GPUs, for computing the Reduced Surface.
This allows the high-quality rendering and interactive exploration
of complex molecules and time-varying molecular datasets.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Ob-
ject Modeling—Curve, surface, solid, and object representations;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Re-
alism—Visible line/surface algorithms; J.3 [Computer Applica-
tions]: Life And Medical Sciences—Biology and genetics

General Terms
Molecular Visualization, Isosurfaces, Point-based Data

Keywords
Time-varying Data, GPU, Ray Casting, Surface Extraction

1. INTRODUCTION
Molecular surfaces are among the fundamental representations in
molecular graphics. They are most helpful for visualizing the phe-
nomena appearing at the boundaries of molecules. These include
among others docking, the analysis of interactions and assemblies,
and solution.The Solvent Excluded Surface (SES) is well-suited for
these purposes as it allows to explore all of the aforementioned
phenomena. Therefore, this surface representation is commonly
used in visualization applications. However, its computation is
time-consuming and only possible at interactive rates for moder-
ately large molecules. The SES ist often applied for the analy-
sis of molecular dynamics simulations. Since the MD trajectories
can contain up to several ten thousand frames, precomputation of
the SES for all frames, like it is done in some available molecular
viewers to gain interactive frame rates, is not feasible. To enable
the rendering of such large trajectories at interactive frame rates, a
method which maintains the SES out-of-core is essential.

The SES can be computed analytically by extracting the Reduced
Surface [8]. In this paper we address the problem of comput-
ing the Reduced Surface in parallel and present a novel algorithm
that leverages the computational power of modern, programmable
graphics hardware. It is to be expected that the computing power of
CPUs in the future will rather scale with the number of cores than
by increasing the clock rates. Accordingly, parallel algorithms will
be necessary to benefit from this progress. GPUs already showed
enormous advancements over the last years. Thereby, modern GPUs
provide a massivly parallel architecture for general computations.

2. BASICS AND PREVIOUS WORK
The Solvent Excluded Surface (SES), which goes back to Richard’s
Smooth Molecular Surface [7], is the most important molecular
surface. It is defined as the boundary of the union of all possi-
ble probes not intersecting any atom of the molecule [4] and can
be computed using a rolling ball algorithm: Consider a sphere of
a certain radius—determined by the Van-der-Waals (VdW) radius
of a solvent atom—probing the VdW surface of the molecule. The
surface of the probe traces out the SES (Fig. 1). The SES consists
of three different geometric primitives (Fig. 2) traced out by the
probe while rolling over the VdW surface:
Spherical patches occur when the probe is rolling over the surface
of a single atom and has no contact with any other sphere. All pro-
duding parts of the atom’s VdW surfaces are part of the SES.
Toroidal patches are formed when the probe has contact to two
atoms and rotates around the axis connecting the atom centers. The
probe traces out a torus whose inner surface is part of the SES.



Spherical triangles appear when the probe is simultaneously in
contact with three or more atoms. The interior, concave part of the
embedded probe sphere is part of the SES.

Figure 1: Left: SES; Right: Schematic of the SES, defined by a
probe (shown in two sample positions) rolling over the atoms.

The analytic computation of the SES has first been introduced by
Connolly [1]. Various methods have been introduced to speed up
the computation of the SES: Alpha-shapes [3] are generalizations
of the convex hull. Totrov and Abagyan [10] proposed a local
contour-buildup algorithm. Varshney et al. [11] developed a par-
allel algorithm for extracting the SES on the CPU. The Reduced
Surface (RS), on which the explanations in this paper are based,
was developed by Sanner et al. [8, 9]. Recently, we presented a
GPU-based ray casting that allows the visualization of the SES for
large trajectories at interactive frame rates by using the RS [6].

Available molecular viewers like VMD [5] or PyMOL [2] are de-
compositing the SES into triangles for rendering. The advantage
of this is that graphics hardware is designed for fast rendering of
triangles. However, a high amount of storage is needed and vi-
sual artifacts are visible in close-up view even for high numbers
of triangles. Ray casting provides high rendering quality, which
is completely independent of the viewport since the exact mathe-
matical description of the surface is used for image synthesis. It
is particularly feasible since the SES is subdivided into geometric
shapes whose surfaces are described by implicit functions.

3. REDUCED SURFACE COMPUTATION
The RS is a triangle mesh where each vertex, edge, and face cor-
responds to exactly one of the three geometric primitives—that is,
the surface patches—of the SES (Fig. 2): When the probe is in a
fixed position between three atoms, the centers of these atoms are
the vertices of a triangle, which is called a face of the RS (RS-face).
The edges of this triangle are called edges of the RS (RS-edges),
while the centers of the related atoms are called vertices of the RS
(RS-vertices). The RS is only valid for a specific probe radius rp,
if the radius is changed, it has to be recomputed. The algorithm to
compute a RS as described by Sanner is sequential, building up the
RS triangle by triangle. We briefly recapitulate this algorithm to
depict the differences to our parallel algorithm. For a more detailed
description we refer to Sanner’s original work [8, 9].

