
Decoupled Deferred Shading for Hardware Rasterization

Gábor Liktor∗ Carsten Dachsbacher†

Computer Graphics Group / Karlsruhe Institute of Technology

Figure 1: Decoupled deferred shading enables efficient shading reuse for stochastic rasterization. These images show depth of field rendering
with 4× visibility supersampling (left), a visualization of the shading rate (sspp–shading samples per pixel, center), and the same shading as
seen from a pin-hole camera (right). Our adaptive scheme reduces the shading frequency of defocused regions.

Abstract

In this paper we present decoupled deferred shading: a rendering
technique based on a new data structure called compact geometry
buffer, which stores shading samples independently from the vis-
ibility. This enables caching and efficient reuse of shading com-
putation, e.g. for stochastic rasterization techniques. In contrast
to previous methods, our decoupled shading can be efficiently im-
plemented on current graphics hardware. We describe two vari-
ants which differ in the way the shading samples are cached: the
first maintains a single cache for the entire image in global mem-
ory, while the second pursues a tile-based approach leveraging local
memory of the GPU’s multiprocessors. We demonstrate the appli-
cation of decoupled deferred shading to speed up the rendering in
applications with stochastic supersampling, depth of field, and mo-
tion blur.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: decoupled sampling, deferred shading, stochastic ras-
terization

1 Introduction

In modern rendering applications, shading is generally the most
expensive part of the image synthesis process. To shade only
surfaces that contribute to the final image, deferred shading tech-
niques [Saito and Takahashi 1990] store surface data in the geome-
try buffer (G-buffer), and postpone shader evaluation after the visi-
ble surfaces are already found at each image sample location. Fur-
thermore, unlike in forward shading methods, all the information is
available in the G-buffer to execute multiple shading passes without
recomputing visibility.

∗e-mail: gabor.liktor@kit.edu
†e-mail: dachsbacher@kit.edu

Cinematic effects, like motion blur and depth of field, require
stochastic visibility sampling in 5 dimensions (image and lens area,
shutter time), using high number of samples to avoid spatial and
temporal aliasing. We can generally assume that shading does not
vary much during the shutter interval, thus multiple samples might
share the same shaded color. The idea of decoupled sampling is
to save computations by separating visibility samples from shad-
ing samples and to create a many-to-one correspondence between
them [Ragan-Kelley et al. 2011]. Shading is only evaluated when
triggered by visibility, but at a lower frequency. As a result, the
number of shader evaluations does not scale linearly with the num-
ber of visibility samples.

In terms of shading reuse, the former strength of deferred shad-
ing becomes its weakness. In the G-buffer it is no longer trivial to
decide, which visibility samples belong to the same surface, and
the memory footprint grows linearly with the number of visibility
samples. Consequently, current deferred real-time renderers have
reduced antialiasing quality and apply post-processing effects to
mimic realistic camera models.

In this paper we extend the deferred shading algorithm in the man-
ner of decoupled sampling to group equivalent visibility samples
together and evaluate the shading only once per such group. Our
primary contribution is the introduction of a novel data structure,
which stores shading samples in a compact form, eliminating du-
plicates, but keeps the full supersampled visibility information in
the framebuffer.

We present two implementations for current rasterization hardware:
a method that augments the rasterization process with a global
shader cache, and an alternative that eliminates costly global syn-
chronization using multiple rendering passes. We conclude with a
performance analysis showing that depending on the relative cost
of rasterization and shading, our method can be beneficial on GPUs
for high-quality deferred shading.

2 Related Work

Deering et al. [1988] introduced a deferred shading architecture,
later generalized by Saito and Takahashi [1990], where “G-buffers”
are filled with per-pixel geometric properties such as depth, nor-
mals, material information, in a first render pass for later shading.
Deferred shading is easy to implement on modern GPUs and nowa-
days widely used in real-time applications.

