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Abstract
Rendering participating media with multiple scattering is costly and often even challenging for off-line methods.
In this paper we present a novel method for efficiently rendering such effects that achieves interactive speed for
dynamic scenes with both homogeneous and heterogeneous media. It is based on instant radiosity, which is typi-
cally used to approximate indirect illumination between surfaces by computing direct lighting from a set of virtual
point lights (VPLs). The same principle can be applied to participating media: we describe a particle tracing
algorithm to create a set of VPLs within the medium, such that the combined single scattering contribution thereof
yields full multiple scattering. Compared to indirect illumination, it is even more important to avoid clamping
and singularities from VPLs when rendering participating media effects. For this we derive a GPU-friendly bias
compensation for high-quality rendering of participating media with VPLs.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—

1. Introduction

Global illumination with all its lighting effects, such as shad-
owing, indirect illumination, caustics, and scattering greatly
contributes to the realism of rendered scenes. The computa-
tional demands, however, often do not allow a full simulation
of light transport in interactive applications. While recent re-
search demonstrated stunning results for indirect illumina-
tion [REG∗09] and caustics [WWZ∗09,YWC∗10], the pres-
ence of participating media, such as smoke or clouds makes
the simulation considerably more difficult. In this case, light
does not only interact with surfaces, but is also scattered at
potentially every point in space. Various methods exist to
compute off-line solutions ranging from conceptually sim-
ple methods, e.g. (bidirectional) path tracing [LW93,Vea98],
to more elaborate ones such as volumetric photon map-
ping [JZJ08] and radiance caching [JDZJ07]. In order to
achieve interactive speed either preprocessing was neces-
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sary [SKSU05, ZRL∗08], or simplifying assumptions had
to be made so far, e.g. the restriction to single scattering
only [ED10, BCRK∗ar], or homogeneous media [PSP10].

The goal of our work is to study a GPU-friendly global
illumination method for rendering heterogeneous partici-
pating media with arbitrary phase functions and multiple
scattering. To achieve interactive performance and suffi-
cient flexibility, we build upon instant radiosity [Kel97],
which has been widely used in real-time methods for
global illumination, however, without, participating media
(e.g. see [LSK∗07a, RGK∗08]). The key idea of instant ra-
diosity (IR) is to break down global illumination into di-
rect lighting from a set of virtual point lights (VPLs). These
VPLs are created on the scene’s surfaces by using a ran-
dom walk from the primary light sources. In this spirit,
our method also simplifies a complex light transport phe-
nomenon: we create a set of VPLs within the medium such
that their combined single scattering contribution yields
multiple scattering. Note that single scattering in participat-
ing media can be efficiently computed using ray marching.

Our method renders full global illumination (GI) includ-
ing participating media with multiple scattering in a uni-
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a)unbiased, 8h50min b)multiple scatt. only c)VPL rendering d)VPLs with clamping e)clamping energy loss f) our method, 5 fps

Figure 1: (a) Unbiased rendering of smoke using IR and bias compensation (8 hours 50 minutes, CPU). (b) multiple scattering
only (8h 49 min, CPU). (c) rendering with VPLs causes the characteristic singularities, which can be avoided by bounding the
geometry term (d) (50 min, CPU). (e) note how the energy loss due to bounding is spatially varying in heterogeneous media.
Our GPU algorithm can render results with equal high quality as (a) at 5 fps. All images use the same settings for tone mapping.

fied framework, achieves interactive speed on contemporary
GPUs, and requires no preprocessing thus enabling fully dy-
namic scenes with respect to geometry, phase functions, and
heterogeneous media. Akin to IR, our method allows to trade
quality for speed by adjusting the number of VPLs, and once
the VPLs have been generated, which we can do easily on
the CPU, there is no need for any acceleration structure on
the GPU to compute GI. However, rendering with IR typi-
cally suffers from bright spots when computing the contri-
bution of nearby VPLs due to the unbounded geometry term
(Fig. 1c). These can be avoided using clamping, but this in-
troduces bias that becomes visible as energy loss at short dis-
tances, which is particularly objectionable in heterogeneous
media (Fig. 1d,e). Raab et al. [RSK06] describe a theoreti-
cal concept for bias compensation, however, the computation
time of their method is prohibitively high (Fig. 1a). Further-
more, it is not naturally amenable to the GPU’s rendering
pipeline, because it requires tracing arbitrary rays (and thus
frequent access to a spatial index structure), and frequent ac-
cess to all VPLs whenever clamping occurs.