3.1 Sequential Reduced Surface Computation
The first step is to find an initial RS-face, where the probe is in
contact with three atoms and does not intersect any atom. Such a
probe position can be found by searching the leftmost atom amin(x)
and computing the neighborhood N (ai) of amin(x). The neighbor-
hood of an atom ai is defined as all atoms which can be touched by
a probe being in contact with ai. This includes all atoms which are
inside a sphere with center ai and radius rn = rai + rp +max

(
ra j

)
,

(a) (b) (c)

Figure 3: Different types of singularities: (a) Spindel torus, (b) In-
tersecting spherical triangles. The singularities are marked green
and have to be cut off in the final image as shown in (c).

where rai is the radius of the atom ai, rp is the radius of the probe,
and max

(
ra j

)
is the maximum atom radius. For all triples amin(x),

ai, a j with ai,a j ∈ N(amin(x)), a potential RS-face is computed and
the probe position for this RS-face is tested for intersections with
all other atoms in the neighborhood. The first detected probe posi-
tion with no intersections determines the initial RS-face.

For all three RS-edges of the initial RS-face, an adjacent RS-face
can be computed by comparing all potential adjacent RS-faces that
share this RS-edge. Therefore, the probe defining the initial RS-
face is rotated around the RS-edge until it hits another atom, de-
noting that the probe is again in a fixed position. In practice this
can be done by computing the neighborhood of the RS-edge N(ti j),
where ti j is the center of the torus being the trace of the probe ro-
tating around the RS-edge’s atoms ai and a j. For each potential
RS-face ai, a j, ak with ak ∈ N(ti j) the angle between the probe po-
sition pi jk′ of the initial RS-face and the new probe position pi jk is
calculated. The potential RS-face with the least angle is the actual
RS-face belonging to the RS. This operation is called the treatment
of an RS-edge [9]. No further intersection tests have to be done for
the probe of the newly generated RS-face. The RS is sequentially
constructed by treating all new RS-edges of each RS-face as de-
scribed above. The algorithm stops when all RS-edges are treated
and the RS is a closed surface.

The SES can suffer from undesirable (self-)intersections shown in
Fig. 3. These singularities must be identified and removed in a
subsequent step to ensure the correct appearance of the SES. There
are two kinds if singularities: spindle tori that occur when the outer
radius of a torus is greater than the inner radius (Fig. 3(a)) and in-
tersecting spherical triangles (Fig. 3(b)). While spindle torii can be
identified by a single comparison of the two radii, the intersecting
spherical triangles require a more elaborate treatment: All probes
in fixed positions intersecting a spherical triangle have to be found.

3.2 Parallel Reduced Surface Computation
In this section we describe our parallel algorithm for the computa-
tion of the RS on programmable graphics hardware. As explained
in Section 3.1, the RS algorithm was originally designed to run it-
eratively and therefore sequential. The first step to design a parallel
variant of this algorithm is to devise a computation scheme which
fits the architecture of modern graphics hardware. The GPU’s mas-
sive computation power can be exploited best when starting many
independent computations (threads) at once which then run in par-
allel without communicating with each other. In this case, the inde-
pendent computations are the individual determination of an atom’s
neighborhood and probing its neighbor atoms. However, in order to
keep the computation time at a minimum we need to restrict these



Figure 2: Visualization of the SES: Our parallel algorithm takes the molecule atoms as input and computes the RS for the visible part of the
molecule. Every face, edge, and vertex of the RS corresponds to one of the geometric primitives forming the SES (right).

computations to those atoms that lie at the molecule’s boundary
and thus are part of the reduced surface. Therefore, we determine
the visible atoms by using standard graphics hardware functionality
and output sensitive visibility determination.

After having detected all visible atoms we launch the RS procedure
as described in Section 3.1 for each of them on the GPU. Each
instance of the computation first determines the neighborhood Ni
of a visible atom. By using a coarse regular grid as spatial index
structure, we greatly accelerate the neighborhood search.