Gabor
Placed Image

However, antialiasing is intricate with deferred shading, as shading
inputs must not be filtered. The trivial solution of supersampling
the G-buffer leads to tremendous growth in memory consumption
and shading costs. Post-processed antialiasing methods aim for
the reconstruction of smooth image-space boundaries, while avoid-
ing supersampled shading. Morphological Antialiasing (MLAA,
[Reshetov 2009]) takes the shaded image as a color buffer and es-
sentially blurs detected edges. Subpixel Reconstruction Antialias-
ing (SRAA, [Chajdas et al. 2011]) also post-processes an image, but
uses superresolution depth and normal buffers which enable a more
precise detection of geometric boundaries.

Decoupled shading is often used in the context of high-quality (pre-
view) rendering. The LightSpeed architecture for cinematic re-
lighting [Ragan-Kelley et al. 2007] uses an indirect framebuffer
for decoupling shading samples from pixels together with a deep-
framebuffer to handle antialiasing, motion blur and transparency
efficiently; cache compression is reduced to deep-framebuffers. In
the same spirit, Hoberock et al. [2009] propose compaction of G-
buffers for heterogeneous shader execution. Rendering with Reyes
also yields high-quality images, however, typically at high com-
putational cost. To this end, Burns et al. [2010] propose to uni-
formly sample an object’s parametric domain for shading (instead
of taking mesh vertices as shading samples) and resolve visibility
before shading. Many previous works in this field propose changes
to the hardware rendering architecture for (decoupled) shading: Fa-
tahalian et al. [2010] suggest augmenting the GPU pipeline with
functionality to gather and merge rasterized fragments from adja-
cent triangles to reduce overall pipeline shading work. The work of
Ragan-Kelley et al. [2011] is closely related and the basis for our
work: they propose to use a many-to-one hash from visibility to
shading samples and use a buffer to memoize shading samples to
reuse them across visibility samples. However, their method is not
directly applicable to current graphics hardware.

We demonstrate our method in the context of stochastic rasteriza-
tion. Cook et al. [1984] introduced distributed ray tracing, which
renders effects such as depth of field and motion blur by stochas-
tically generating samples in the spatio-temporal domain. It has
always been obvious that this blurring should require less samples.
Far later, Egan et al. [2009] described a rendering algorithm for mo-
tion blurred scenes, based on a frequency analysis, using adaptive
space-time sampling and sheared reconstruction filters to accelerate
rendering. Soler et al. [2009] analyzed depth of field to derive the
necessary sampling rate for rendering images. Stochastic rasteri-
zation [Akenine-Möller et al. 2007; McGuire et al. 2010] transfers
this idea from ray tracing to rasterization on graphics hardware. To
our knowledge, our method is the first implementation of deferred
shading on GPUs which can efficiently shade stochastically raster-
ized images.

3 Overview of Decoupled Shading

Our algorithm for decoupling shading and visibility samples builds
on the work of Ragan-Kelley et al. [2011]. The major difference
compared to their approach is that we do not reuse evaluated shad-
ing samples during rasterization, but data in the G-buffer, which
eliminates redundancy before the shading takes place.

We first provide a brief overview of decoupled sampling in a raster-
ization architecture. The main motivation is to separate the domain
of visibility from the domain of shading, so that they can be sam-
pled independently. In case of rasterization, visibility samples are
typically fragments covered by triangles in screen space. Instead of
per-fragment shading, each visibility sample is mapped to the shad-
ing domain and assigned to a shading sample (see Figure 2). If this
mapping is a many-to-one projection, shading is efficiently reused

among multiple visibility samples. The shading domain can be any
parameterization over rendered surfaces, such as screen space co-
ordinates, 2D patch parameters or even the texture domain.

As an example, consider a fast-moving triangle, which is sampled
over a finite time interval using stochastic rasterization. A naive
algorithm would determine the barycentric coordinates in the trian-
gle for each visibility sample, and evaluate the shading accordingly.
In many cases, however, we can assume that the visible color of a
surface does not change relevantly over time (e.g. a moderately
glossy material). Therefore we can use a rasterized image of the
triangle as shading domain at a fixed shading time, and by using
the barycentrics of the stochastic rays’ intersection points, we can
find corresponding shading locations for each visibility sample by
mapping them to “pixels” of this image.

