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Figure 1: Monocular depth cue enhancement by adding depth of field and selective local contrast boosting

Abstract
The availability of stereoscopic image material is increasing rapidly. In contrast to the generation of distance
information, displaying it is still a challenging task. To overcome the need for special 3D display hardware, we
present a novel real-time video processing framework-based on edge-avoiding à trous wavelets. The framework
adds and emphasizes monocular depth cues corresponding to the depth information of a supplemental disparity
map. This creates a compelling depth sensation on 2D display devices. The framework enhances multiple depth
cues in parallel, such as depth of field, local contrast, ambient occlusion and saturation. At the same time, it
improves the disparity map quality. Depth cues control how a human explores an image, since the perception
of distance is coupled to visual attention. The presented work demonstrates the effectiveness of the proposed
framework in guiding the viewer, without destroying the image content, by evaluating the performance in search-
and-find tasks. A user study analyzes the connection between faster response times and the boosting of particular
monocular depth cues.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Picture/Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and texture

1 Introduction
As the 3D hype has hit the consumer market, the availabil-
ity of 3D information will increase dramatically in the next
years. Portable 3D cameras like the Fujifilm W3, the Rollei
Powerflex 3D or the Minox PX3D made stereoscopic image
generation very simple. Besides still images, the upcoming
camcorder generation is capable of capturing high resolution
stereoscopic video streams. Incorporating a CPU optimized
stereo algorithm, one can produce supplemental distance in-
formation in real-time [GR10].
Unlike the simple process of gathering 3D information, dis-

playing it is still a challenging task [RHFL10]. The most
common display systems are 3D eyeglass-based monitors
using shutter or polarization techniques [RHM11]. Even
though those techniques are capable of creating a compelling
3D sensation, they all have weaknesses: Shutter glasses
alternatively darken over one eye. This halves the image
brightness and may cause flickering and crosstalk, if the
monitor refresh-rate is low or not in sync with the glasses.
3D polarization displays prevent flickering, but they halve
the horizontal resolution and reduce the brightness. Lentic-
ular lens systems don’t require glasses, but they reduce the
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resolution even further. In addition, current lenticular sys-
tems are limited in viewing angle and distance and therefore
limit the maximum number of viewers. A problem inherent
to all of these 3D systems is that they create a discrepancy
between focal distance and displayed distance, causing vi-
sual discomfort [LFIH09].
Any of these limitations may restrict the use of such devices
not only in consumer electronics, but also in applications
where perceiving the spatial arrangement of the presented
scene may be crucial. For instance, rear-view cameras with
2D displays are going to be standard equipment for cars,
but in contrast to the rear-view mirror, binocular depth cues
will be removed. But even in the absence of binocular depth
cues, the Human Visual System (HVS) is still capable of es-
timating distances by using monocular cues in the presented
scene. A stereo camera setup may capture the missing depth
information, but conveying this information to the viewer is
still challenging.
We propose a novel, simple and powerful edge-avoiding à
trous wavelet framework for disparity map refinement and
depth-based introduction and enhancement of monocular
depth cues. It embeds the captured 3D information by selec-
tive boosting of shading and saturation and by adding blur
from defocus and ambient occlusion to the output image.
This conveys the 3D information in a nondestructive and nat-
ural way, to support the viewer in understanding the scene
and in the perception of object distances and shapes.
Besides conveying depth information to the viewer, monoc-
ular cues may also draw the viewer’s attention to specific
regions of the presented image. The suggested rendering
techniques are capable of amplifying this effect. The viewer
could be guided in a potential search-and-find task towards
specific image regions and distances, e.g., perceiving an ele-
vated object while driving a car in reverse.

2 Related Work
2.1 Human Monocular Depth Perception
The HVS integrates monocular and binocular depth cues for
the sensation of distance. Hence the perceived depth is quite
accurate for short distances (≈ 10m) where accommodation,
vergence and disparity are still present [Nag91]. But even
in the total absence of binocular cues, the visual system is
capable of integrating several monocular cues to induce an
accurate impression of depth [Mat09]. The monocular cues
of relative size, occlusion, size of familiar objects and paral-
lel perspective are predefined by the scene itself.
The second category of cues results from sharpness, color,
and contrast and can be enhanced for an improved sensa-
tion of depth. Held et al. [HCOB10] recently investigated
the impact of defocus blur as a monocular depth cue and
its influence on the human perception of distance and size.
Their user study indicates that the HVS is combining defo-
cus blur with other monocular depth cues to estimate dis-
tances in pictures. They also showed that physically-correct
rendered defocus blur can overrule other depth cues and may
even create a miniaturization effect (see Figure 2). Accord-

