
1

Parallel Iteration to the Radiative Transport in
Inhomogeneous Media with Bootstrapping

László Szirmay-Kalos, Gábor Liktor, Tamás Umenhoffer, Balázs Tóth, Shree Kumar, Glenn Lupton

Abstract—This paper presents a fast parallel method to solve the radiative transport equation in inhomogeneous participating media.
We apply a novel approximation scheme to find a good initial guess for both the direct and the scattered components. Then, the
initial approximation is used to bootstrap an iterative multiple scattering solver, i.e. we let the iteration concentrate just on the residual
problem. This kind of bootstrapping makes the volumetric source approximation more uniform, thus it helps to reduce the discretization
artifacts and improves the efficiency of the parallel implementation. The iterative refinement is executed on a face centered cubic grid.
The implementation is based on CUDA and runs on the GPU. For large volumes that do not fit into the GPU memory, we also consider
the implementation on a GPU cluster, where the volume is decomposed to blocks according to the available GPU nodes. We show
how the communication bottleneck can be avoided in the cluster implementation by not exchanging the boundary conditions in every
iteration step. In addition to light photons, we also discuss the generalization of the method to γ-photons that are relevant in medical
simulation.

Index Terms—Radiative transport equation, multiple scattering, diffusion approximation, FCC grid, parallel computation, Monte Carlo
method, iteration, GPU, CUDA.

F

1 INTRODUCTION

The multiple-scattering simulation in participating me-
dia is one of the most challenging problems in com-
puter graphics, radiotherapy treatment design, and in
PET/SPECT reconstruction where the scattered compo-
nent distorts the reconstruction results, thus it needs
to be estimated and subtracted from measured data. In
these applications the simulation should be fast enough
to allow the examination of many source positions in the
available time.

Cerezo et al. [3] classified solution algorithms as ana-
lytic, stochastic, and iterative.

Analytic techniques rely on simplifying assumptions,
such that the volume is homogeneous, and usually
consider only the single scattering case [4], [5]. Stam [9]
introduced the diffusion theory to compute energy trans-
port in optically dense media. This method expresses
the radiance by the first two terms of the spherical
harmonic expansion, which can be obtained by the solu-
tion of a diffusion equation. The diffusion equation can
be solved analytically for homogeneous materials and
for isotropic point or directional sources, but requires
iterative methods in the general case [9], [12]. Based on
the analytic solution for the homogeneous case, Jensen
et al. [10] attacked the subsurface light transport by as-
suming that the space is partitioned into two half spaces

• L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, and B. Tóth are with the
Department of Control Engineering and Information Technology, Budapest
University of Technology, and Economics, Hungary.
E-mail: see http://www.iit.bme.hu

• S. Kumar is at Hewlett-Packard, India.
E-mail: shree.kumar@hp.com

• G. Lupton is at Hewlett-Packard, USA.
E-mail: glenn.lupton@hp.com

with homogeneous materials and developed the dipole
model. Tong et al. [11] investigated the quasi-homogeneous
problem where the material is homogeneous on the large
scale but has high frequency local variations (e.g. a slice
of bread). Haber et al. [13] exploited the divergence
theorem to replace the volume integrals of each voxel by
the surface integral along the voxel faces, which allows
better treatment of boundary cells. Wang et al. [14]
also attacked the problem of boundary representation in
subsurface scattering and distorted the Cartesian grid
to a polygrid to get boundary nodes to lie exactly on
the surface while maintaining the original 6-connection
topology.

Stochastic methods rely on Monte Carlo quadrature. In
order to get the radiance of a point, all photon paths
connecting the source to this point via arbitrary number
of scattering events should be considered and their con-
tributions be added. As the location of a single scattering
can be specified by three Cartesian coordinates, the
contribution of paths of length l can be expressed as a
3l-dimensional integral. As l can be arbitrary, we should
deal with high-dimensional (in fact infinite-dimensional)
integrals. Such high-dimensional integrals can be evalu-
ated by Monte Carlo quadrature that samples the high-
dimensional domain randomly and approximates the
integral as the average of the contribution of these
random paths, divided by the probability of the samples.
The error of Monte Carlo quadrature taking n samples
is in O(n−1/2). To speed up the computation by a linear
factor, ray samples are reused for many pixels, storing
partial results, for example, in photon maps [15], [16].

Iteration obtains the solution as the limiting value of
an iteration sequence. In order to store temporary radi-
ance estimates, a finite element representation should be

2

used. The spatial domain is discretized by a voxel grid,
radial basis functions [17], or by particles [18]. Popular
schemes for the directional discretization include parti-
tioning the directional sphere and spherical harmonics
[19]. The error between the actual and the limiting
values reduces with the speed of a geometric series,
i.e. it is in O(λn) after n iteration steps where λ is the
ratio of energy decrease in a single radiation–medium
interaction. The zonal method [20] computes interaction
between all spatial finite elements at each iteration cycle,
which has prohibitive computational complexity. The
discrete ordinates method [21], on the other hand, con-
siders just the interactions of spatially close elements
in discrete directions. Restricting a single iteration step
to local interactions makes the transport matrix sparse
and reduces the complexity considerably. Unfortunately,
the discrete ordinates method suffers from two types
of discretization artifacts unless the number of discrete
directions is high. Due to the repetition of the directional
interpolation in each iteration step, it smears sharp light
beams. On the other hand, spurious beams or the ray effect
show up starting at high intensity regions, which reveal
the underlying discretization scheme. Note that both
artifacts are strong if the source distribution is strongly
non-uniform.

This paper proposes an iterative solution to interac-
tively render inhomogeneous participating media de-
fined by large voxel arrays. Iteration has better conver-
gence rate than Monte Carlo particle tracing thus it is
more appropriate in speed critical systems. However, its
parallel execution is more complicated and it needs some
finite element representation to store temporary data,
which introduces discretization artifacts. In order to at-
tack these problems, we use a simple and fast technique
to initially distribute the radiation in the medium. The
distribution is governed by the diffusion theory, where
the single pass approximate solution is made possible by
assumptions that the medium is locally homogeneous
and spherically symmetric. As we use the solution of
the diffusion equation only to bootstrap the iteration,
our diffusion solver provides just a rough approximation
but can be obtained in parallel to the direct term com-
putation at negligible additional cost. Having obtained
the initial approximation, the residual of the solution is
computed by iteration on a GPU cluster.

Summarizing, the main contributions of this paper are
as follows:

• The bootstrapping algorithm that improves the con-
vergence of the following iteration phase, reduces
the iteration’s discretization artifacts, and makes the
parallel implementation more efficient.

• The parallel iteration algorithm that runs on a Face
Centered Cubic (FCC) grid and can be considered as
a special and fast version of the discrete ordinates.

• The proposition of exchanging boundary conditions
not in every iteration cycle in order to eliminate the
communication bottleneck in GPU clusters.

This paper is an extended version of [1] which in-
troduced the basic idea of taking a rough solution as
the initial value of the iteration. Here we provide the
details of the algorithm, improve the robustness of the
initial estimation, show that the initial distribution not
only helps the parallel execution but also reduces dis-
cretization problems, and extend the iteration algorithm
to γ-photons that have higher energy levels than light
photons.