Our main contributions are a particle tracing algorithm for
creating VPLs, a scalable bias compensation, and an efficient
GPU algorithm for interactive rendering of global illumina-
tion including multiple scattering effects. Our compensation
allows us to compute results with less accesses to VPLs and
faster ray casting thus speeding up rendering. We also de-
scribe an approximate version of the compensation for GPU-
rendering requiring no ray casting at all.

2. Previous Work

Participating media rendering has been studied exten-
sively in computer graphics. Excellent and comprehen-
sive overviews are given by Pegoraro [Peg09], Cerezo et
al. [CPCP∗05], and Premože et al. [PARN04]. Early meth-
ods for rendering participating media are based on ray trac-
ing [KVH84, RT87], and later on path tracing [PKK00,
JDZJ07]. These methods are general, compute unbiased so-

lutions, and can easily handle arbitrary phase functions and
heterogeneous media. However, the computational cost is
tremendous and thus their application for interactive render-
ing is beyond question. Interactive photon mapping has been
demonstrated on the GPU, e.g. see [WWZ∗09, YWC∗10],
however, participating media rendering is still far from
interactive speed [BPPP05, JZJ08], or only at low qual-
ity [JMP05]. Zhou et al. [ZRL∗08] observe that multi-
ple scattering varies slowly and approximate smoke us-
ing RBFs to compute the solution at lower resolution,
however, their method requires preprocessing the volume
data. Making simplifying assumptions about the participat-
ing media, e.g. homogeneous media or isotropic scatter-
ing, can lead to fast simulations or even closed form solu-
tions [SGNN04, PSP10]. Highly scattering media can also
be modeled using the diffusion approximation [JMLH01], or
rendered with light-cuts [AWB08], while single-scattering
media can be easily rendered in real-time nowadays using
sub-sampling [ED10], hierarchical evaluation [BCRK∗ar],
or interleaved sampling [TU09].

IR approximates global illumination using direct lighting
from a set of VPLs created from random walks. As only
relatively few paths (several hundreds) are generated, this
method is typically limited to diffuse or slightly glossy ma-
terials, see Křivánek et al. [KFB10]. The major cost in IR is
the generation of shadow maps for the VPLs; shadow vol-
umes are typically not used, and IR with ray casting is only
used in off-line renderers. In recent years several methods
have been proposed to speed-up these steps, e.g. by incre-
mentally updating shadow maps [LSK∗07a], or using imper-
fect shadow maps [RGK∗08]. Our method also uses VPLs
and thus directly benefits from these techniques. Bias com-
pensation for IR has been described for surfaces by Kollig
and Keller [KK04] and extended to participating media by
Raab et al. [RSK06] (Sect. 4.3). In contrast to our work, their
bias compensation targets off-line rendering only and is pro-
hibitively slow. Nevertheless, we build upon their work to
derive a practical solution for interactive rendering.
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Figure 2: Light transport in participating media: volume
contribution (left) and attenuated surface reflection (right).

3. Light Transport with Participating Media

In this section we derive the formulation of light transport
in scenes with participating media that allows us to create
VPLs. The volumetric rendering equation defines the radi-
ance arriving at location x and going in direction ω as the
sum of (1) light emitted and scattered by the volume, and (2)
light from surfaces (with y=x−sω; z is the closest intersec-
tion of the ray x− sω, s > 0, see Fig. 2):

L(x,ω) =
∫ ‖z−x‖

0
τ(x,y)L̂(y,ω)ds︸ ︷︷ ︸

volume contribution

+ τ(x,z)L̂(z,ω)︸ ︷︷ ︸
surface reflection

. (1)

The transmittance τ(x,y)=e
(∫ ‖x−y‖

0 σt (x−tω)dt
)

accounts for
out-scattering and absorption along a ray segment; the ex-
tinction coefficient σt(x) is the sum of the coefficients for
absorption, σa(x), and scattering, σs(x). Radiance integrated
along the ray and light reflected from the surface can be ex-
pressed using the general light transport equation:

L̂(x,ω) = Le(x,ω)+
∫

S2
f̂ (x,ω,ω′)L̂(x,ω′)dω

′.

f̂ (x,ω,ω′) defines scattering using the phase function, fp, in
the volume, and the BRDF, fr, on the surfaces as:

f̂ (x,ω,ω′)=
{

fp(x,ω,ω′)σs(x) if x is in the medium
fr(x,ω,−ω

′)cos+(θ) if x lies on a surface

where θ is the angle between the normal at x and −ω
′. Each

of the distribution functions describes the probability of light
being scattered from direction ω

′ to direction ω [PH10].