4 Compact Geometry Buffer

In hardware rasterization pipelines, multisampling generates sub-
pixel samples to supersample the visibility function and avoid im-
age space aliasing. However, shading is usually evaluated at a lower
frequency, as it is expected to be already prefiltered on a pixel level.
In the terminology used in this paper, a visibility sample is where
the visibility test happens without shading, and a shading sample is
a location in shading space where the final shaded color is evalu-
ated. The number of shading samples is determined by the shading
rate, the density of shader executions per pixel. For example MSAA
invokes a single shader per pixel, thus has a shading rate of 1. As we
demonstrate later, our method also supports adaptive shading rates,
where the number of shader evaluations depends on the frequency-
content of the image.

Conventional deferred shading methods trivially couple visibility
and surface data in the G-buffer, resulting in a memory footprint
proportional to the number of visibility samples. We introduce the
compact geometry buffer (in the following: CG-buffer), a decou-
pled storage for deferred shading. This data structure has the same
functionality as the G-buffer, storing the necessary inputs of shaders
for delayed evaluation. However, it avoids storing redundant data
that corresponds to the same surface and results in equivalent shader
output.

Instead of storing the shading information in the framebuffer, a vis-
ibility sample stores a reference to a shading sample in a compact
linear buffer (Figure 4). Multiple visibility samples can reference
the same shading sample to allow shading reuse. The size of the ge-
ometry buffer does not grow with the supersampling density, but is
governed by the shading rate. This eliminates all redundant shader
executions that have been the major overhead in image space de-
ferred shading.

screen

moving triangle

t0 t1 t2

t0 t1 t2

screen space shading space

memoization cache

map()

lookupreuse

Figure 2: (a) A moving surface point is visible at multiple loca-
tions over time on the screen. Assuming the time t2 − t0 is small
enough, the same shaded color can be used for all screen samples.
(b) Decoupled sampling samples visibility and shading in differ-
ent domains. The method reuses recent shading samples from a
memoization cache, mapping multiple visibility samples to a single
sample in shading space.

moving triangle

shading domain

rasterize
ssID = map()

map

cache lookup

ptr = fetch(ssID)
ptr?

interpolate
&

store

store
pointer

render
targets

Y

N

compact buffers

?

for each primitive for each fragment

Figure 3: The outline of decoupled deferred shading in a rasterization pipeline. Prior to rasterization, each primitive is bound and projected
to a shading grid. During fragment processing, the fragments are mapped to their corresponding cells on the shading grid. The shading
domain and its cell gives a unique key for the shading sample, which we use to ensure that the same shading data is not stored multiple times
in the compact buffers. Shading reuse is implemented by referencing the same data from multiple samples in the render targets.

4.1 Usage

In the manner of deferred shading, the usage of the CG-Buffer con-
sists of three main stages. In the sampling stage, the visible surfaces
are identified, while the necessary shader inputs are filled into the
data buffers. Our sampling stage is more intricate, but serves as
a basis to accelerate the shading stage which is typically the most
expensive part of the pipeline. Finally, shaded colors are loaded to
visibility samples and filtered at each pixel in the resolve pass.

In order to reuse shading samples, we need to identify them with
uniqe indices (ssID). During rendering, each shading primitive al-
locates an ssID range: a virtual address space that ensures that
shading sample indices of different shading domains do not overlap
during the frame. This address space does not have any relation to
physical memory, but allows unique search keys for the sampler to
find existing shading samples in the CG-buffer. Staying at the for-
mer example of the moving triangle, the ssID range would be the
number of pixels the triangle would cover in the shading domain.
This is an upper bound on the number of potentially generated sam-
ples.