The paper is organized as follows. Section 2 discusses
the theory of radiative transport both for light and γ-
photons. Section 3 introduces the new method, explain-
ing the computation of the initial estimation of the
radiance and developing the iterative refinement. Sec-
tion 4 presents our distributed implementation. Section 5
discusses the results, and finally we close the paper with
conclusions in Section 6.

2 RADIATIVE TRANSPORT

This section reviews the physical theory of photon–
media interaction. The used notations are also summa-
rized in Table 1.

Symbol Interpretation
L(x⃗, ω⃗) Radiance of point x⃗ in direction ω⃗
Ld(x⃗, ω⃗) Direct term, unscattered radiation
Lm(x⃗, ω⃗) Media term, scattered radiation
σt Extinction coefficient
σs Scattering coefficient
a Albedo
g Extent of anisotropy
σ′
t Reduced extinction coefficient, σ′

t = σt − σsg

σe Effective transport coefficient, σe =
√

3σaσ′
t

ω⃗′ Incident direction
θ Scattering angle, cos θ = ω⃗′ · ω⃗
P (cos θ) Phase function
Q(x⃗, ω⃗) Volumetric source
h Planck’s constant, 4.14 · 10−15 eV·s
ν Frequency of the radiation
E0 Incident photon’s energy, E0 = hν
E1 Scattered photon’s energy
C(x⃗) Electron density at point x⃗
mec2 Electron’s energy, mec2 = 511 keV
re Classical electron’s radius, 2.82 · 10−15 m
Φ0 Radiant intensity of the source
ϕ(r) Fluence at distance r from the source
E⃗(r) Vector irradiance
α Opacity of the voxel

TABLE 1
Notations used in this paper.

When photons interact with participating media, they
scatter either on electrons or less probably on atomic
cores. A photon has zero rest mass, but can be associated
with relativistic mass m = E/c2 = hν/c2 where E is
the energy of the photon, h is the Planck constant, ν
is the frequency of the radiation, and c is the speed of
light. In case of the visible spectrum, the relativistic mass
of a photon is negligible with respect to the mass of
electrons or atomic cores, so when a photon elastically
scatters on an electron, it bounces off like hitting a rigid
wall, keeping its energy and consequently its original

3

frequency. In case of inelastic scattering, also called the
photoelectric effect, the photon’s energy is absorbed. Thus,
upon scattering, the number of light photons reduces but
the frequency of the remaining photons does not change.
This is why we can handle frequencies independently in
computer graphics.

On higher energy or frequency ranges, however, pho-
ton energy and impulse become comparable to the en-
ergy and impulse of electrons. Thus, scattering may
modify not only the number of photons but also their
frequency, so frequencies become coupled and cannot
be handled independently. This frequency range is par-
ticularly important in medical simulation since CT, PET,
SPECT, etc. devices work with γ-photons.

2.1 Light photons
For light photons, we can solve the transport problem
independently on each of the representative frequencies,
usually corresponding to red, green, and blue light.
Multiple scattering simulation should solve the radiative
transport equation that expresses the change of radiance
L(x⃗, ω⃗) at point x⃗ and in direction ω⃗:

ω⃗ · ∇⃗L =
dL(x⃗+ ω⃗s, ω⃗)

ds

∣∣∣∣
s=0

=

−σt(x⃗)L(x⃗, ω⃗) + σs(x⃗)

∫
Ω

L(x⃗, ω⃗′)P (ω⃗′ · ω⃗)dω′. (1)

In this equation the negative term represents absorption
and out-scattering (Fig. 1). The probability of collision in a
unit distance is defined by extinction coefficient σt, which
is broken down to scattering coefficient σs and absorption
coefficient σa according to the two possible events of
elastic scattering and absorption:

σt(x⃗) = σs(x⃗) + σa(x⃗).

The probability of elastic scattering given that collision
happened is the albedo of the material:

a =
σs
σt
.

The positive term in the right side of equation (1)
represents in-scattering, i.e. the contribution of photons
that come from other directions ω⃗′ and get scattered
to direction ω⃗. The probability that elastic scattering
happens in unit distance is σs. The probability density
of the reflection direction is defined by phase function
P (cos θ) that depends on the cosine of the scattering
angle cos θ = ω⃗′ · ω⃗. In order to consider all incident
directions, the contributions should be integrated for all
directions ω⃗′ of the directional sphere Ω.

In isotropic (also called diffuse) scattering the reflected
radiance is uniform and the phase function is constant.
For anisotropic scattering, the phase function varies with
the scattering angle. The extent of anisotropy is usually
expressed by the mean cosine of the scattering angle:

g =

∫
Ω

(ω⃗′ · ω⃗)P (ω⃗′ · ω⃗)dω′.

differential path: ds

incident radiance:

L(s)

outgoing radiance:

L(s+ds)

absorption

in-scattering

out-scattering

ωr
s x

r

'ωr

Fig. 1. Change of radiance in participating media.

In homogeneous media, volume properties σt and σs do
not depend on position x⃗. In inhomogeneous media these
properties depend on the actual position.

The primary source of the illumination may be the
surfaces, light sources, or the volume itself. These can
be taken into account by either adding a source term to
the right side of equation (1) or by enforcing boundary
conditions making the radiance of the volume equal to
the prescribed radiance of the source.

In case of measured data, material properties are
usually stored in a 3D voxel grid, and are assumed to
be constant or linear between voxel centers. Let ∆ be
the distance of the grid points. The total extinction of a
voxel can be expressed by the opacity:

α = 1− e−σt∆ ≈ σt∆. (2)

Radiance L(x⃗, ω⃗) is often expressed as the sum of
two terms, the direct term Ld that represents unscattered
light, and the media term Lm that stands for the light
component that scattered at least once:

L(x⃗, ω⃗) = Ld(x⃗, ω⃗) + Lm(x⃗, ω⃗).

The direct term is reduced by absorption and out-
scattering:

dLd

ds
= −σt(x⃗)Ld(x⃗, ω⃗). (3)

The media term is not only reduced by absorption and
out-scattering, but also increased by in-scattering:

dLm

ds
= −σt(x⃗)Lm(x⃗, ω⃗)+

σs(x⃗)

∫
Ω

(Ld(x⃗, ω⃗
′) + Lm(x⃗, ω⃗′))P (ω⃗′ · ω⃗)dω′.

Note that this equation can be re-written by considering
the reflection of the direct term as a volumetric source:

dLm

ds
= −σt(x⃗)Lm(x⃗, ω⃗)+

σs(x⃗)

∫
Ω

Lm(x⃗, ω⃗′)P (ω⃗′ · ω⃗)dω′ + σs(x⃗)Q(x⃗, ω⃗), (4)

where the source intensity is:

Q(x⃗, ω⃗) =

∫
Ω

Ld(x⃗, ω⃗
′)P (ω⃗′ · ω⃗)dω′. (5)

4

2.2 γ-photons

The elastic scattering of γ-photons is described by the
Klein-Nishina formula [2], which expresses the differential
cross section, i.e. the product of the energy dependent
phase function and the scattering coefficient:

σs(x⃗, E0)P (cos θ,E0) =
r2e
2
C(x⃗)(ϵ+ ϵ3 − ϵ2 sin2 θ),

where ϵ = E1/E0 expresses the ratio of the scattered
photon’s energy E1 and the incident photon’s energy
E0, re = 2.82 · 10−15 [m] is the classical electron radius,
and C(x⃗) is the electron density (number of electrons per
unit volume) at point x⃗.

incident
photon

scattered
photon

θ
collision

E0

E1

Fig. 2. Compton scattering. The relative energy change
E1/E0 is determined by the scattering angle θ.