Recursively expanding Eq. 1 yields the light incident at a
point x for all paths of length up to n [PKK00]:

Ln(x0,ω1)=
n

∑
k=1

∫
..
∫

︸ ︷︷ ︸
k-times

Le(xk,ωk)T1,kτ(x1,x0)dµ(x1)..dµ(xk)

where ωk is the direction from xk to xk−1 (Fig. 3), and
L∞ represents the full light transport in a scene. T j,k is the
path throughput defined using the generalized geometry term
Ĝ(x,y) and visibility term V̂ (x,y) as:

x0

x1

xk

xk-1

xk-2

xk-3
eye

ωk

ω1

Figure 3: Left: a light path starting at xk is connected to an
eye path with a vertex on a surface (red, x1). Right: partici-
pating media require integration along the eye rays, gather-
ing light from precomputed light paths.

T j,k =
k−1

∏
i= j

f̂ (xi,ωi,ωi+1)Ĝ(xi,xi+1)V̂ (xi,xi+1), with

Ĝ(x,y) = Dx(y)Dy(x)/‖x−y‖2 and

V̂ (x,y) = τ(x,y)V (x,y),

where V (x,y) is the binary visibility function, Dx(y) = 1
and dµ(x) = dV (x) in the case when x is in the medium.
And otherwise, when light is reflected at a surface location
x, Dx(y) = max(0,nx ·ωxy) and dµ(x) = dA(x). To derive
our rendering algorithm we reformulate the path integral:

L∞(x0,ω1) = L2(x0,ω1)+
∞
∑
k=3

∫
..
∫

Le(xk,ωk)T2,k︸ ︷︷ ︸
represented as VPLs

T1,2τ(x1,x0)dµ(x1)..dµ(xk). (2)

Here, we first split the path space into short paths of length
less or equal to 2, and long paths. The short paths account
for light emitted from primary light sources, eventually fol-
lowed by one reflection or scattering event. They can be
efficiently computed, e.g. using shadow mapping and ray
marching; the original IR approach renders direct light with
VPLs as well. The important observation is, that we can
split long paths as well and separate the last two path seg-
ments, which again can be computed easily. The path pre-
fix (xk,xk−1, ..,x2) can be precomputed using a random
walk and stored as VPLs. Connecting the eye path segment
(x1,x0) to the VPLs then approximates indirect illumination.

4. Instant Multiple Scattering

Next we describe the individual steps of our method. As
with instant radiosity, we start with the VPL generation
(Sect. 4.1), followed by the rendering procedure (Sect. 4.2).
Lastly we introduce our bias compensation and discuss dif-
ferent variants regarding a GPU-friendly implementation.

4.1. Generation of Virtual Point Lights

Using the random walk we incrementally construct N paths
(yielding M VPLs) by importance sampling the Monte Carlo
estimator for the path integral. Note that in contrast to IR
with surfaces only, we do not only sample directions (at
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light-surface interactions), but also distances along rays as
light might be scattered when traveling through the medium.
Raab et al. [RSK06] describe the principle of this process,
however, as this is an integral part of our method we detail
the steps in the following. We can derive the Monte Carlo
estimator by adapting it from Veach [Vea98]:

1
N

N

∑
i=0

∞
∑
k=1

Le(xk,ωk)

p(xk,ωk)

τ(xk,xk−1)

p(tk)

k−1

∏
j=1

τ(x j,x j−1)Ĉ j

p(ω j)p(t j)
,

Ĉ j =

{
fp(x j,ω j,ω j+1) if x j is in the medium
fr(x j,ω j,−ω j+1)nx j ·ω j if x j is on a surface

where p(.) is the probability density function (PDF) for sam-
pling a position xk on a light source, a direction ω, or dis-
tance t along a ray, respectively.