ingly, adding depth of field to a sharp input image, rendered
with the optical parameters of an eye, could support the HVS
in estimating depths.
The visual system is capable of perceiving surface structure
and object arrangement in 2D images by analyzing high-
lights and shadows as a result of illumination and shape.
Those shading effects are boosted by local contrast enhance-
ment. The field of high dynamic range (HDR) imaging has
confirmed that high local contrasts intensify the sensation of
depth on LDR and HDR displays [RHM11]. However, en-
hancing local contrasts and texture in the background has
a negative impact on the sensation of depth [KT02]. Local
contrast enhancement should therefore be restricted to im-
portant objects in the presented scenery.
The combination of color and contrast as depth cues was ob-
served by Treismann [Tre62]. Furthermore, Troscianko et al.
[TML∗91] confirmed that saturation can be used to induce
monocular depth sensation. The presented framework is ca-
pable of enhancing arbitrary combinations of these monocu-
lar depth cues to convey a convincing and natural sensation
of depth on 2D displays.

Figure 2: Left: Original; Right: DOF rendering with a large
apertures induces the tilt-shift effect. The scene looks minia-
turized

2.2 Feature Integration Theory and Guided Search
Visual attention and the perception of depth are connected.
Treismann and Gelade [TG80] investigated how features in
visual search tasks are processed and how they affect the re-
sponse times in finding a specific target. Treismann divided
search tasks into two categories.
The parallel, or preattentive search finds objects which dis-
tinguishes themselves from the distractors through a unique
feature (e.g. a field of red squares with a single green square
that has to be found). The target pops out and therefore the
response time is nearly independent of the number of dis-
tractors. Accordingly, this is called the pop-out effect.
The serial or feature conjunction search is performed by
the HVS if the object to be found distinguishes itself from
its surrounding distractors through multiple features (e.g. a
field of blue squares and orange triangles with a single or-
ange square that has to be found). The response time for
this search increases linearly with the number of distrac-
tors. Treisman identified four basic features for the preatten-
tive search: depth, orientation of lines (resulting in shapes),
color, and size of objects. In addition, boundaries of ho-
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mogeneous conjunctions of features are perceived preatten-
tively. Those homogeneous textures may also trigger a pop-
out effect (e.g. a closed group of green letters in a field of
random mixed colored letters).
Wolfe [Wol94] extended the bottom-up theory of Treis-
man with a top-down component resulting in the theory of
Guided Search. He discovered that prior knowledge of target
features speeds up search-and-find tasks (e.g. to find a green
T in a field of letters with different colors, our HVS consid-
ers only the green objects in its serial search).
Following those theories, visual search is simplified by the
presence of monocular depth cues. Focused or sharp areas
may serve as top-down prior to a serial search. Additionally,
the perceived distance is suitable as a distinguishing feature.
Local contrast clarifies texture, shapes and orientations. As
a consequence, boosting monocular depth cues speeds up
search-and-find tasks. This effect is evaluated in a compara-
tive study in Section 6.

2.3 Unsharp Masking the Depth Buffer
Adding shadows at depth discontinuities supports the HVS
in perceiving the spatial arrangement and structure of the
presented scene. Ambient occlusion rendering [LB00] uti-
lizes this effect to render more realistic images. It is per-
formed through calculating the attenuation of light by cast-
ing rays in every direction. If the ray hits the sky, the light-
ness is increased. A screen space approximation of ambi-
ent occlusion was proposed by Luft et al. [LCD06]. They
introduced depth lighting and darkening based on unsharp
masking of the depth buffer. This is performed by Gaussian
blurring the depth buffer and subtracting it from the original.
The resulting contrast signal is added to the luminance chan-
nel of the input image. This introduces artificial depth-based
shading and lighting in the original image, helping the HVS
to perceive structure and spatial arrangement.

2.4 Dynamic Depth of Field
A real-time system for depth of field rendering was pre-
sented by Zhan et al. [YTY∗11]. They used light field syn-
thesis similar to that presented by Yu et al. [YWY10] for
performing GPU-accelerated depth of field rendering.

2.5 Edge Avoiding À Trous Wavelets
Depth of field rendering and the unsharp masking of the
depth buffer require Gaussian image blurring with multiple
kernel sizes. Texture dampening, edge preserving disparity
map de-noising and local contrast enhancement can be per-
formed by bilateral image filtering [TM98]. Fortunately, the
fast approximations of both algorithms have a close resem-
blance.
A fast approximation of wide Gaussian filters has been in-
troduced by Burt et al. [Bur81]. They show that repeated
convolutions with generating kernels of small size converge
to the same output as a wide Gaussian filter. Derived from
their findings, the undecimated wavelet transform was ex-
tended with a similar filter kernel that spread its extent at ev-
ery level i by a factor 2i by inserting zeros between the filter