When elastic scattering happens, there is a unique
correspondence between the scattered photon’s energy
and the cosine of the scattering angle, as defined by the
Compton formula:

E1 =
E0

1 + E0

mec2
(1− cos θ)

,

where mec
2 is the electron’s energy expressed by the

product of its rest mass me and the square of the speed
of light c (Fig. 2). Note that the energy change is relevant
when E0 is non negligible with respect to the energy of
the electron. This is not the case for photons of visible
wavelengths, when E0 ≪ mec

2, thus E1 ≈ E0. In this
case, the Klein-Nishina phase function becomes similar
to the phase function of Rayleigh scattering.

The absorption coefficient can also be expressed as the
product of the electron density and a factor that depends
on the the photon’s energy and the material compounds,
and is usually defined by a simple polynomial fitted to
measurements.

Due to the coupling of different frequencies, we can-
not consider the transport equation on different photon
energy levels independently. Instead, a single equation
describes the transport on all levels:

dL(x⃗+ ω⃗s, ω⃗, E1)

ds

∣∣∣∣
s=0

= −σt(x⃗, E1)L(x⃗, ω⃗, E1)+

∫
Ω

L(x⃗, ω⃗′, E0)σs(x⃗, E0)P (ω⃗
′ · ω⃗, E0)dω

′. (6)

In this equation incident photon energy E0 is not an
independent variable since the Compton formula relates
it to scattered photon energy E1 and the cosine of the
scattering angle.

Note that equation (1) governing light photons and
equation (6) differ only in the frequency on which the
incident radiance is taken when the directional integral
is evaluated. In case of light transport, the incident
radiance of the same frequency should be used. For γ-
photons, the frequency or photon energy is the function
of the scattered energy and the angle of scattering. This
means that most of the methods developed for light
photons can also be applied for γ-photons. For example,
we can decompose the radiance to direct and media
terms, and can also introduce the volumetric source.
The equation of the direct term is the same as for light
photons since extinction does not change the frequency.
Special care should be practiced only when the direc-
tional integrals of the media term (equation (4)) and of
the volumetric source (equation (5)) are evaluated.

3 THE PROPOSED METHOD

3.1 Motivation and objectives

In this paper we propose a method that renders multiple
scattering effects in large volumes of inhomogeneous
media. We examine the particularly important case of
point sources. We shall assume that the point light source
has radiant intensity (i.e. the power per solid angle) Φ0

and is in the origin of our coordinate system. More
complex light sources can be modeled by translation and
superposition.

In order to get close to interactive rates, the solution
method should be implemented on the GPU. We have
taken the iterational approach because of its better con-
vergence rate.

Substituting the finite element approximation, the
transport equation and the projection into the finite
element basis simplify to a system of linear equations:

L = T · L+Qe, (7)

where vector L is the radiance of the sample locations
and directions, Qe is the vector of the finite element rep-
resentation of the source term and boundary conditions,
and T is the transport matrix.

Iteration obtains the solution as the limiting value of
the following iteration sequence:

Ln = T · Ln−1 +Qe. (8)

To reduce the algorithmic complexity, i.e. to limit the
number of interactions considered in a single iteration
step, we follow a discrete ordinates like iteration scheme,
where the transport matrix elements are obtained on
the fly with a very simple approximation. However, the
high number of finite elements needed to represent the
direction dependent radiance of each voxel still poses
performance and storage problems. To get both sufficient

5

computational power and storage, a GPU cluster is an
appropriate choice [22].

The discrete ordinates scheme alone would not be
satisfactory because of the following reasons:

• The iteration of local interactions would be slow
because it requires many “warming up” steps to
distribute the power of sources to far regions.

• Artifacts due to the discretization of the directional
domain would show up at regions where the source
is highly concentrated, which could be reduced by
increasing the number of partitions of the directional
sphere, but that would also dramatically increase
the storage requirements and decrease the compu-
tational speed.

• The scalability of the algorithm would be poor since
exchanging data between the computation nodes
after each iteration step has significant overhead.

To solve the problems of warming up and discretiza-
tion artifacts, we bootstrap the iteration phase, i.e. we
approximate the solution in a cheap way then let the
iteration focus on only the “rest” of the problem. Sup-
pose that during bootstrapping we find initial guess
L0 for the finite element representation of the radiance
function. The unknown radiance is then expressed as the
sum of the initial guess L0 and some unknown residual
∆L. Substituting this decomposition into the iteration
formula of equation (8), we obtain a similar iteration
scheme for the residual:

∆Ln = T ·∆Ln−1 +∆Qe

where
∆Qe = T · L0 +Qe − L0

is the source term of the residual. Note that if the initial
guess is accurate, than the source of the residual is small.
Furthermore, if L0 extends farther than the direct term
determining the volumetric source, then the source of
the residual will be more uniform than the source of
the original problem. Delivering radiance globally helps
the iteration to exchange non-zero radiance even at the
beginning of the process. On the other hand, the more
uniform source distribution reduces the discretization
problem.

To solve the problem of expensive data exchanges
in each iteration step, we propose an iteration scheme
that exchanges data less frequently. This slows down
the convergence of the iteration, so computing nodes
should work longer, but reduces the communication
load, providing a flexible compromise according to the
actual computation and communication speeds.

The outline of the proposed method is shown by Fig. 3.
We use a simple and fast technique to initially distribute
the light in the medium. The distribution is governed
by the diffusion theory, where the single pass approxi-
mate solution is made possible by assumptions that the
medium is locally homogeneous and spherically sym-
metric. Note that unlike previous approaches solving
the diffusion equation, we do not consider the diffusion

1 2

34

Fig. 3. The outline of the algorithm. 1: The volume is
defined by a voxel grid. 2: Single scattering and estimated
multiple scattering are distributed from the light source. 3:
The final results are obtained by iteration which corrects
the errors of the initial estimation. 4: The image is ren-
dered by standard alpha blending.

approximation as the final solution, but we use it as the
initial value of an iteration scheme. Consequently, we
can take a different trade off between the accuracy of
our diffusion solver and its speed, thus our diffusion
solution is more approximate but can be obtained at
the same cost as the direct term. Having obtained the
initial approximation, the final solution is computed by
iteration on a GPU cluster.

3.2 Initial approximation
Now we present how an initial approximation can be ob-
tained, which can bootstrap the iteration or a stochastic
solution.

Similarly to the diffusion approximation [9] we ap-
proximate the direction dependence of the radiance by
the first two terms of the spherical harmonic expansion:

L(x⃗, ω⃗) ≈ L̃(x⃗, ω⃗) =
1

4π
ϕ(x⃗) +

3

4π
E⃗(x⃗) · ω⃗,

where constant term ϕ(x⃗) is called the fluence and the
coefficient of the linear directional term E⃗(x⃗) is called
the vector irradiance. By enforcing the equality of the
directional integrals of L and L̃, we get the following
equation for fluence ϕ(x⃗):∫

Ω

Ldω =

∫
Ω

L̃dω =⇒ ϕ(x⃗) =

∫
Ω

L(x⃗, ω⃗)dω.