Note that strictly speaking, we generate paths and store
path vertices, whereas IR creates point lights. The reason is
that we support arbitrary BRDFs and phase functions and
rather store them together with the path vertices instead of
turning them into an intensity distribution for VPLs. Nev-
ertheless we will use the term VPL tantamount with path
vertices in the style of IR. However, in contrast to IR, we do
not simply output a set of VPLs, but also keep track which
VPLs belong to the same random walk. We will later use this
information to accelerate the bias compensation (Sect. 4.4).

Akin to IR [Kel97], our random walk begins by creating a
first path vertex on a primary light source transporting the ra-
diance L(xk,ωk) = Le(xk,ωk)/p(xk,ωk) (ωk is sampled ac-
cording to the light source emission), and we incrementally
construct the path with:
1) Sample next scattering event with direction ω j (accord-
ing to f̂ (x j, ..) if the current vertex is not on the light source,
i.e. j < k), and distance t j along the ray r(t) = x j + tω j to
determine the next path vertex x j−1. It can either reside in
the volume, or on the closest surface intersected by the ray
(which would always be the case in vacuum). Scattering in
participating media is a stochastic process and thus an inter-
action might occur at a shorter distance. For homogeneous
media analytical PDFs exist [LLL∗96], for heterogeneous
media we either resort to ray marching [LLL∗96] or sample
according to maximum extinction [RSK06]. The path’s inci-
dent radiance at the interaction location is then:
L(x j−1,ω j) = L(x j,ω j)τ(x j,x j−1)Ĉ j/p(ω j, t j).
2) Create a VPL at x j−1 storing the incident radiance
L(x j−1,ω j) and incident direction ω j. If the VPL is created
in the volume we store the scattering coefficient σs(x j−1)
and phase function with the VPL, otherwise the BRDF and
surface normal at x j−1 (or tangent space for anisotropic
BRDFs), respectively.
3) Possibly terminate the path with Russian roulette with
a probability of 1−T j−1,k. If the path is continued, we pro-
ceed with step 1, otherwise we store the VPLs generated in
this random walk together.

4.2. Rendering Participating Media with VPLs

The VPLs generated by the random walk are then used to
compute the lighting in the scene. We separate this process
into lighting of surfaces and volume contribution (Eq. 1).

Surface Lighting The indirect illumination on surfaces is
computed from all VPLs no matter if they reside on surfaces
or in the volume. Let vi and ωi be the location and direction
of the i-th VPL (with radiance LV,i) to x1, then the indirect
light is (M VPLs, N paths):

Ls(x0,ω1)≈
τ(x0,x1)

N

M

∑
i=1

fr(x1,ω1,ωi)τ(x1,vi)Ĝ(x1,vi)LV,i.

For surface lighting, the general scattering function can be
replaced by the BRDF fr. The generalized geometry term
Ĝ, however, remains, as we also gather light from VPLs in
the volume. We compute the visibility function in V̂ using
shadow mapping (see Sect. 5). The radiance from a VPL is
computed by evaluating the stored BRDF or the combination
of phase function and scattering coefficient, respectively.

Volume Contribution To evaluate the multiple scattered
light, we have to integrate the single scattering contribu-
tion from all VPLs along an eye ray using ray marching.
However, the evaluation of the inscattered light at every
step along the ray is very costly, in particular due to the
large number of VPLs and the transmittance computation (in
heterogeneous media) from the ray to the VPL. We found
that interleaved sampling of VPL paths often yields hardly
distinguishable results from the full evaluation (for reason-
able many VPLs): we use R stratified samples, ri, along the
ray, and at every sample compute the inscattering from a
randomly chosen subset of random walks only. Note that
this introduces no bias, and is not noticeable in practice as
we generate 128 to 1024 random walks (resulting in up to
4000 VPLs total). Thus the volume contribution (inscatter-
ing only, no emission) is computed as:

Lv(x0,ω1)≈
K

∑
i=1

τ(x0,ri)

N ∑
j∈Pi

p(ri,ω1,ωi, j)τ(ri,x j)Ĝ(ri,v j)LV, j,

where the second summation iterates over the VPLs of the
randomly chosen subset of paths, Pi, and ωi, j is the direction
from the j-th VPL to ri. The cost for Lv is roughly equal to
that of Ls, if Pi contains only one path.