coefficients. This is known as the algorithme à trous [HK-
MMT89]. Maintaining a constant number of non-zero co-
efficients, a non-naive implementation keeps the computa-
tional cost for every decomposition level constant.
The fast approximation of the bilateral filter based on dec-
imated edge avoiding wavelets was introduced by Fattal
[Fat09]. Similar edge crossing functions were also applied
to the à trous wavelets [FAR07] extending them to undeci-
mated edge avoiding second generation wavelets [Swe10].
This made edge avoiding à trous wavelets (EAAW) also
applicable for fast approximation of bilateral [FAR07] and
multilateral [DSHL10] image filtering.
In contrast to other accelerations of the bilateral filter (e.g.
[QTA09]), EAAW decompose the input at multiple scales.
Selective boosting and dampening of details on different
scales allow noise reduction and local contrast enhancement
at the same time [HDL11].
Our work extends the application domain of EAAW to the
manipulation and introduction of monocular depth cues (see
Section 4) and disparity map refinement (see Section 3.1).

Figure 3: Left: Input Image; Right: The bilateral filter de-
composition removes the details from the image and pre-
serves sharp edges

3 EAAW Decomposition Pipeline
For real-time manipulation and introduction of multiple
monocular depth cues, an edge avoiding à trous wavelet-
based parallel rendering pipeline is introduced (see Fig-
ure 4, 5 and 7). It decomposes the input image I into a bilat-
eral filtered image Bc, in which the local contrasts in smooth
areas are removed (see Figure 3). These removed details are
saved separately in Bd (see Section 3.1). In the recompo-
sition stage of the pipeline, the local contrast can then be
enhanced or reduced by boosting or dampening the detail
coefficients Bd , before they are added back to Bc (see Sec-
tion 4).

Figure 4: The EAAW framework decomposes image and dis-
parity in parallel
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The EAAW are derived from an algorithm for fast approx-
imation of Gaussian blurring (see Section 2.5). Hence it is
convenient to perform a Gaussian blurring Gc of the in-
put image within the same wavelet decomposition (see Sec-
tion 3.1). A depth-dependent full or partial reconstruction of
the sharp input image can be performed by adding back the
difference to the original image, which is stored in Gd . In
the recomposition stage of the pipeline, this is used for DOF
rendering (see Section 4).
The quality of the monocular depth cue rendering depends
on the coherence between the disparity map and the input
image. Disparity maps generated with a real-time SGM al-
gorithm [GR10] are usually noisy and contain artifacts like
gaps and border bleeding. Gaps are a result of ambiguous or
missing stereo correspondences. The largest gaps are caused
by foreground objects, which occlude different scenery re-
gions in both camera images (stereo shadows). Especially
within stereo shadows, the smoothness constrain of the SGM
algorithm causes border bleeding, resulting in outlines of
foreground objects which are too broad (see Figure 6(b)).
The presented pipeline performs a modified EAAW decom-
position of the input disparity map for gap interpolation
and noise reduction (see Section 3.1). To correct the bor-
der bleeding artifacts, the edge information generated in the
EAAW decomposition of the corresponding input image and
the disparity map are compared. If the edge locations dif-
fer considerably, the disparity map outline is corrected (see
Section 3.1). These refinement techniques generate a dense,
smooth and outline-corrected disparity map Dc.
In the last stage of the pipeline, the unweighted disparity de-
composition Uc is calculated by performing Gaussian blur-
ring on Dc. Uc is used to remove blur discontinuities while
rendering the DOF (see Section 4). The difference to the in-
put signal Dc is stored in Ud and is used in the recompo-
sition stage as an unsharp mask of the disparity map (see
Section 4). To reduce computational cost, the first three de-
compositions are performed in parallel, which avoids the re-
calculation of intermediate results of the EAAW image de-
composition.

3.1 EAAW Decomposition Module
The image and the disparity map are decomposed by the
weighted à trous wavelet transformation as proposed by
Dammertz et al. [DSHL10]. For N decomposition levels i
of the input signal c0 one has to perform:

ci+1(p) =
1
k ∑

q∈Ω

hi(q) ·w(p,q) · ci(q) (1)

k = ∑
q∈Ω

hi(q) ·w(p,q) (2)

w(p,q) = e−
‖ci(p)−ci(q)‖2

σi (3)

di(p) = ci+1(p)− ci(p) (4)

c0 = cN +
i=N−1

∑
0

di (5)