Similarly, requiring the direction weighted averages be
similar, we obtain vector irradiance E⃗(x⃗) as:∫

Ω

Lω⃗dω =

∫
Ω

L̃ω⃗dω =⇒ E⃗(x⃗) =

∫
Ω

L(x⃗, ω⃗)ω⃗dω.

Substituting this two-term expansion into the radiative
transport equation and averaging it for all directions, we
obtain the following equations:

∇⃗ϕ(x⃗) = −3σ′
tE⃗(x⃗), ∇⃗ · E⃗(x⃗) = −σaϕ(x⃗). (9)

6

where σ′
t = σt − σsg is the reduced extinction coefficient.

Let us consider just a single beam starting at the origin
where the point source is. When a beam is processed,
we assume that other beams face the same material
characteristics, i.e. we assume that the scene is spheri-
cally symmetric. Consequently, the solution should also
have spherical symmetry. Note that the assumption of
spherical symmetry does not mean that only one beam
is processed. We take many beams originating from the
source, and each of them are traced independently as-
suming that other rays face the same material properties
as the current beam. The advantage of the assumption
of spherical symmetry is that we can act as having the
complete information of the volume while we march
on a single ray. Marching on different rays, different
information is used, resulting in a different solution for
each ray.

In case of spherical symmetry, the radiance of the
inspected beam at point x⃗ and in direction ω⃗ may depend
just on distance r = |x⃗| from the origin and on the
angle between direction ω⃗ and the direction of point
x⃗. The fluence depends just on distance r and vector
irradiance E⃗(x⃗) has the direction of the given point, that
is E⃗(x⃗) = E(r)ω⃗x⃗.

Expressing the divergence operator in spherical coor-
dinates, we get:

∇⃗ · E⃗(x⃗) = ∇⃗ · (E(r)ω⃗x⃗) =
1

r2
∂(r2E(r))

∂r
.

Thus, the scalar version of equation (9) is:

dϕ(r)

dr
= −3σ′

tE(r),
1

r2
d(r2E(r))

dr
= −σaϕ(r). (10)

If we have a point light source, then this equation
has a singularity at r = 0. The fluence and the vector
irradiance are very large close to the source and very
small farther away. As we wish to obtain the solution
using finite differences, such high magnitude variance
makes the solution proposed in [1] numerically unstable
in regions where most of the photons arrive after mul-
tiple scattering. To solve this problem, we rewrite the
equations to use radiant intensity ψ = r2L instead of the
radiance L. The first two spherical harmonics terms of
the radiant intensity are related similarly to the fluence
and the vector irradiance:

ψ0 = r2ϕ, ψ1 = r2E.

Substituting these into the differential equation we ob-
tain:
dψ0(r)

dr
=

2

r
ψ0 − 3σ′

tψ1(r),
dψ1(r)

dr
= −σaψ0(r). (11)

For homogeneous infinite material, the differential
equation can be solved analytically:

ψh
0 (r) = Ae−σerr,

ψh
1 (r) =

2

3rσ′
t

ψh
0 (r)−

1

3σ′
t

dψh
0 (r)

dr
=

A

3σ′
t

e−σer (σer + 1) .

(12)

where σe =
√
3σaσ′

t is the effective transport coefficient,
and A is an arbitrary constant that should be deter-
mined from the boundary conditions. According to equa-
tion (12) ψh

0 (0) = 0, thus only the second equation is
free at the boundary. Requiring that at r = 0 the average
radiant intensity is equal to that of the source Φ0, we can
calculate the free parameter as:

ψh
1 (0) =

A

3σ′
t

= Φ0 =⇒ A = 3σ′
tΦ0.

With equation (11) we established two differential
equations that describe the power evolving as we move
along a ray started at the origin. These equations can be
solved by numerical integration while marching on the
ray and taking samples from the material properties.

In order to obtain the initial values of the ray march-
ing, we take the solution for homogeneous material in a
few voxel neighborhood of the source, initialize the state
variables with the homogeneous solution, and iterate
them father away. While ray marching makes steps ∆
increasing distance r from the source, material properties
σt and σs are fetched at the sample location, and state
variables ψ0[i] and ψ1[i] are updated according to the
numerical quadrature, resulting in the following formula
for step i:

ψ0[i] = ψ0[i− 1]

(
1 +

2∆

r[i]

)
− 3σ′

t[i]ψ1[i− 1]∆,

ψ1[i] = ψ1[i− 1]− σa[i]ψ0[i− 1]∆. (13)

Unfortunately, this method cannot be used to estimate
the initial radiance approximation in γ-photon transport
because it heavily relies on the diffusion equation that
describes energy transport on a single wavelength. How-
ever, this is not so crucial as for light photons since the
energy of γ-photons decreases rather quickly due to the
combined effect of absorption and Compton-scattering,
which also reduces the energy level of scattered photons.
Thus, for γ-photon transport, the direct term is a fairly
good approximation far from the source.

3.2.1 Wavefront tracing
During the initial radiance approximation, rays are cast
from the origin and we march along these rays to
evaluate the optical depth needed by the direct term and
to iterate equation (13). On the parallel GPU architecture,
we simultaneously process a set of rays, thus the visited
points form wavefronts (Fig. 3).

To execute wavefront tracing, the volume is re-
sampled to a new grid that is parameterized with spher-
ical coordinates. A voxel of the new grid with (u, v, w)
coordinates represents point

(x, y, z) = Rw(cos δ sinβ, sin δ sinβ, cosβ),

where δ = 2πu, and β = arccos(1− 2v), and R is the size
of the volume. Note that this parametrization provides
uniform sampling in the directional domain. A (u, v) pair
encodes the ray direction, while w encodes the distance

7

u

v

w

z

x

y

δ

β
ray

wavefront

Fig. 4. Wavefront tracing. Marching on all rays starting at
the source creates spherical fronts in the original space
and planar w-layers in the transformed domain.

from the origin. This texture is processed w-layer by w-
layer, i.e. stepping the radius r by ∆ simultaneously for
all rays.

At the end of wavefront tracing, we return to the
original grid and compute the direct term and the
approximate radiance of the grid points with tri-linear
interpolation.

3.3 Refinement of the initial solution by iteration
As the result of wavefront tracing, we have a good
estimate for the direct term:

Ld(x⃗, ω⃗x⃗) =
Φ0e

−
∫ r

0
σt(s)ds

r2
,

and consequently for the volumetric source:

Q(x⃗, ω⃗) =

∫
Ω

Ld(x⃗, ω⃗
′)P (ω⃗′ · ω⃗)dω′ = Ld(x⃗, ω⃗x⃗)P (ω⃗x⃗ · ω⃗),

and a less accurate estimate for the total radiance:

L(x⃗, ω⃗) ≈ ψ0(r)

4πr2
+

3ψ1(r)

4πr2
(ω⃗x⃗ · ω⃗).