4.3. Bias Compensation

Lighting as described in Sect. 4.2 leads to unbiased solu-
tions, but suffers from bright spots in the rendering due to
the singularities in the geometry term. Often clamping the
geometry term Ĝ′(x,y) = min(Ĝ(x,y),b) using some bound
b > 0 is used to remove the high intensity peaks; this, how-
ever, introduces bias (please see [KK04, RSK06] for a dis-
cussion how to choose b). Kollig et al. [KK04] recursively
correct the bias for inter-surface light transport and Raab et
al. [RSK06] extend this idea to participating media. Both
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#new path vertices = 1 (1)
#VPL paths = 64 (16)

#new path vertices = 4 (1)
#VPL paths =16 (4)

#new path vertices = 16 (4)
#VPL paths = 1 (1)

shading point (red), new path vertices 
blue (1st recursion) and green (2nd recursion)

clamping
(for comparison)

eye

VPL

no compensation or clamping

1 compensation step

2 compensation steps

Figure 4: Left: compensation for the shading point (red) is necessary and new path vertices are generated. Two of which (blue)
require a second compensation resulting in the green path vertices. Center: rendering with different sub-sampling strategies
(only close-ups shown, approx. same computation time). Let Vi be the number of new path vertices of the i-th compensation
step, and Pi the number of VPL paths to which they are connected. Then the total number of paths with recursion depth 2 is
V1 · (P1 +V2 ·P2) (320 is all three cases). Note that clamping results in much darker images. Right: singularities from lighting
with VPLs (top), and using unclamped VPLs after one (middle) and two (botton) compensation steps.

compute a biased solution with clamping first, and after-
wards compute a correction term, L′(x,ω), for every shading
location where clamping occured:

L′(x,ω)=
∫

S2
L(x,ω′)max(0, Ĝ(x,x′)−b)

Ĝ(x,x′)
f̂ (x,ω,ω′)τ(x,x′)dω

′.

The correction works as follows (Fig. 4): from the shading
location x, a ray is cast into a direction chosen according to
f̂ (.). Along this ray either scattering in the medium occurs,
or the ray intersects another surface (as in Sect. 4.1). The lo-
cation of this interaction, x′, becomes a vertex of a new path
and is connected to all VPLs. The contribution of the new
path is weighted by max(0,(Ĝ(x,x′)−b)/Ĝ(x,x′)) [KK04,
RSK06]. This weight becomes zero when x′ is too far from x
(outside the region where the clamping occurs), i.e. the con-
tribution of this path has already been accounted for by the
VPLs. This, however, means that some new paths are gen-
erated superfluously as they do not contribute to the com-
pensation. Note that clamping of a VPL’s contribution might
also occur at the new vertex, x′, which needs to be corrected
recursively in the same way. It is well-known that the contri-
bution of the compensation drops exponentially with the re-
cursion depth. We will exploit this fact and discuss how the
recursion can be terminated introducing no (visible) bias.

4.4. Accelerated Bias Compensation

Unfortunately the bias compensation is very costly as it re-
quires ray casting to find new vertices, all VPLs have to be
accessed at every new path vertex, and it can degenerate to
(bidirectional) path tracing [DKH∗ar]. In particular in dense
media, it is to be expected that clamping is necessary at al-
most every location in space. In the following we present our

observations that allow for several optimizations. As men-
tioned before, our utmost goal is to remove visible bias,
eventually not producing the exact mathematical result; we
discuss this along with the proposed simplifications.

Sub-Sampling Random Walks For unbiased results it is
not necessary to connect a new vertex to all VPLs. Instead,
we can just connect to a randomly chosen subset of light
paths. We opt for this, because randomly choosing VPLs
instead of entire paths yields wrong results if they are not
correctly reweighted, which in turn requires information on
the respective paths again. Sub-sampling the paths allows us
to adjust the sampling parameters for the compensation more
freely, e.g. we can create more new path vertices and connect
to a smaller set of VPL-paths at the same cost (Fig. 4). Ac-
cording to our experiments, creating more new path vertices
is more important than connecting each individual vertex to
all light paths. This particularly holds when Ĝ(x,x′) varies
strongly within the bounding region, e.g. in corners as shown
in Fig. 4, or with strongly varying transmittance τ(x,x′) or
scattering functions at x.