Filter hi is based on a third order B-spline interpolation. At
each level, the non-zero coefficients are spread by a factor 2
by filling in 2i−1 zeros. To keep the computational cost for
every level constant, Ω are only the non-zero elements of the
filter hi. The weighting function w(p,q) avoids pixel inter-
polation across image edges. The indices p and q are pixel
positions and σi controls the smoothing in every decomposi-
tion step. The quotient 1/k normalizes the sum. The decom-
position steps are repeated until i = N. The resulting images
{d0,d1, ...,dN−1,cN} are the weighted à trous wavelet trans-
form of c0. The original signal c0 is reconstructed by adding
back the detail coefficients to the coarsest decomposition cN .
The EAAW Module calculates two EAAW decomposi-
tions in parallel, to decompose the image and the disparity
map. A third decomposition identifies and removes boarder-
bleeding artifacts in the disparity map (see Figure5).
Image Decomposition Applying the transform to the input
image I generates the coarse output Bc(p) and N levels of
detail in Bi

d(p):

Bc(p) = cN(p) |c0 = I (6)

Bi
d(p) = di(p) |c0 = I (7)

The number of decomposition levels N define the kernel
size, whereas σi controls how much detail is moved from the
image to Bi

d(p). Increasing σ0 dampens textures and shad-
ing in the bilateral filtered coarse image Bc (see Figure 9).
To allow bilateral smoothing across larger image regions, σi
is doubled at each decomposition level i.
Gaussian blurring of I is calculated by setting w(p,q) = 1,
to generate Gc.

Gc(p) = cN(p) |w(p,q) = 1,c0 = I (8)

Gi
d(p) = di(p) |w(p,q) = 1,c0 = I (9)

The output image Gc(p) is an approximation of Gaussian
blurring with a filter radius r = 2N . The blurring can be un-
done by adding back the details Gi

d(p). A partial restoration
of the details approximates filter radii between 0 < r < 2N

(see Section 4).
Disparity Map Decomposition Disparity maps with noise,
gaps and border bleeding create artifacts in the output. Three
steps are taken to improve the input disparity map D:
Disparity Map Bilateral Decomposition removes noise, but
preserves sharp edges. It is carried out similarly to the image
decomposition:

Dc(p) = cN(p) |c0 = D (10)

Di
d(p) = di(p) |c0 = D (11)

The details of this decomposition Di
d(p) are not needed in

the recomposition pipeline, thus they don’t have to be calcu-
lated or stored. The parameter σi controls the noise reduc-
tion of the bilateral filtering. For large scale smoothing, σi
is doubled at each level i. In the first levels, while calculat-
ing Dc(p), some of the disparity values might be marked as
missing (ci(p) = missing) by the SGM algorithm.
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Figure 5: Stages of the EAAW Module for the weighted de-
composition of the image I(p) and the disparity map D(p)

Missing Disparity Interpolation is performed to create a
dense disparity map at every location. The largest gaps are
caused by occlusion. If a foreground object occludes differ-
ent background areas in the stereo image pair, correspon-
dence matching fails, which causes gaps in the disparity
map (stereo shadows). Therefore, gaps in the disparity map
shouldn’t be interpolated with foreground disparity values.
This is avoided by setting the current disparity value to
c′i(p) = 0 and the filter kernel at the location p to h′i(p) = 0:

c′i(p) = 0 |if ci(p) = missing (12)

h′i(p) = 0 |if ci(p) = missing (13)

As a result, the current disparity is interpolated by the small-
est (closest to 0) neighboring disparities. Setting h′i(p) = 0
removes the influence of the incorrect zero value c′i(p) = 0 to
the interpolation. As a result, missing values are interpolated
by the most distant disparities in their surrounding. This
avoids filling of stereo shadows with incorrect foreground
disparities (see Figure 6(c)).
Disparity Map Outline Refinement removes border bleeding
artifacts. Following the assertion of Bleyer and Gelautz, it is
assumed that regions of smooth color deviation also differ
smoothly in disparity [Ble05]. Sharp edges in the disparity
map should have a counterpart in the input image at the ex-
act same location. If a disparity edge is located only near an
image edge, it is an indication of border bleeding. During de-
composing, the edge locations are encoded into the disparity
wD and image wI weights. These locations are compared by
calculating a third EAAW transform with a new weighting
function w′D:

w′D(p,q) = (1−wD(p,q)) ·wI(p,q) (14)

k′ = ∑
q∈Ω

hi(q) ·wD
′(p,q) (15)

c′i+1(p) =
1
k′ ∑

q∈Ω

hi(q) ·w′(p,q) · c′i(q) (16)