Thus, we can accept direct term Ld, but the media
term Lm = L− Ld needs further refinement. We use an
iteration scheme to make the media term more accurate,
which is based on equation (4), but we consider only the
voxel centers to convert the integral equation to a finite
system of linear equations. The incoming medium radiance
arriving at voxel p from direction ω⃗ is denoted by I(p)m (ω⃗).
Similarly, the outgoing medium radiance is denoted by
L
(p)
m (ω⃗). Using these notations, the discretized version

of equation (4) at voxel p is:

L(p)
m (ω⃗) = (1− α(p))I(p)m (ω⃗)+

α(p)a(p)
∫
Ω

I(p)m (ω⃗′)P (ω⃗′ · ω⃗)dω′ + α(p)a(p)Q(p)(ω⃗) (14)

since σt∆ ≈ α and σs∆ ≈ αa. According to the concept
of discrete ordinates, the directional integral is approx-
imated by a finite Riemann-sum requiring the incident
radiance just at D sample directions ω⃗′

1, . . . , ω⃗
′
D:∫

Ω

I(p)(ω⃗′)P (ω⃗′ · ω⃗)dω′ ≈ 4π

D

D∑
d=1

I(p)(ω⃗′
d)P (ω⃗

′
d · ω⃗). (15)

In order to speed up the iteration process, here we fur-
ther simplify the incident radiance estimation, and select
the sample directions to be the directions where neigh-
boring voxel centers are visible. This decision makes the
incident radiance evaluation trivial, because it will be
equal to the outgoing radiance of that voxel whose center
is visible in the given direction.

The number of neighbors depends on the structure
of the grid. In a conventional Cartesian Cubic (CC) grid,
a grid point has D = 6 neighbors. In a so called Body
Centered Cubic (BCC) grid [23] a voxel has D = 8
neighboring voxels that share a face, which still seems to
be too small to approximate a directional integral. Thus,
it is better to use a Face Centered Cubic (FCC) grid [16],
where each voxel has D = 12 neighbors (Fig. 5).

Fig. 5. Structure of the Cartesian, Body Centered, and
Face Centered Cubic grids. In a Face Centered Cubic
grid, sample points are the voxel corners, voxel centers,
and the centers of the voxel faces. Here every grid point
has 12 neighbors, all at the same distance.

As the incoming radiance of a voxel equals the out-
going radiance of the neighboring voxel in the given
direction, equations (14) and (15) are equivalent to the
general linear system of equation (7), where L is the
vector of media radiance values L(p)

m (ω⃗d) for all voxels
p = 1, . . . , V and discrete directions d = 1, . . . , D, Qe

is the vector of α(p)a(p)Q(p)(ω⃗d) products, and matrix T
connects the output radiance of a voxel to the output
radiances of its neighboring voxels via their input ra-
diances. Vectors L and Qe have V D elements. Instead
of storing sparse matrix T, its elements are computed
on the fly by the shader program. The linear system is
solved by iteration (equation (8)).

The generalization of the iteration algorithm to γ-
photons is straightforward, we just have to store a
complete spectrum instead of a radiance value asso-
ciated with single wavelength. The spectrum is also
defined with finite elements, for example, the interesting
wavelength range is decomposed to subintervals, and
the energy levels associated with the subintervals are

8

represented by a vector. We describe the spectrum on F
pre-defined representative frequencies [ν1, ν2, . . . , νF] by
a vector [L1, L2, . . . , LF] where each element represents
the intensity of the radiation of photons belonging to
an interval around the representative frequency (in the
current implementation F = 4 and thus the spectrum
fits in a single GPU variable).

3.3.1 Iteration on parallel machines
In order to execute iteration on a parallel machine, the
radiance vector Ln of step n is broken to parts and each
computing node is responsible for the update of its own
part. However, the new value of a part also depends
on other parts, which would necessitate state exchanges
between the nodes in every iteration step. This would
quickly make the communication the bottleneck of the
parallel computation.

For example, if there are two compute nodes, the ra-
diance vector and the iteration scheme are decomposed
as:

Ln =

[
L1
n

L2
n

]
=

[
T11 T12

T21 T22

]
·
[

L1
n−1

L2
n−1

]
+

[
Qe1

Qe2

]
.

Node 1 would multiply with minor matrices T11 and
T12, while node 2 with T21 and T22. After these mul-
tiplications, estimate L1

n should be moved to node 2
from node 1, and similarly, L2

n should be moved to
node 1 from node 2. The communication load can be
reduced by recognizing that only those elements should
be exchanged where the column of minor matrices
T12 and T21 are not zero. For example, defining the
neighborhood of a voxel by an FCC grid, only a single
layer of the 3D texture may directly affect a part of the
volume, so only boundary layers should be exchanged.
However, even these data transfers get unacceptably
slow in comparison to the computational performance
of the GPUs.

This problem can be solved by not exchanging the
current state in every iteration cycle. Suppose, for exam-
ple, that we exchange data just in every second iteration
cycle. When the data is exchanged before executing the
matrix-vector multiplication, the iteration looks like the
original formula:

Ln = T · Ln−1 +Qe.

However, when the data is not exchanged, a part of the
transfer matrix is multiplied by the radiance estimate of
the older iteration. Let us decompose transport matrix T
to Town that has the same matrix elements as T where
the own part is multiplied and to Tother that stores the
matrix elements used by the other node:

Town =

[
T11 0
0 T22

]
, Tother =

[
0 T12

T21 0

]
,

With this notation, the cycle without previous data ex-
change is:

Ln = Town · Ln−1 +Tother · Ln−2 +Qe.

Putting the two equations together, the execution of
an iteration step without state exchanges and then an
iteration step with state exchanges would result in:

Ln = T2 ·Ln−2+T ·Qe+Qe+T ·Tother · (Ln−3−Ln−2).

Note that if this scheme is convergent, then Ln, Ln−2,
and Ln−3 should converge to the same vector L, thus
the limiting value satisfies the following equation:

L = T2 · L+T ·Qe +Qe.

This equation is equivalent to the original equation,
which can be proven if the right side’s L is substituted
by the complete right side:

L = T · L+Qe = T · (T · L+Qe) +Qe.

The price of not exchanging the data in every iteration
step is the additional error term

T ·Tother · (Ln−3 − Ln−2).

This error term converges to zero, but slows down the
iteration process especially when the iteration is far from
the converged state.

Using the same argument, we can prove a similar
statement for more than two nodes and for cases when
the data is exchanged just in every third, fourth, etc.
cycles. The number of iterations done by the nodes
between data exchanges should be specified by finding
an optimal compromise, which depends on the relative
computation and communications speeds.

4 PARALLEL IMPLEMENTATION

The system has been implemented as a parallel applica-
tion running on a 4 node HP Scalable Visualization Array
(SVA), where each node is equipped with an NVIDIA
GeForce 8800 GTX GPU, programmed under CUDA. The
nodes are interconnected by Infiniband.

The tasks are distributed by subdividing the volume
along one axis and each node is responsible for both
the radiative transport simulation and the rendering of
its associated subvolume. The images rendered by the
nodes are composited by the ParaComp library [24].

Wavefront tracing computing the direct term and the
initial radiance approximation is fast and needs just a
small fraction of the total computation time. Thus, its
parallelization is not necessary if the volume fits into a
single GPU memory or downsampling the volume for
the direct term computation is allowed by the required
accuracy. In this case, each node starts wavefront tracing
from the source, computes the direct term and the radi-
ance approximation independently of other nodes, and
terminates rays when they leave the block associated
with this node. Due to the ray termination, even this
redundant computation can benefit from the addition of
more nodes.