Generation of New Vertices Since the contribution of the
new paths is zero whenever they are constructed using ver-
tices outside the clamping region, we can speed up the com-
putation by restricting the new vertices to lie within that re-
gion. To sample a new distance, we assume the participating
media to be locally homogeneous. This means that we use
the average extinction coefficient, σt(x), in the proximity of
x for sampling the distance. This value can be efficiently ob-
tained from a downsampled representation of the medium,
e.g. if it is stored in a 3D texture on the GPU. The probabil-
ity density function for sampling within the radius, d, of the
clamping region then becomes p(t) = (σt exp(−σt t))/(1−
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new vertex

eye

x1
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Figure 5: Left: we use shadows maps of nearby VPLs to ap-
proximate ray surface intersections. Right: omitting visibil-
ity between x1 and x′ can theoretically lead to light leaking.

exp(−σtd)). Using this PDF we compute the new distance
as t = −ln(1−ξα)/σt with α = (1− exp(−σtd)) using a
random number ξ ∈ [0;1). Note that if there is an intersec-
tion of the random ray closer to x than to x+ t ·ω, then this
intersection becomes the new path vertex.

For heterogeneous media we can sample distance as de-
scribed by Lafortune et al. [LLL∗96]. However, we found
that assuming locally homogeneous media again simplifies
sampling without noticeable impact on performance or qual-
ity. Note that this only affects sampling, whereas the result
remains unbiased as long as we correctly compute the trans-
mittance τ(x,x′). We can take this assumption one step fur-
ther and also approximate the transmittance using σt(x). In
all our test scenes this yields indistinguishable results from
ground truth, although the assumption obviously fails at lo-
cations with strongly varying extinction. Note that these lo-
cations could be easily detected using the gradient of σt(x).

Local Visibility Besides VPL lighting and creating new
paths, using ray casting to determine whether a new path seg-
ment intersects a surface before scattering occurs contributes
most to the cost of bias compensation. VPL-based rendering
typically uses shadow mapping to resolve visibility in the
geometry term. Thus visibility in the scene has already been
evaluated at a large number of locations, namely those of the
VPLs. Obviously it is beneficial to reuse this data, in par-
ticular for GPU-implementations where ray casting would
require elaborate spatial index structures. Clamping occurs
when a VPL and a shading location are close, and in this
case the VPL’s shadow map provides a good (sampled) rep-
resentation of nearby surfaces. We can then ray cast using
the shadow map as geometry representation as described
by [YWC∗10]. Note that additional surface data akin to a
reflective shadow map [DS05] is necessary to evaluate the
entire light paths. We can further optimize the intersection
test and use the minimum depth value in a VPL’s shadow
map (e.g. computed efficiently using parallel reduction) to
conservatively test if there are surfaces close enough to be in-
tersected, and omit ray casting if this is not the case. A more
rigorous simplification is to totally omit visibility for the
path vertex generation, i.e. to always use x′ = x+ t ·ω. This
correctly removes bias in volumes, and only can cause errors
close to surfaces. Fig. 5 illustrates when errors would occur,

however, we were not able to produce any scene where this
error would have been noticeable. This is because either x
and x′ are nearby and it is less likely that occlusion might
occur inbetween, or they are further apart and the quadrati-
cally decreasing compensation term outweighs.

Limiting Recursion Depth Clamping of a VPL’s con-
tribution might also occur at new path vertices, which in
turn triggers another bias compensation step. However, the
compensation integral convolves the gathered radiance with
the generalized scattering function, f̂ , having two conse-
quences: first, the convolution removes high frequencies (see
Sect. 7 for a discussion on specular surfaces and anisotropy).
We can exploit this and still compute unbiased results
when stopping the compensation using the unclamped con-
tribution from the VPLs. Using this for recursion depth
2 or higher yielded only hardly visible differences in our
test scenes (Fig.4). Second, the amount of compensation
drops exponentially with the recursion depth. For our GPU-
implementation, where recursion is very costly, we compen-
sate once without recursion and connect to VPLs with re-
duced clamping, just enough to not produce bright spots.
This largely compensates bias, but of course not completely.

5. Implementation Details

We implemented our method using Direct3D 11 and also
integrated it into a custom offline renderer for evaluation
purposes. Random walks and their throughput are always
computed on the CPU using a bounding volume hierarchy
(BVH), with surface area heuristics, as acceleration struc-
ture; for dynamic objects the BVH is recomputed every
frame and merged into the BVH of the static scene. The
cost for computing the random walks was negligible, even
for complex scenes. We use a Mersenne Twister as pseudo-
random number generator and for each random walk we use
the same random seed for all frames to maintain coherency.