If the neighboring pixels at the location q are similar in their
color and disparity, it follows that wD(p,q) ≈ wI(p,q) and
w′D(p,q) is low (≤ 0.25). On the other hand, if the pixels
at the location q are similar in color, but not in disparity,
w′D(p,q) is high. As a consequence, high values for k′ in-
dicate a border bleeding artifact at the location p. In this

case ci+1(p) has to be calculated differently, to correct the
outline in the next level i+ 1. A simple approach would be
to replace the weighting function wD by wI for the calcula-
tion of ci+1(p). But this might take other neighboring border
bleeding artifacts into account, causing blurry and incorrect
disparity edges. To keep the edges sharp, the new weighting
function w′D(p,q) is used for the decomposition at the cur-
rent location (see Figure 5). It only generates high values for
neighbors with similar color (wI ≈ 1) but different dispar-
ity (wD ≈ 0). As a result, the current disparity value ci(p) is
replaced in the next level with an average of the most differ-
ent neighboring disparity pixel having a similar color. This
replacement of ci+1(p) = c′i+1(p) is only performed if a bor-
der bleeding artifact is detected by the indicator k′ > ε. The
presented decomposition removes border bleeding artifacts
for the next level i+ 1, but maintains sharp edges (see Fig-
ure 6(d)).
To avoid recalculating wD(p,q) and wI(p,q), this operation
is performed in parallel to the image and disparity map de-
composition.

(a) (b)

(c) (d)

Figure 6: (a) Input image; (b) Disparity map with gaps
(red); (c) Filled disparity map;
(d) Refined disparity map Dc(p)

3.2 Unweighted Disparity Map Decomposition
After the parallel EAAW decomposition, the refined dispar-
ity map Dc is Gaussian blurred by performing an unweighted
wavelet decomposition. Similar to the calculation in Sec-
tion 3.1, the Gaussian blurred output Uc and its removed de-
tails are obtained Ud by choosing Dc as the input c0 of our
EAAW decomposition and disabling the weighting function
(w(p,q) = 1):
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Uc(p) = cN(p) |w(p,q) = 1,c0 = Dc (17)

Ui
d(p) = di(p) |w(p,q) = 1,c0 = Dc (18)

The Gaussian blurred disparity map Uc(p) is used for re-
moving depth discontinuities while DOF rendering. The sum
∑Ui

d(p) is an unsharp mask of the disparity map which is
used for depth lighting and darkening in the composition
pipeline.

4 Adding and Boosting Pictorial Depth Cues
After decomposing, the image is re-synthesized with addi-
tional and enhanced pictorial depth cues. Those cues are
based on the depth information gathered from the refined
disparity map. The presented framework is capable of ren-
dering multiple combinations of pictorial depth cues (see
Figure 7). Depending on the application, the focal distance
z0 could be set by the user or an automatic object recognition
algorithm.
To avoid color artifacts, the pipeline operates in the CIELAB
color space.

Figure 7: Monocular enhancement pipeline rendering mul-
tiple depth cues generated by the same underlying EAAW
processing

Depth of Field Rendering adds an additional monocular
depth cue to the re-synthesized output image. Held et al.
[HCOB10] have shown that blur from defocus is a strong
depth cue, capable of overruling even other monocular cues
(see Figure 2). A natural depth of field supports the HVS
while estimating distances and scene arrangement in 2D im-
ages. Performing a DOF rendering with the optical parame-
ters of a human eye adds a natural depth of field to a sharp in-
put image. The rendering is performed while re-synthesizing
the output image O(p), based on the depth-dependent blur
radius r(z1). The distance z1 is calculated from the refined
disparity map Dc.

ODOF (p) = Gc(p)+
0

∑
i=N−1

Gi
d(p) ·βi(z1) (19)

βi(z1) =


0.0 for i < bη(p)c
η(p)−bη(p)c for i = bη(p)c
1.0 for i > bη(p)c

(20)

η(p) = log2(r(p)) (21)

r(p) =
∣∣∣∣A v0

z0

(
1− z0

z1 ·Dc(p)

)∣∣∣∣ (22)

To achieve a depth-dependent defocus as a human observer
would see it, the blur radius r(z1) corresponding to the opti-
cal parameters of the human eye has to be calculated: Aper-
ture A≈ 4,6mm and v0 ≈ 24mm [HCOB10]. The blur radius
r(z1) in pixel defines βi(z1), which controls how many de-
tail levels Gi

d(p) are fully or partially restored in the output
image ODOF (p).
Removing Blur Discontinuities should be applied, if the
focal distance is not set to foreground objects. Screen space
DOF rendering creates unnatural sharp edges at large depth
discontinuities. This is most apparent at the crossing of un-
focused foreground and focused background objects. To re-
move these apparent artifacts, the blurred disparity map Uc
is used in part for the DOF rendering. If z1 ≤ z0 the renderer
uses the blurred Uc(p), otherwise the sharp disparity map
Dc(p) for the calculation of r(p). This rendering keeps the
edges of the focused objects sharp, but removes discontinu-
ities in the foreground (see Figure 8).