For larger volumes exceeding the memory capacity of
a single node, wavefront tracing should also be imple-
mented as a parallel application where communication

9

I. Boundary data

II. Working Idle

Fig. 6. Parallel implementation of wavefront tracing for
three nodes, where the middle node contains the source.
Note that in each of the two phases, only a subset of
nodes is working.

is also needed between the nodes. As the radiance
approximation values depend on previous ray-marching
steps, a node can start the wavefront tracing process
only if the rays entering its subvolume are known.
Fig. 6 illustrates the concept of our implementation. Ray
marching begins in the node which holds the source, and
proceeds normally until each ray gets terminated. Then
the exit values of the rays are stored in a boundary layer,
which is a 2D array with the same parametrization as the
wavefront texture. This array is sent to the neighboring
nodes, which can continue the ray marching in their own
subvolume. Note that data parallelization of wavefront
tracing allows volumes larger than the capacity of a
single node, but it may not keep all nodes always busy.

During the iterational refinement, separate kernels are
executed on the GPU for each computational step. The
radiance distribution for one wavelength in the FCC grid
is represented with 12 floating point arrays — one for
each discrete direction in the grid. The FCC sites can
be mapped into a standard 3D array by using proper
indexing, where each value means the outgoing radiance
from a given grid site in one direction. The volumetric
source values remain constant during the iteration, so we
store them in separate 3D textures. The iteration kernel
updates the state of the grid by reading the emissions
and the incoming radiances from the neighboring grid
sites. The output of an iteration step is the input of the
following one, so we copy the results back to the input
textures after each kernel execution. In order to improve
performance, we introduced a sensitivity constant which
is a lower bound to the sum of the incoming radiances
for each point. We evaluate the iteration formula only
where the radiance value is greater than this constant.
This method is efficient if there are larger parts of the
volume without significant irradiance.

In addition to executing the iteration in the individ-
ual subvolumes, we need to implement the radiance
transport between the neighboring volume parts. The
simulation areas overlap so that the radiance values at
the boundary layer can be seamlessly passed from one
subvolume to the other. MPI communication between
the nodes is used to exchange the solutions at the
boundary layers. It is important to notice that each node
needs to pass only 4 arrays to its appropriate neighbor as
the FCC grid has 4 outgoing and 4 incoming directions
for each axis-aligned boundaries.

Having obtained the view independent solution of
the transfer equation, the partial images of the blocks
are rendered in parallel with alpha blending, and also
composited in a distributed way taking advantage of the
parallel pipeline compositing scheme of the ParaComp
library.

5 RESULTS
In this section we present our experiments to validate
the method and to measure its performance. In order
to validate the method, we first put a cube filled with
homogeneous isotropic media (σt = 5, a = 0.8) into
the empty space (σt = 0), and calculated the initial
estimation with the previous [1] and the new methods,
the iteration solution, and a Monte Carlo solution for
comparison. The cube has edge size 2 and is discretized
by a 1283 resolution voxel grid. The Monte Carlo algo-
rithm is based on photon mapping [15]. The radiance
values computed along a line are shown by Fig. 7. Note
that the new initial estimation is more stable than the
previous one (i.e. it is closer to the reference solution),
and also that the error of the initial estimation is quite
well compensated by the iteration process.

 1

 10

 100

 1000

-1 -0.5 0 0.5 1

ra
di

an
ce

coordinate x

New media term estimation
50 iteration steps

Monte Carlo solution
Previous media term estimation

Fig. 7. The radiance functions along line x ∈ (−1, 1), y =
0, z = 0 obtained with the iteration solution, the previous
and new initial estimations, and with Monte Carlo photon
mapping.

The evolution of the iteration can also be followed and
compared to the Monte Carlo reference in Fig. 9, Fig. 10,

10

and Fig. 11 for the different resolution models of the
Head, Beetle, and the Visible Human datasets, respectively.
The radiance is color coded to emphasize the differences
and is superimposed on the image of the density field.
The resolution of the screen is 600× 600.

The density field of the Head dataset has 1283 voxels.
The FCC grid has 128×128×64 resolution. First, we have
examined the effect of the initial radiance approximation.
Fig. 8 shows the relative L1 error curves of the iteration
obtained when the radiance is initialized by the direct
term only and when the media term approximation
is also used. Note that the application of the media
term approximation halved the number of iteration steps
required to obtain a given precision. When we initialize
the iteration with the direct term, we need about 100
iteration steps to eliminate any further visual change in
the image (the error goes below 2%). However, when
the radiance is initialized with the approximated total
radiance, we obtain the same result executing only 60
iterations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

R
el

at
iv

e
L1

 e
rr

or

Iterations

Direct term only
Media term approximation

Fig. 8. Relative L1 error curves of the iteration when the
radiance is initialized to the single-scattering term and
when the radiance is initialized to the media term ap-
proximation in the Head dataset. We used the converged
result as a reference. Note that with the initial media term
approximation, roughly only 50% of the iteration steps are
needed.

No Initial Iter Com (1 : 5) Visual Total (1 : 5)
2 27 ms 19 ms 23 : 10 ms 35 ms 2.6 : 1.8 s
3 19 ms 12 ms 25 : 10 ms 30 ms 2.2 : 1.4 s
4 17 ms 8 ms 29 : 11 ms 25 ms 2.1 : 1.1 s

TABLE 2
Performance figures measured for the Head dataset with

respect to the number of nodes (“No”).

We tested the scalability of our parallel implementa-
tion for the Head and Beetle datasets for 2, 3, and 4
nodes (column “No” in Tables 2 and 3). The volume is

decomposed into 4 blocks along one of the coordinate
axes, and the transfer of each block is computed on a
separate node equipped with its own GPU.

Table 2 summarizes the time data measured for the
Head dataset (Fig. 9). “Initial” time is needed by the
initial radiance distribution. As this model is relatively
small, the initial radiance distribution is executed redun-
dantly on all nodes without any communication. Due to
early ray termination that stops rays at block boundaries,
we can still observe a speed up with the introduction
of additional nodes. “Iter” is the computation time of
a single iteration cycle on the FCC grid. “Com” is the
average time required by the exchanges of the boundary
layers and texture ping-pong after the iteration cycle.
This time is measured separately for the case when the
boundary layers are exchanged in each iteration step
and when they are exchanged after every fifth iteration
step, and the two time values are separated by a “:”
symbol. “Visual” is needed by the final ray casting
and compositing the partial images. “Total” includes
the total simulation/rendering times needed to reduce
the error below 2% when boundary conditions are ex-
changed in each iteration step (60 iterations) and when
boundary conditions are exchanged after every fifth step
(63 iterations). As the initial radiance distribution and
visualization are executed only once, but iteration and
communication times are multiplied by the number of
iterations in the total simulation/rendering time, data in
the “Iter” and “Com” columns are primarily responsible
for the overall performance.

We can observe that the speed of the execution of an
iteration step (“Iter”) grows super-linearly with addi-
tional nodes. The explanation is that additional nodes
not only increase the computational power, but by re-
ducing the data size of a single node, they also improve
cache utilization. However, despite the reduced iteration
time, the total simulation/rendering time improves with
additional nodes just moderately when boundary layers
are exchanged in each iteration step because of the
communication bottleneck (“Com” becomes larger than
“Iter” and does not decrease with the introduction of
new nodes). This bottleneck can be eliminated by ex-
changing the boundary conditions less frequently, which
slightly reduces the speed of convergence, so we trade
communication overhead for GPU computation power.
We observed that the error caused by exchanging the
boundary conditions just after every fifth iteration cycle
can be compensated by about 5% more cycles, which is
a good tradeoff (we executed 63 iteration cycles instead
of 60). Note that when we exchanged the boundary
conditions just after every fifth iteration cycle, the total
simulation/rendering speed increased to 160 % when the
number of nodes has been increased from two to four.