A visible atom ai can now form a triangle with any pair of neigh-
boring atoms a j,ak ∈Ni. For all these atom triples, we determine if
the probe can be in contact with all three atoms. If this is the case,
the triangle is a potential RS-faces and we compute the two possi-
ble probe locations. These two probe positions are then tested for
intersections with the remaining atoms in the neighborhood. The
triangle (ai,a j,ak) can only be a potential RS-face if at least one
of its probe positions does not intersect any of these other atoms.
A large fraction of these potential RS-faces, however, is not part
of the RS, because they are located in its interior. Similarly to the
first step, we perform another visibility determination pass now de-
tecting the faces that actually belong to the RS. The output of this
step represent the visible part of the RS of the molecule and can be
used to obtain the geometric primitives of the SES. However, due
to the concave nature of two of the geometric primitives, the final
geometric primitives of an occluded RS-face may be visible (see
Fig. 2). Futhermore, we have to handle the singularities referred
in Section 3.1. To remove the second type of singularities—the in-
tersecting spherical triangles—the adjacent spherical triangles have
to be found for each spherical triangle that is generated. However,
these adjacent spherical triangles may be occluded by other parts of
the SES and therefore not be identified as part of the RS during the
visibility determination. By computing only the visible part of the
RS, the singularity handling would be incomplete and thus add an
additional computation step to search explicitly for occluded RS-
faces adjacent to visible RS-faces. We only have to search for this
occluded RS-faces at bordering RS-faces. A bordering RS-face has
at least one RS-edge, which is not connected to a second RS-face.
The adjacent occluded RS-face to this visible RS-face Fvisible can
be found by computing the angle between Fvisible and all other po-
tential RS-faces sharing this edge. The RS-face with the least angle
is the RS-face that is required for the primitive intersection. Note
that this step is executed in parallel for all bordering RS-Faces on
the GPU. All RS-faces found in this step are also marked as visible
RS-faces.

Now that we have computed the visible part of the RS, only a last
step prior to the ray casting of the geometric primitives has to be ex-
ecuted: the singularity handling for the spherical triangles to ensure
a correct rendering of the SES. For each RS-face marked as visible,

Figure 4: A protein (PDB-ID: 1TII) rendered with our method and
colored according to the B-factor.

we use the Geometry Shader to compute the geometric primitives
and generate a point sprite for each one (later used for initiating
the GPU ray casting). The detection of intersecting spherical tri-
angles for singularity handling (Fig. 3(b)) is done by computing
the neighboring probes for RS-faces. For each probe in a fixed
position we store all intersecting probes. The intersecting probes,
which possibly lead to singularities, are stored in a texture to make
them accessible via Fragment Shaders for the subsequent GPU ray
casting. During the ray casting, each spherical triangle is tested for
intersection with these probes.

4. RENDERING
In this section, we recapitulate the important details about the GPU
ray casting used to render the three different primitives of the SES.
Please refer to [6] for a more elaborate description. The general
idea of ray casting is the same as of ray tracing: For each fragment—
that is, for each pixel of the final image—a ray from the camera
through this fragment is computed. This ray is then tested for in-
tersection with all objects in the scene (in our case, the geometric
primitives of the SES). If an intersection occurs, the color of the
fragment can be determined due to the object’s color and the light.

For the spherical patches (colored blue in Fig. 2), the whole sphere
can be rendered, since those parts of the sphere that do not belong
to the SES are lying in its interior. The ray-sphere-intersections
are the roots of a quadratic function. Ray casting a spherical tri-
angle (colored red in Fig. 2) is similar to ray casting a sphere with
additional three cutting planes. For correct singularity handling,
the spherical triangle is also cut with all intersecting probes to re-
move the undesired parts (Fig. 3(b)). The rendering of the toroidal



Figure 5: The imperfect singularity handling observable at the cen-
ter of the cavity (left) disappears when viewing from a slightly dif-
ferent point of view (right).

patches (colored yellow in Fig. 2) requires root finding of a fourth-
order polynomial. The toroidal patch belonging to the SES is the
inner part of the torus located between the two atom spheres. This
part of the torus is enclosed by a sphere, as described in [6]. Only
the parts of the torus lying within this sphere belong to the SES
and are rendered. The singularity handling for spindle tori can be
reduced to a second simple sphere intersection test [6].

5. RESULTS AND DISCUSSION
Our algorithm has been designed having the possibilities and limi-
tations of graphics hardware in mind to leverage their considerable
parallel computational power. Furthermore, the applied GPU ray
casting is an advantageous alternative to traditional 3D-graphics
using tessellation, since it generates pixel-accurate visualizations
at interactive frame rates. All computations executed on the GPU
are implemented as GLSL shaders.

The parallelized computation of the SES presented in this paper
yields a comparable performance to our recent work [6]. However,
our novel method recomputes the entire visible part of the molec-
ular surface and is not restricted to piecewise updates. Thus we
can visualize time-dependent data, as well as change the probe size
without any impact on the rendering performance. Table 1 presents
the performance of our method. The measurements were done on
an Intel i7 2.66 GHz with an Nvidia Geforce GTX285. Fig. 4 shows
one of the test data sets rendered with our method. The most ex-
pensive steps in our algorithm are the computation of the potential
RS-faces and the determination of adjacent, occluded RS-faces.