Figure 8: Left: With blur discontinuities; Right: Removed
blur discontinuities

Depth Dependent Local Contrast Enhancement boosts
the shading on objects, which supports the HVS in the per-
ception of 3D texture and shape. Boosting all detail coeffi-
cients while reconstructing enhances local contrast, result-
ing in improved depth sensation [RHM11]. But Hubona et
al. [HS05] have shown that heavily textured backgrounds
disturb depth perception. To account for these findings, the
presented framework is capable of depth-dependent texture
enhancement/dampening while re-synthesizing the weighted
decomposition:

OBiLat(p) = Bc(p)+ γi ·βi(z1)
0

∑
i=N−1

Bd(p) (23)

The boosting factor γi has to be set by user preference.
The user can control if small or large scale details are en-
hanced or removed. E.g. Removing the smallest scale γ0 = 0
dampens camera noise. The distance-dependent reconstruc-
tion factor βi(z1) is the same as in the DOF rendering. Ob-
jects in the plane z0 are rendered with boosted local con-
trast, whereas out-of-focus objects appear dull and texture-
less (see Figure 9). This rendering increases the perceived
three-dimensionality of enhanced objects, whereas damp-
ened regions appear to be flat.
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Figure 9: Left: Original; Right: Depth-dependent local con-
trast enhancement. The church is boosted whereas the back-
ground appears dull

DOF and Local Contrast Enhancement are combined to
create an even more compelling sensation of depth. Whereas
DOF supports the HVS for perceiving the coarse scene ar-
rangement and different focal planes, local contrast supports
the perception of fine surface structure and discontinuities.
The suggested rendering pipeline is able to combine both
monocular cues by performing a smooth alpha blending:

O(p) = θ ·OBiLat(p)+(1−θ) ·ODOF (p) (24)

θ =
1
2

(
1+ tanh

(
5
(

βi(z1)−
1
2

)))
(25)

The hyperbolic tangent blends the local contrast enhanced
image into the focal plane and degrades fast for out-of-focus
areas (see Figure 1).
Unsharp Masking The Depth Buffer introduces an addi-
tional depth cue to the synthesized output image. The un-
sharp mask of the disparity map is stored in the detail levels
Ui

d(p) of the unweighted disparity map decomposition. The
sum over all details is used as a contrast signal for the un-
sharp masking which is added to the luminance channel of
the output image:

OUSM = O(p)+
0

∑
i=N−1

Ui
d(p) ·ρ (26)

This rendering adds shadows and highlights at depth dis-
continuities to the output image. The effect strength is user-
controlled by the parameter ρ. As a result, spatial arrange-
ment and intersections are more apparent, supporting the
HVS in perceiving scene arrangement (see Figure 10).
Depth-Based Desaturation decreases saturation of back-
ground objects. According to the findings of Troscianko et
al. [TML∗91], distance is encoded as desaturation. This sup-
ports the HVS in separating foreground from background.
The desaturation is performed by multiplying the color chan-
nels A and B in the CIELAB color space with the damping

Figure 10: Left: Original; Right: Unsharp Masking the
Depth Buffer with DOF and Local Contrast Enhancement

factor:

O′AB(p) =

O(p)AB ·
(

βi(z1)
ς

+1
)−1

for z1 > z0

O(p)AB else
(27)

Including βi(z1) prevents desaturation of focused objects,
whereas distant objects in the background are de-saturated
and appear even more far away. This supports the perception
of scene arrangement and amplifies foreground saliency (see
Figure 11).

Figure 11: Left: Original; Right: Depth-Based Desatura-
tion with DOF and local contrast enhancement

Combination of Multiple Cues The HVS combines all the
available cues to estimate depth and scene arrangement in
2D images. Combining multiple cues in one image conveys
more of the available depth information to the viewer. The
computational costs for multiple renderings increase just
slightly. The parallel decomposition of the image and the
disparity map in the EAAW module is the most expensive
calculation and has to be performed in any case. As a conse-
quence, adding additional effects showed nearly no impact
on rendering time (see Section 5).

5 GPU Accelerated Implementation and Benchmark
The per-pixel operations for decomposition and synthesis
of the presented pipeline can be performed in parallel. A
GPU architecture using CUDA is well suited for such appli-
cations. The calculation time depends only on image size,
number of wavelet decomposition levels N and the num-
ber of enabled monocular depth cue enhancement effects.
CIELAB color conversion was performed on the CPU and
is excluded from the presented benchmarking results. The
benchmark was evaluated on a Geforce GTX 580. As ex-
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pected, the runtime for the whole CUDA monocular depth
cue pipeline is quite low. Even 2MP images can be processed
in real-time at 26 frames per second.