If the shading data was found, we only store a pointer to its address
in the memory. In case of a miss, we also need to allocate a new slot
in the compact buffers and store the data besides referencing. The
efficiency of the searching method is crucial for the entire pipeline,
as it is executed at every visibility sample. Figure 3 shows the out-
line of the decoupled sampling process in a rasterization pipeline.

4.2 Integration into Rasterization Pipelines

Modern GPUs use a parallel sort-last-fragment architecture for ras-
terization [Molnar et al. 1994]. Considering fragments as potential
shading samples, the ssID has to be unique during the entire ren-
dering pass, as fragments are processed out-of-order, and multiple
triangles can be rasterized at the same time. On the other hand, the
hardware contains a very limited number of rasterizer units and one
such unit completely processes a given triangle before taking the
next one.

Ragan-Kelley et al. [2011] augment the pipeline with a fast on-
chip LRU cache assigned to each rasterizer unit. This limits shad-
ing reuse within the rasterized primitive, but naturally fits to the
GPU architecture, and avoids any explicit synchronization between
fragment processing units. Our method would also benefit from
a rasterizer-level hardware cache, but we can demonstrate signifi-

de
pt

h
no

rm
al

di
ffu

se
sp

ec
ul

ar

super
sampling

memory

classic deferred shading

de
pt

h
vi

si
bi

lit
y

re
fe

re
nc

e

super
sampling

memory

decoupled deferred shading

normal

diffuse

specular

reference

1x 2x 4x

1x 2x 4x

Figure 4: While the G-buffer stores all shading data at full su-
persampled resolution, we introduce a visibility buffer which ref-
erences compact shading data buffers. Due to shading reuse the
size of the compact buffers does not scale with the supersampling
density.

cant performance improvement even by using current GPU archi-
tectures, above a certain shading complexity and sample count.

During rendering, we need to incrementally assign addresses to
shading samples in the compact buffers, in order to keep the mem-
ory footprint minimal. We use atomic counters similarly to the
linked list generation method of Yang et al. [2010]. We also
need to synchronize processed visibility samples, otherwise multi-
ple threads would store the same shading data at different locations
in the memory (and reduce the efficiency of shading reuse).

Current hardware does not allow local on-chip memory usage in
rasterization mode (e.g. in a fragment shader), which restricts pos-
sible implementations to use the global memory for synchroniza-
tion. Our first algorithm uses a global cache for fetching shading
samples, and performs decoupled sampling in a single rasterization
pass. We also present a multi-pass method which trades off band-
width for synchronization speed, and uses GPU compute kernels to
implement the memoization cache in the local memory.

5 Algorithm

Note that while the remainder of this paper focuses on a rasteriza-
tion pipeline, the idea of the CG-buffer is more general, and can
also be applied to alternative sampling methods, like ray tracing
(e.g. generating a shared secondary ray for multiple primary rays).

5.1 Global Shading Cache

First, we discuss a method that implements the sampling stage of
decoupled deferred shading in a single rasterization pass. It can re-
place the G-buffer generation pass of any existing deferred renderer,
adding decoupled functionality to the shader stages.

Prior to rasterization, the shading primitives are processed, and their
ssID range is determined. By simply adding this value to a global
atomic counter, our method guarantees that all shading samples will
have a unique value during the frame. This step can be implemented
prior to hardware tessellation, or in a geometry shader, where the
viewport dimensions of the primitives (thus the maximum number
of shading samples) are known. Fragment shaders are responsible
for mapping visibility samples to shading samples and eliminating
redundancy from the shading data.

An important observation is that due to the streaming nature of
GPUs, only the recently stored shading samples are “interesting”
for a given fragment, which allows efficient shading reuse even with
a simple FIFO cache strategy: instead of searching in the entire CG-
buffer, we can store the recent ssIDs together with their memory
addresses in a cache.