As the CPU implementation is straightforward, we restrict
ourselves to the peculiarities of the GPU implementation.
Rendering on the GPU is split into 4 components: direct and
indirect illumination, and single and multiple scattering. In-
direct illumination and multiple scattering are initially com-
puted at lower (1/64) resolution and refined at pixels where
bilateral upsampling does not yield satisfactory results, as
described in [REG∗09]. The transmittance is computed an-
alytically for homogeneous media, and using ray march-
ing through a 3D texture, storing scattering and absorption
coefficients, for heterogeneous media; we use the Henyey-
Greenstein approximation for varying phase functions. For
shadow mapping we use point-based rendering akin to im-
perfect shadow maps [RGK∗08], however, combined with
the octahedron parameterization [ED08] to not waste texture
space; for each VPL we create a 1282 texture map.
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Figure 7: Two test scenes rendered using our method with bias compensation (1 recursion), local visibility approximation, and
different numbers of VPLs. The images on the right show the difference of the 2nd column’s images to path tracing scaled by 2
(green means too dark, red too bright). Please see the accompanying video for more examples.

Figure 6: The Crytek Sponza scene (262k triangles) render-
ing at 8 fps using approx. 1290 VPLs. VPLs residing on sur-
faces are shown as green, VPLs in the volume as red balls.

6. Results
We evaluated our method using several test scenes with ho-
mogeneous and heterogeneous participating media. All tim-
ings have been recorded using an Intel Core i7 system at
2.8GHz with an ATI Radeon 5870 GPU.

Fig. 6 shows the Crytek sponza model with a homoge-
neous highly scattering medium. It has been rendered at
about 8 frames per second with multiple scattering and our
GPU-friendly bias compensation and local visibilty approx-
imation. Although the volume is homogeneous we use many
VPLs (1290 on average) because of the spatial extend of
the scene. Fig. 7 shows a comparison of our method with

different quality settings to path tracing reference images.
In both scenes high quality results are achieved with rela-
tively few VPLs, as the medium is either homogenous or
spatially bounded. The transmittance in scenes with homo-
geneous medium has been computed analytically, and using
ray marching otherwise. The smoke scene is rendered with
500 steps for ray marching along the eye ray, and 64 steps
for computing the transmittance when gathering light from
VPLs; the car scene uses 200 steps for single scattering.

7. Analysis and Discussion
In this section we describe findings from experimenting with
our method, which we believe are important to assess its
strengths and limitations.

Similar to classic IR, our method sub-samples the path
space. Despite this sub-sampling, the result images are close
to ground truth, the reason being that single scattering and
transmittance are computed at high precision using ray
marching, which preserves crisp features. This can be com-
pared to applying textures to modulate the indirect lighting
in IR. The amount of “global” features that are captured de-
pends on the number of VPLs. Consequently, more VPLs are
required for dense and heterogeneous than for thin or homo-
geneous media. However, in contrast to surface lighting, ray
marching accounts for a significant part of the computation
time, and the cost for VPL generation and shadow mapping
is less critical.

Our method supports anisotropic phase functions, but
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strong backward and forward scattering causes problems
similar to glossy materials with IR [KFB10] (please see the
video for an example scene). This is simply because sub-
sampling the path space assumes smooth illumination.

We also applied incremental IR [LSK∗07b] to our
method. As long as the scene geometry is static and only
the media changes, we can keep all paths and only recom-
pute the path throughputs, or optionally update some paths
per frame only. This saves costly shadow map computation
which amounts to approx. 60ms per 1000 VPLs in our ex-
ample scenes.

8. Conclusions and Future Work

We presented a novel method for rendering global illumina-
tion including multiple scattering in heterogeneous media,
which is based on instant radiosity thus requiring no precom-
putation. Using our scalable bias compensation technique
and making use of GPU-friendly data structures it achieves
interactive speed on contemporary graphics hardware.

Our method is a first step bringing instant radiosity with
participating media to interactive applications. As such, it
lends itself as a basis for studying improvements that have
been developed for the classic instant radiosity method,
e.g. bidirectional generation of VPLs.
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