Module 0.5 MPix 1 MPix 2 MPix
EAAW Decomp 6.2ms 12.8ms 25.6ms

Unweighted Decomp 1.3ms 2.6ms 5.1ms
DOF 0.2ms 0.4ms 0.9ms

Local Contrast 0.2ms 0.5ms 0.8ms
Alpha Blend 0.8ms 1.7ms 3.0ms
Saturation 0.1ms 0.2ms 0.4ms

Unsharp Masking 0.4ms 1.0ms 1.8ms

Table 1: Averaged runtimes over 5 runs for single mod-
ules of the monocular depth cue enhancing framework for
5 wavelet decomposition levels

6 Study: Visual Guidance by Monocular Depth Cues
As pointed out in section 2.2 monocular depth cues and vi-
sual attention are coupled to each other. Treismann identified
depth as a feature for preattentive search. Accordingly, en-
hanced monocular depth perception speeds up search-and-
find tasks. The additional features orientation, texture and
shape are boosted by local contrast enhancement. Depth of
field rendering blurs textures of objects at out-of-focus dis-
tances, whereas objects in focus are rendered sharp and draw
the viewer’s attention [KT02]. The combination of depth
cues can create a pop-out effect in a visual search, lowering
the response time independently from the scene complexity.
If triggering of the pop-out effect fails, the visual search
is performed sequentially. Nevertheless, incorporating the
prior knowledge that objects to be found are located in sharp
or focused image areas guides the visual attention towards
potential target locations. The response time increases, but
is still significantly lower than for a sequential search on the
whole image.
A comparative study evaluates the impact of monocular
depth cue enhancement on visual searches. DOF rendering,
Depth-Dependent Local-Contrast Enhancement and their
combination are compared with the original image. The user
study identifies the impact of supportive monocular depth
cue enhancement on human visual search performance. A
second experiment evaluates the impact on visual search for
objects at depths not targeted by the enhancement.
Study Design A series of response time evaluations of the
three suggested renderings and the unchanged input image
were conducted. All images were converted to grayscale to
avoid the interference of color as feature. Embedding the vi-
sual search task in outdoor (street) scenery created a natu-
ral context. The depicted search task was to find a ball lo-
cated within the scenery as fast as possible. The single im-
ages were captured from a video stream, presenting the ball
rolling or flying within every quadrant of the image.
Study Setup A camera captured stereo video streams with a
2 x 1 MPix rig and computed a disparity map for every frame
by incorporating a real-time SGM stereo algorithm [GR10].
Single frames out of the video stream were selected and

processed with the presented monocular depth cue enhanc-
ing framework. The following parameters were selected for
depth cue enhancement: A = 11,5mm; v0 = 60mm; σI = 1;
σD = 0.1; γ = 3. The focal distance z0 was set by hand.
The resulting images were presented at a viewing distance
of ≈ 60cm on a Dell 3008WFP monitor with a brightness of
200cd at ambient lighting conditions. The images had a res-
olution of 1288 x 964 pixels and were presented 1:1 on the
display, leaving a black frame around the stimulus. The re-
sponse times were captured by key pressing events on a low
latency (Razer Arctosa) keyboard. The image presentation
and response time capturing was controlled by the Matlab
Psych-Toolbox [Bra97].
For each scene displayed with a ball, the same scene with-
out a ball was displayed. This allows the detection of ran-
dom guessing within the subject responses, which would re-
veal itself through high error-rates. Three scenes (dirt road,
dwelling zone I, dwelling zone II) were used and the ball
moved to multiple positions on or above ground in the range
of 10m to 20m. The arbitrary ball positions prevented learn-
ing effects, because the connection between scenery and po-
sition of the ball was not given. After every image, a white
screen with a centered 2 second countdown was shown, to
allow time for re-fixation and to prepare for the next image.
The participants were told to press the right shift key as fast
as possible if they recognized a ball within the scene, and to
press the left key if they didn’t. The keys were reversed for
left-handed participants. All participants had to pass a train-
ing phase containing 16 images to learn how to operate the
keyboard interface.
Experiment 1 The first experiment was designed to evalu-
ate the impact on search-and-find tasks: if the object to be
found was enhanced by the suggested monocular depth cue
framework. 13 Participants (11 male and 2 female) between
the ages of 22 and 32 with normal or corrected to normal vi-
sion took part in the experiment. They were not aware of the
goal of the experiment. To trigger a guided top-down search,
they received the additional information that the ball was to
be found only within sharp image areas. After the training
phase, 5 different ball positions enhanced by one of the pro-
posed renderings within the 3 scenes were shown (see Fig-
ure 12). The ball was presented at least once in all four im-
age quadrants in every scene. The same number of ball and
no-ball images was shown. All participants performed two
runs, resulting in 240 captured response times. The images
were shuffled randomly and resorted to prevent presenting
the same scenery subsequently.
Evaluation The evaluated error rate was between 2.5% and
17.0% (mean 7,9%) indicating, that all subjects tried to find
the ball, but some had difficulties detecting it. Response
times for wrong answers were disregarded. A Bartlett’s test
and a Kolmogorow-Smirnow test confirmed normal distri-
bution and homogeneity of variances. Subsequently, all re-
sponse times for finding a ball in a one-way ANOVA were
analyzed. This revealed a statistical significance of the cho-
sen rendering on the resulting response time (F(3,1344) =
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Figure 12: Enlarged region of Experiment 1, Scene 1
Left: Original; Right: DOF + local contrast enhanced