On current GPUs there can be several thousand fragments raster-
ized in parallel, which implies that the global cache should also be
able to hold a similar magnitude of samples to allow a good hit-rate.
This leads us to the classical dilemma of cache-design: the need for
a large cache, and the desire to minimize the overhead of a cache
lookup are opposing. Our primary goal is to design a data structure
that reduces the interaction with the global memory as much as pos-
sible. Instead of using classical FIFO or LRU (least recently used)
strategy, we apply a hash function, a standard technique for accel-
erating searching algorithms. The hash function h() is a many-to-n
mapping of the ssID values queried by the fragment shaders.

The data in the global shading cache is organized in a bucketed
hash array, which stores addresses of recently used shading sam-
ples in each bucket. As there can be multiple shading samples in
use with the same hash, each bucket stores a small FIFO queue,
where each element is a pair of an ssID and a pointer to the shading
data. To determine if the given shading sample is already stored in
the memory, the fragment shader computes h(ssID) and fetches the
data from the cache. As shading sample indices are incrementally
assigned, a simple modulo N function is a suitable hash, where N
is the number of buckets. This ensures that on average, queries are
uniformly distributed among the buckets, and within the same tri-
angle, the number of collisions (different ssIDs with the same hash)
are minimal.

As the compact geometry buffer is constructed, the fragment
shaders write references to their corresponding shading data into
the render targets. For opaque objects, the z-buffer algorithm triv-
ially solves the occlusion problem, while transparent surfaces are
expected to be rendered later. Our method is compatible with ex-
isting order independent transparency methods ([Yang et al. 2010],
[Enderton et al. 2010]). In the end of the sampling pass, only visible
references are present in the frame buffer.

Race conditions When a sample is not found, the fragment shader
has to evaluate the shading data at the location of the shading sam-
ple and store it in the buffer. This creates a race condition among

Algorithm 1 For each rasterized fragment frag in parallel

1: ssID ← map(frag, domain)
2: hash← h(ssID)
3: bucket← load(shaderCache, hash)
4: address← getCachedAddress(bucket, hash, ssID)
5: needStore← FALSE
6:
7: {Found in cache?}
8: while address is NULL do
9: lock ← atomicExchange(locks[hash], LOCKED)

10: if lock is FREE then
11: {We have exclusive access to this bucket}
12: bucket← load(shaderCache, hash)
13: address← getCachedAddress(bucket, hash, ssID)

14: {new shading sample}
15: if address is NULL then
16: address← atomicInc(bufferTail)
17: insertFIFO(bucket, ssID, address)
18: needStore← TRUE
19: end if
20: locks[hash]← FREE {release bucket}
21: end if
22: end while
23:
24: if needStore then
25: storeShadingData(frag, address)
26: end if
27:
28: return address

shader threads, as multiple of them might decide to insert the same
ssID to the cache, a behavior we have to avoid. Therefore modify-
ing data in a bucket requires mutual exclusion. In our implemen-
tation each bucket has a binary semaphore, which indicates if it is
under modification. Algorithm 1 details the global cache manage-
ment in a pixel shader.

A thread can acquire the semaphore by using an atomic exchange
operation (line 9). An atomic counter is used to allocate the first
available memory slot in the shading data buffers (line 16). When
the list header is updated, the semaphore can be released (line 20).
Storing the shading data might involve multiple memory trans-
actions, therefore we move it outside the loop, and use the flag
needStore to mark fragments that need to evaluate shading data
as well (line 24). Note, that after entering the critical section, the
fragment needs to refresh its information about the bucket, as other
threads might have modified it before (line 12). The above pseu-
docode is simplified, in practice we avoid deadlocks, and store mul-
tiple addresses in a single word of the cache to minimize the number
of global memory transactions.

Compaction Depending on the rasterization order of triangles,
there can be several entries in the CG-buffer, which do not belong
to any visible surface. A fragment with a smaller depth value over-
writes the references of formerly rasterized ones (also, when there
is no early z-test, shading data is stored regardless visibility). We
can of course fill up the z-buffer in a prepass of decoupled shading,
but in order to provide a general solution, we clean up the CG-buffer
after the sampling stage (before shading) from such irrelevant data
in an optional pass.