Performance data obtained with the Beetle dataset
(Fig. 10) are shown by Table 3 for different FCC grid
resolutions (“Resolution”). The density field is defined
by 416×416×247 voxels. Note that the highest resolution
FCC grid can be processed only with four nodes. In this

11

direct term direct term + 25 iterations direct term + 100 iterations
92% error 40% error 5% error

initial estimation initial estimation + 60 iterations Monte Carlo solution
60% error 5% error

Fig. 9. Evolution of the iteration in the Head dataset when the radiance is initialized to the direct term and to the
estimated media term, respectively. We also included the relative L1 error values obtained with respect to the Monte
Carlo reference. Note that in this example the media term estimation is equivalent to the direct term estimation followed
by 18 iteration steps.

Resolution No Initial Iter Com (1 : 5)
256× 256× 76 2 120 ms 63 ms 57 : 44 ms

3 81 ms 38 ms 60 : 32 ms
4 61 ms 30 ms 60 : 24 ms

336× 336× 100 3 181 ms 100 ms 117 : 70 ms
4 130 ms 66 ms 114 : 55 ms

384× 384× 112 4 194 ms 91 ms 127 : 76 ms

TABLE 3
Performance figures measured for the Beetle dataset

with respect to resolution of the FCC grid (“Resolution”)
and the number of nodes (“No”).

case, the initial radiance distribution is also a parallel
application that exchanges results. The visualization step
needed less than 50 ms for all cases. When the boundary

is exchanged just after every fifth cycle, the total com-
putation times for the smallest resolution — including
the initial radiance distribution, 60 iteration steps that
guarantee convergence, and the visualization — are 6, 4,
and 3.5 seconds on 2, 3, and 4 nodes, respectively. The
largest resolution model can be rendered in 10 seconds
on 4 nodes.

Fig. 11 demonstrates that the method can be scaled to
as large volumes as the Visible Human. Using 4 nodes,
the initial estimation required 177 ms, a single itera-
tion without communication needed 136 ms, and with
communication 244 ms. With respect to the head model,
here we reduced the probability of absorption to increase
the distance that can be reached by the radiation and
to allow the examination of the problems of directional
discretization. The figure compares the iteration results

12

initial estimation (56% error) initial estimation + 50 iterations (6% error)

Fig. 10. Radiance transport in the Beetle dataset. The density field is defined by 416 × 416 × 247 voxels, and the
resolution of the FCC grid is 384× 384× 112. In this example, the media term approximation could also save about 30
iteration steps.

initial estimation + 30 iterations (5% error) direct term + 60 iterations (13% error)

Fig. 11. Radiance transport in the Visible Human dataset. The resolution of the density field is 512 × 512 × 1877 and
the resolution of the FCC grid is 200 × 200 × 368. This model can only be simulated on four nodes because of the
memory requirements. Note that if we start the iteration with the proposed initial radiance approximation (left), the
spurious rays, i.e. the ray effect, due to the directional discretization get reduced with respect to the iteration starting
with the direct term only (right). The left and right bars depict the transfer functions of the extinction coefficient and the
radiance, respectively.

obtained when we start with the proposed initial approx-
imation and when we start with the direct term only. As
the initial approximation smoothes the volumetric source
term even at far regions, the new method will be less
sensitive to the directional discretization, thus the ray
effect artifacts that are clearly visible in the right image
can be significantly reduced.

The accuracy of γ-photon transport is also examined
using the cube phantom filled with homogeneous media
(C(x⃗) = 10/r2e , a = 0.8). We assume that γ-photons are
produced by positron-electron annihilation events as in
PET, thus the initial photon energy is 511 keV.

As γ-photon scattering is not isotropic, we depict the
directional average of the radiance on three frequency
ranges in Fig. 12. The frequency ranges are [112–212]
keV, [212–312] keV, and [312–512] keV. During iteration,
the photons are assigned to these frequency ranges in
every iteration step. On the other hand, the Monte Carlo
reference solution calculates the photon energy levels
accurately during photon tracing, and projects the final
result into these ranges just in the final visualization
step. Note that the γ-photon simulation is less accurate
than the simulation of light photons. The reasons are
the additional finite element representation of the fre-

13

 0.001

 0.01

 0.1

 1

 10

 100

-1 -0.5 0 0.5 1

ra
di

an
ce

x coordinate

Iteration, 312-512 keV
Iteration, 212-312 keV
Iteration, 112-212 keV

MC, 312-512 keV
MC, 212-312 keV
MC, 112-212 keV

Fig. 12. The average intensity of the γ-radiation along line
x ∈ (−1, 1), y = 0, z = 0 on three photon energy levels,
obtained with the iteration solution and with Monte Carlo
photon mapping.

quency range that introduces some error in each iteration
step, and the specular-shaped lobe of the Klein-Nishina
phase function that poses problems to the FCC grid’s
directional discretization. We can also observe an energy
drop for the second frequency range close to the source,
which is due to the fact that at such high initial photon
energy level, after a scattering event the new photon
energy may be in between the 33% (back-scattering)
and the 100% (forward-scattering) of the original energy.
The 12 discrete directions and the 4 discrete energy lev-
els cannot accurately handle such high dynamic range.
Thus, if more accurate results are needed, the method is
recommended for lower photon energy levels, used, for
example, in SPECT (140 keV) and X-ray or gamma-ray
brachytherapy (20-40 keV or 380 keV).

Fig. 13 shows the results of γ-photon transport in
the head dataset where the initial photon energy is
140 keV, i.e. we assume a typical SPECT source. The
examined photon energy range is decomposed to four
intervals, [60–80] keV, [80–100] keV, [100–120] keV, and
[120–140] keV, thus the spectrum is stored in a single
float4 variable. The electron density is scaled to make
the bone density equal to 10/r2e . In this simulation, only
the direct term is approximated before the iteration is
started.

Concerning the performance of γ-photon transport,
we observed that the initial distribution, the iteration,
and the visualization are just slightly slower than the
light photon simulation. However, the communication
time increased significantly since light photon simulation
exchanges float textures, but γ-photon simulation should
work with float4 textures representing the whole spec-
trum. The calculation of Fig. 13 with 20 iteration steps
required 2 seconds on four nodes.

6 CONCLUSIONS

This paper proposed an effective method to solve the
radiative transport equation in inhomogeneous partic-
ipating media on a cluster of GPUs, allowing interac-
tive source placement since the solution is obtained in
a few seconds. The final results are provided by an
iterational solver based on an FCC grid. The iterative
algorithm has been significantly improved by finding a
good initial guess for the radiance and modifying the
parallel implementation to reduce the frequency of data
exchanges. Without these, the discretization artifacts
would be unacceptable, and the very high performance
of GPUs would make the communication become the
bottleneck. This concept of iterating more on the nodes
without exchanges gives us a versatile tool to address
the scalability issue. We have tested the approach on a
cluster of GPUs, but it is equally applicable to multiple
GPU cards inserted in the same desktop since they also
share the problem of the communication bottleneck.