Note that a view-dependent computation also has inherent limita-
tions. Consider the example shown in Fig. 5: Very deep concav-
ities can be missed by both the visibility determination pass and
the following search for adjacent, occluded triangles. Although the
missed RS-face is not visible, its concave spherical triangle might

Table 1: Columns 1–4 show the timings for the stages of our al-
gorithm in seconds: (1) determine visible atoms, (2) determine
neighbors and compute potential RS-faces, (3) determine visible
RS-faces and adjacent, occluded RS-faces, (4) extract geometric
primitives and determine adjacency of visible RS-faces.

PDB-ID #Atoms fps 1 2 3 4
1A3I ∼ 130 68 0.002 0.006 0.002 0.001
1CRN ∼ 330 31 0.002 0.017 0.003 0.001
1RWE ∼ 1,000 16 0.002 0.031 0.007 0.010
1J4N ∼ 1,850 7 0.002 0.050 0.007 0.073
1VIS ∼ 2,500 5 0.002 0.078 0.011 0.076
1TII ∼ 5,500 3 0.003 0.172 0.033 0.125

intersect with visible ones, and thus missing it causes rendering er-
rors. Fortunately this case is very rare and mostly occurs for small
probes. The prerequisite for such rendering errors to occur is that
the SES has to form a thin “wall” consisting of two layers of atoms,
which are accessible to the solvent, which is not very commonly
found. In addition, the rendering errors disappear in the majority
of cases when viewing the molecule from a slightly different angle,
due to the view-dependent nature of our algorithm (Fig. 5).

6. CONCLUSIONS
In this paper we described a view-dependent, parallel algorithm for
computing Reduced Surfaces directly on the GPU. This supports
the interactive exploration of dynamic datasets such as molecular
dynamics simulation data or the interactive adjustment of the probe
size to consider different solvent molecules. To our knowledge,
this is the first approach to compute the SES in parallel with an
algorithm specifically designed to run on the GPU. Our method
achieves comparable speed to recent work, however, it allows for
fully dynamic data and is not restricted to static or only partially
updated data sets. We believe that a parallel algorithm is better
suited for future architectures. There is a strong trend in hardware
development towards parallelization, not only regarding graphics
cards, which constantly become faster, but also for modern multi-
core CPUs. Our prototypical implementation qualifies as a proof of
concept for the suitability of using the GPU to compute the SES.

7. ACKNOWLEDGMENTS
The authors wish to thank Sebastian Grottel for providing the visu-
alization framework. This work is partially funded by the DFG as
part of the Collaborative Research Center SFB 716.

8. REFERENCES
[1] M. L. Connolly. Analytical Molecular Surface Calculation.

Journal of Applied Crystallography, 16:548–558, 1983.
[2] W. L. DeLano. The PyMOL Molecular Graphics System.

DeLano Scientific, Palo Alto, CA, USA, 2002.
http://www.pymol.org.

[3] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha
shapes. ACM Trans. Graph., 13(1):43–72, 1994.

[4] J. Greer and B. L. Bush. Macromolecular shape and surface
maps by solvent exclusion. In Proceedings of the National
Academy of Science, pages 303–307, Jan 1978.

[5] W. Humphrey, A. Dalke, and K. Schulten. VMD – Visual
Molecular Dynamics. Journal of Molecular Graphics,
14:33–38, 1996.

[6] M. Krone, K. Bidmon, and T. Ertl. Interactive Visualization
of Molecular Surface Dynamics. IEEE Transactions on
Visualization and Computer Graphics, 15(6), 2009.

[7] F. M. Richards. Areas, Volumes, Packing, and Protein
Structure. Annual Review of Biophysics and Bioengineering,
6(1):151–176, 1977.

[8] M. Sanner. Sur la modélisation des surfaces moléculaires.
PhD thesis, Université de Haute-Alsace, France, 1992.

[9] M. F. Sanner, A. J. Olson, and J.-C. Spehner. Reduced
Surface: An Efficient Way to Compute Molecular Surfaces.
Biopolymers, 38(3):305–320, Dec 1996.

[10] M. Totrov and R. Abagyan. The Contour-Buildup Algorithm
to Calculate the Analytical Molecular Surface. Journal of
Structural Biology, 116:138–143, 1995.

[11] A. Varshney, F. P. Brooks, and W. V. Wright. Linearly
Scalable Computation of Smooth Molecular Surfaces. IEEE
Computer Graphics and Applications, 14(5):19–25, 1994.