By rendering a full-screen quad, we iterate over all samples in the
visibility buffer and set a flag for the referenced shading samples.
This time no synchronization is needed as write-write conflicts al-
ways store the same values. These flags can then be used to ignore

invisible samples, or even to remove them from the memory using
stream compaction before shading, like in [Hoberock et al. 2009].

5.2 Per-Tile Shading Cache

The above algorithm reuses shading globally, finding correspond-
ing visibility samples during rasterization. However, it applies
global memory atomics, which becomes its main bottleneck. We
now present an alternative approach, which is motivated by the fact
that in many cases, a shading sample is not visible at arbitrary loca-
tions over the entire screen, but rather in relatively small regions. In
most practical applications, the amount of motion blur or defocus
fits to this assumption.

With this loosening of requirements, we can limit shading reuse to
only certain blocks of pixels. Our second method splits the image
to uniform tiles, and searches for duplicate shading samples within
these tiles, processing each of them independently in parallel. A
surface is shaded redundantly if visible in multiple tiles, but this is
only a marginal reduction in efficiency, provided that the tiles are
large enough compared to the amount of blur.

This algorithm uses the same CG-buffer data structure as presented
in Section 4, but the sampling stage is split into two rasterization
passes and a compute pass (Figure 5). In the first pass, the fragment
shaders do not store shading data in the compact buffers, but only
the ssID of the visibility sample, which is computed identically to
the previous method. In parallel, the z-buffer is filled up with the
depth values of the closest visible surface at each sample. This step
can be combined with the standard z pre-pass of many deferred
rendering systems.

At the end of the first pass, only the ssIDs of the visible surfaces are
stored. We can now implement the same caching mechanism, but
in the local on-chip memory. The main advantage of this approach
is that this step can be implemented as a fully computational pass,
where the programmer controls thread execution. We describe this
pass using the terminology of the OpenCL programming language.

In our implementation, each tile is processed by a work-group, a set
of threads that execute on the same multiprocessor. These threads
can share data with each other through the local memory, which
also supports fast atomic operations. The implementation of the
caching is identical to the single-pass method, but all memory ac-
cesses are a magnitude faster. As a drawback, the size of the cache
is highly limited compared to the global approach. The visibility
samples in a tile are not processed linearly, but in smaller blocks to
maximize the propability that the data in the shading cache is still
“hot”.

The output of the caching pass is a memory address for each visibil-
ity sample where the shading data can be stored. Ideally, samples
with the same ssIDs receive the same address. We now have to
physically store the data for shading, and that is performed in the
second rasterization pass. This pass does not write anything to the
frame buffer, but interpolates the parameters at shading samples,
and stores them in the global memory. The z-buffer filled up by the
first pass is used to make sure that only the visible fragments will
execute this step. This is very important, as there is no synchro-
nization between shaders, which causes write-write conflicts on the
same address. After the execution of this pass, the CG-buffer is
constructed the same way as in the first algorithm.

5.3 Shade and Resolve

The shading samples are evaluated using GPU compute kernels.
These kernels only execute for samples that are marked as visible,
and their cost is independent from the number of visibility samples.

rasterize

depth
ssID

- 0 - - - 1 1 -
- 0 0 0 1 1 1 -
- 0 0 1 1 1 1 -
- 0 - - - 1 1 -

compute

ssID
- 0 - - - 1 1 -
- 0 0 0 1 1 1 -
- 0 0 1 1 1 1 -
- 0 - - - 1 1 -

address
- 0 - - - 2 2 -
- 0 0 0 2 2 2 -
- 0 0 1 2 2 2 -
- 0 - - - 2 2 -

local
cache

local
cache

rasterize

z-fill and
ssID mapping

per-tile
caching

only visible
fragments:
interpolate
and store

compact buffers

1

2

3

Figure 5: The outline of the multi-pass decoupled shading algo-
rithm. Note, that for simplicity we use assume flat-shaded triangles
(no interpolation). The example also shows that shading samples
visible at multiple tiles are redundantly stored. The major benefit of
this method is the speed of the local cache.