Acknowledgement

This work has been supported by the National Office
for Research and Technology, Hewlett-Packard, OTKA
K-719922 (Hungary), and by the Teratomo project.

REFERENCES

[1] L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, B. Tóth, S. Kumar,
and G. Lupton, “Parallel solution to the radiative transport,”
in Eurographics Symposium on Parallel Graphics and Visualization,
Comba, Debattista, and Weiskopf, Eds., 2009, pp. 95–102.

[2] C. N. Yang, “The Klein-Nishina formula & quantum electrody-
namics,” Lect. Notes Phys., vol. 746, pp. 393–397, 2008.

[3] E. Cerezo, F. Pérez, X. Pueyo, F. J. Seron, and F. X. Sillion, “A
survey on participating media rendering techniques,” The Visual
Computer, vol. 21, no. 5, pp. 303–328, 2005.

[4] J. F. Blinn, “Light reflection functions for simulation of clouds and
dusty surfaces,” in SIGGRAPH ’82 Proceedings, 1982, pp. 21–29.

[5] B. Sun, R. Ramamoorthi, S. G. Narasimhan, and S. K. Nayar, “A
practical analytic single scattering model for real time rendering,”
ACM Trans. Graph., vol. 24, no. 3, pp. 1040–1049, 2005.

[6] V. Pegoraro and S. G. Parker, “An Analytical Solution to Sin-
gle Scattering in Homogeneous Participating Media,” Computer
Graphics Forum (Proceedings of the 30th Eurographics Conference),
vol. 28, no. 2, pp. 329–335, 2009.

[7] M. Harris and A. Lastra, “Real-time cloud rendering,” Computer
Graphics Forum, vol. 20, no. 3, pp. 76–84, 2001.

[8] J. Kniss, S. Premoze, C. Hansen, and D. Ebert, “Interactive translu-
cent volume rendering and procedural modeling,” in VIS ’02:
Proceedings of the conference on Visualization ’02, 2002, pp. 109–116.

[9] J. Stam, “Multiple scattering as a diffusion process,” in Eurograph-
ics Rendering Workshop, 1995, pp. 41–50.

[10] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan, “A
practical model for subsurface light transport,” in SIGGRAPH ’01
Proceedings, 2001, pp. 511–518.

[11] X. Tong, J. Wang, S. Lin, B. Guo, and H.-Y. Shum, “Modeling and
rendering of quasi-homogeneous materials,” in SIGGRAPH ’05:
ACM SIGGRAPH 2005 Papers. New York, NY, USA: ACM, 2005,
pp. 1054–1061.

[12] R. Geist, K. Rasche, J. Westall, and R. J. Schalkoff, “Lattice-
boltzmann lighting,” in Rendering Techniques, 2004, pp. 355–362.

[13] T. Haber, T. Mertens, P. Bekaert, and F. Van Reeth, “A compu-
tational approach to simulate subsurface light diffusion in arbi-
trarily shaped objects,” in GI ’05: Proceedings of Graphics Interface,
2005, pp. 79–86.

14

direct term direct term + 20 iterations MC reference

Fig. 13. Gamma photon transport in the head dataset with color coded energy levels ([120–140] keV: red, [100–120]
keV : green, [80–100] keV : blue). Note that around the source the radiation is strong at all frequencies (the color is
white), but only higher energy photons survive Compton scattering farther, which makes the color yellow and finally
red.

[14] J. Wang, S. Zhao, X. Tong, S. Lin, Z. Lin, Y. Dong, B. Guo,
and H.-Y. Shum, “Modeling and rendering of heterogeneous
translucent materials using the diffusion equation,” ACM Trans.
Graph., vol. 27, no. 1, pp. 1–18, 2008.

[15] H. W. Jensen and P. H. Christensen, “Efficient simulation of light
transport in scenes with participating media using photon maps,”
SIGGRAPH ’98 Proceedings, pp. 311–320, 1998.

[16] F. Qiu, F. Xu, Z. Fan, and N. Neophytos, “Lattice-based volu-
metric global illumination,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1576–1583, 2007, fellow-Arie
Kaufman and Senior Member-Klaus Mueller.

[17] K. Zhou, Z. Ren, S. Lin, H. Bao, B. Guo, and H.-Y. Shum, “Real-
time smoke rendering using compensated ray marching,” ACM
Trans. Graph., vol. 27, no. 3, p. 36, 2008.

[18] L. Szirmay-Kalos, M. Sbert, and T. Umenhoffer, “Real-time multi-
ple scattering in participating media with illumination networks,”
in Eurographics Symposium on Rendering, 2005, pp. 277–282.

[19] J. Kajiya and B. V. Herzen, “Ray tracing volume densities,” in
Computer Graphics (SIGGRAPH ’84 Proceedings), 1984, pp. 165–174.

[20] H. E. Rushmeier and K. E. Torrance, “The zonal method for
calculating light intensities in the presence of a participating
medium,” in SIGGRAPH ’87 Proceedings, 1987, pp. 293–302.

[21] R. Fattal, “Participating media illumination using light propaga-
tion maps,” ACM Trans. Graph., vol. 28, no. 1, pp. 1–11, 2009.

[22] M. Strengert, M. Magallon, D. Weiskopf, S. Guthe, and T. Ertl,
“Hierarchical visualization and compression of large volume
datasets using gpu clusters,” in Proceedings of EUROGRAPHICS
Symposium on Parallel Graphics and Visualization, 2004, pp. 41–48.

[23] B. Csébfalvi, “Prefiltered gaussian reconstruction for high-quality
rendering of volumetric data sampled on a body-centered cubic
grid,” in VIS ’05: Visualization, 2005. IEEE Computer Society,
2005, pp. 311–318.

[24] Paracomp, “Hp scalable visualization array version 2.1,”
HP, Tech. Rep., 2007, http://docs.hp.com/en/A-SVAPC-2C/A-
SVAPC-2C.pdf.

László Szirmay-Kalos is the head of Department of Control Engineer-
ing and Information Technology at the Budapest University of Technol-
ogy and Economics. He received Ph.D. in 1992 and full professorship
in 2001 in computer graphics. His research area is Monte-Carlo global
illumination algorithms and their GPU implementation. He has more than
two hundred publications in this field. He is the fellow of Eurographics.

Gábor Liktor was graduated from the Budapest University of Technol-
ogy and Economics. His diploma work was a collaboration with Spinor
Gmbh and dealt with computer games. He currently works on GPGPU
algorithms and special effects in games, and has started his Ph.D.
studies at the University of Stuttgart recently.

Tamás Umenhoffer is an assistant professor at the Budapest University
of Technology and Economics. His research topic is the computation of
global illumination effects and realistic lighting in participation media,
and their application in real-time systems and games.

Balázs Tóth is an assistant professor at the Budapest University
of Technology and Economics. He is involved in distributed GPGPU
projects and deferred shading rendering, and is responsible for the
CUDA education of the faculty.

Shree Kumar works for Hewlett-Packard. He is the main developer of
the ParaComp compositing library. His interests include the creation of
large GPU clusters and real-time parallel graphics applications.

Glenn Lupton is a senior member of the technical staff in the High-
Performance Computing Division at Hewlett-Packard, where he was the
leader of visualization, compositing, and GPGPU developments. He has
been the invited speaker of the EG Symposium of Parallel Graphics and
Visualization, and conferences on supercomputing.