12.01, p < .001). In addition, the response means of all ren-
derings using Tukey’s honestly significant difference crite-
rion (p < 0.05) were compared. The mean response time
for detecting the target in the unchanged image was 2.46s
whereas all other renderings showed a statistical signifi-
cant lower response time (Local Contrast: 2.09s, depth of
field: 1.95s and the combination of DOF and Local Contrast:
1.69s)(see Figure 14). An average speedup of 770ms for the
last rendering indicates a major impact on detectability of
critical objects.
Experiment 2 The second experiment was designed to eval-
uate the impact on search-and-find tasks if the object to be
found was not presented in the enhanced distance of the
monocular depth cue framework. As a consequence, only
response times of depth of field and the Depth Dependent
Local Contrast rendering were evaluated. Five new images
rendered with 2 different algorithms out of the same 3 scenes
were presented. For this experiment, the focal distance z0
was set to 100m, whereas the ball was located at≈ 10m. The
close position of the ball was chosen to simplify the search
task and to avoid wrong answers caused by missed balls (see
Figure 13). 13 participants (11 male and 2 female) between
the ages of 22 and 32 with normal or corrected to normal
vision took part in the second experiment. 7 participants had
already taken part in the first experiment. All subjects were
unaware of the purpose of the experiment. As an additional
instruction, the participants were told to search for the ball in
the entire scene, since it might be not within the sharp image
area.

Figure 13: Enlarged region of Experiment 2, Scene 3
Left: Dampened local contrast; Right DOF

Evaluation To simplify the second experiment, the ball was
presented closer to the subjects, resulting in lower error rates
between 1.6% and 8.1% (mean 4,9%). Response times of
wrong answers were disregarded. No evidence for irregu-
larities was found in normal distribution and homogeneity
of variances. The second ANOVA revealed a significant dif-
ference in response times of the Local Contrast Enhanced
and DOF rendered images (F(1,752) = 10.99, p < 0.001).
Tukey’s honestly difference criterion indicated significant
lower response times (p < 0.05) for the Depth-Dependent
Local-Contrast rendering. The means of response times were
1.0s for the DOF and 0.91s for Local Contrast Enhancement
(see Figure 14).
Discussion The first experiment indicates that monocular
depth cues are capable of simplifying search-and-find tasks.
The findings agree with the Feature Integration Theory
[TG80] and the Guided Search [Wol94] (see Section 2.2).
The staggered response times of the three monocular en-
hancement renderings suggest that combining multiple cues
enhances multiple features for visual search, shortening re-
sponse times. The mean response time was above 200msec,
indicating that the pop-out effect for the most part was
not triggered [TG80]. But the significantly lower response
times for rendered images indicate that the serial search was
guided towards potential target locations.
The second experiment revealed the impact of renderings
with unhelpful focal distances. In this experiment, the target
object was much closer, simplifying the task and resulting in
shorter response times. As expected, blurring in DOF render-
ing lowers response times more than the texture dampening
in Depth Dependent Local Contrast rendering. For critical
applications, one may prefer the second rendering: It still
speeds up the search-and-find task, but in the error case a
critical object is still detectable in reasonable time.

Figure 14: Left: Box plot of experiment 1 response times;
Right: Box plot of experiment 2 response times
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7 Conclusion and Future Work
The presented real-time framework is capable of enhancing
and synthesizing multiple monocular depth cues, based on a
supplemental disparity map. These cues increase the sensa-
tion of depth and support the HVS in the perception of scene
arrangement. This is achieved by adding blur from defocus
and ambient occlusion as additional depth cues to a sharp
input image. along with depth-dependent local contrast en-
hancement and saturation dampening. Additionally, the dis-
parity map is refined by removing noise, gaps and border
bleeding artifacts, which improves the depth cue rendering
quality.
Besides conveying disparity map-based distance informa-
tion, the conducted study reveals the positive impact of
monocular depth cues on visual attention and response times
in search-and-finds tasks. In particular, the combination of
multiple monocular depth cues showed a significantly faster
response time in search-and-find tasks.
Future extensions to this framework will be the automatic
detection of relevant objects within the presented scene to
automatically set the correct focal distance. Ultra-compact
cameras with small camera lenses might also benefit from
such a framework. A built-in stereo camera would allow a
correct simulation of lenses with much bigger apertures.
The next evolutionary step of the framework will be the
extension to 3D displays and the coherent combination of
binocular and monocular depth cues. Merging both cues
might create a highly improved 3D visualization on such de-
vices and have a significant impact on spatial image quality.
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