Finally each sample can gather its final color value using another
full-screen pass. Note that this method trivially extends to arbi-
trary number of render targets, supporting efficient shading reuse
for multi-view rasterization as well.

6 Deferred Shading for Stochastic Sampling

In the following we provide the details how we used decoupled de-
ferred shading within a stochastic rasterization pipeline. Describing
the entire pipeline is outside the scope of this paper and we thus re-
fer to Akenine-Möller et al. [2007] and McGuire et al. [2010] for
more details.

Stochastic Rasterization Stochastic rasterization first uses the ge-
ometry shader to compute a conservative bound for each defo-
cused or motion blurred triangle, extending its bounding box with
the respective circle of confusion or screen space motion vector.
In the screen region covered by the bounding box, the fragment
shader generates stochastically sampled rays on the camera lens and
time, and intersects the triangle using ray casting (for more details
see [McGuire et al. 2010]). If the intersection test was successful,
we use the obtained barycentric coordinates to compute the ssID of
the nearest shading sample.

Figure 6: In order to achieve the same antialiasing quality as with 8× MSAA (A), standard deferred shading needs to evaluate shading
at 8× supersampling (B). Our method stores and evaluates shading at significantly lower rates (C), but keeps the antialiasing quality by
supersampling visibility. The heat maps visualize the number of shading samples per pixel.

Decoupling Scheme We adopted the decoupling mapping pro-
posed by Ragan-Kelley et al. [2011]. This scheme uses a raster-
ized image of every individual triangle as seen from the center of
the camera lens at the beginning of the shutter interval to generate
shading samples within the triangle. The main advantage of this
method is its simplicity: the shading rate can be adjusted on a per-
triangle level by increasing or decreasing the resolution of the re-
spective rasterized image. The nearest shading sample can be found
by projecting the ray-triangle intersection points to the same grid.
As a drawback, it does not provide uniform sampling density near
to triangle edges: some shading samples might fall outside the tri-
angle in the grid (having negative barycentric coordinates). We can
solve this problem by snapping these shading samples to the edges,
but this locally increases the shading frequency.

Adaptive Shading Rate In our implementation, the resolution of
the shading grid is derived from the minimum amount of defocus
blur in the triangle area for depth of field rendering, and from the
screen space motion vectors when rendering motion blur. As the
geometry shader needs to compute this information to generate the
bounding volume, the additional cost of making the shading adap-
tive is negligible.

7 Applications

In this section we discuss the applications which we tested with our
decoupled deferred shading method.

Depth of Field We have integrated the compact geometry buffer
into a conventional real-time deferred shading pipeline, where the
workload is dominated by non-subpixel-sized polygons. In this
case reusing shading samples within a single triangle already results
in reasonable speedup, as it typically can be used for several pixels
on the screen. To demonstrate the limitations of previous deferred
shading techniques, we use stochastic rasterization to render depth
of field in a scene with high depth complexity. Stochastic rasteri-
zation generates a noisy G-buffer, where edge-based reconstruction
filters, like MLAA or SRAA are not usable. This forces classical
deferred shading to store the shading data at full supersampled res-
olution, while with our method the size of the CG-buffer does not
increase significantly.

Figure 1 shows multiple renderings of the Crytek Sponza Atrium
scene using decoupled deferred shading. In this example the most
expensive component of shading is the computation of the single-
bounce indirect illumination, using 256 virtual point lights (VPLs)
generated from a reflective shadow map [Dachsbacher and Stam-
minger 2005]. Using OpenCL kernels for processing this many

VPLs is a practical solution, as multiple threads can cooperate on
loading chunks of the VPL data into the on-chip local memory.

During adaptive shading, we apply an empirically chosen factor to
reduce the shading frequency of surfaces with a large cicrle of con-
fusion. If the number of visibility samples is low, it is even desired
to pre-filter surface data, such as textures, prior to sampling. With
high number of visibility samples, however, it can result in slight
overblurring of textures.

Antialiasing We also demonstrate that without blur, our technique
is an exact match of hardware MSAA in quality. In fact, we use
MSAA during the CG-buffer generation: a single fragment shader
is called to store the shading reference to all subsamples. Fig-
ure 6 shows the shading rate used by decoupled deferred shading
to compute 8× MSAA antialiasing, in comparison with true super-
sampling. All three methods resulted in identical images, but the
costs of shading are different.

Motion Blur Figure 7 presents snapshots of an animated character
rendered with motion blur, using stochastic rasterization. This ex-
ample features ray traced ambient occlusion and image-based light-
ing. We use the OptiX ray tracing engine [Parker et al. 2010] to
process the contents of the compact geometry buffer. When using
hardware rasterization, high-performance ray tracing is only possi-
ble in a deferred shading pass.

Adaptive shading degrades the shading rate of fast-moving trian-
gles, based on their screen space motion vectors. In this case, we
do not have shading rate per triangle, but we use the x and y com-
ponents of the motion vector in the shading grid to determine the
speed of the surface in the shading domain. We then apply empiri-
cal factors again to reduce the frequency of shader evaluation along
the motion.

8 Evaluation

While current GPU architectures do not have hardware support for
decoupled shading, the overhead of our global cache management
method is amortized by the reduction of shader evaluations. Fig-
ure 8 shows detailed timings for the Sponza and Gargoyle scenes
on an Nvidia GTX 580 GPU. All the images in this paper were ren-
dered at 1280 × 720 pixels. We have also computed the average
shading rate of these images, to roughly estimate the reduction of
shading cost compared to supersampled deferred shading.

As global synchronization is our major bottleneck on current GPUs,
we have expected the multi-pass sampling approach to outperform
the first method in several cases.

Figure 7: A motion blurred character rasterized with 8× stochastic supersampling. Deferred shading is computed using 36 ambient occlusion
rays per shading sample (using OptiX). Due to decoupled sampling, the shading rate stays close to 1 sspp despite the high sample count (top
row). Adaptive shading (bottom row) saves ∼ 30% of the rendering time by further decreasing the shading rate of fast-moving surfaces.

SPONZA Defocused Sharp

Avg. Shading 0.4 sspp 1.11 sspp

Sampling 90 ms 24.1 ms

Shading 158 ms 330 ms

Frame 251 ms 357 ms

GARGOYLE Blurry Sharp
Avg. Shading 0.8 sspp 1.3 sspp

Sampling 24.6 ms 24.8 ms
Shading 438 ms 608.3 ms

Frame 465.3 ms 635.7 ms

4 spp

8 spp

Figure 8: Performance measurements with complex shading and
stochastic rasterization. Note that despite the more expensive sam-
pling, the blurry objects rendered faster due to the reduced shading
costs.

During our evaluation, though, it proved to be inferior in almost
all situations. We can explain these negative results with multiple
reasons. First, the bandwidth consumption of the multi-pass sam-
pling stage increases proportionally with the number of visibility
samples. In the second rasterization pass, fragment shaders have
to execute on a per-subsample level to write the shading data to
the CG-buffer, and as there is no synchronization, every visibility
sample needs to interpolate and store its data independently.

In the global caching method, we could also exploit that ssID
ranges are generated incrementally, so we could distribute queries
uniformly over the hash buckets. The cache size in the local mem-
ory is very limited, and as a tile stores ssIDs from several triangles,
the number of hash collisions (and therefore lock-spinning itera-
tions) is very high. The problem is essentially to deduplicate num-
bers in a 2D array on the GPU, which is algorithmically expensive.

Figure 9: Storage requirements of the CG-buffer compared to stan-
dard G-buffers. Our memory footprint consists of visibility and
shading samples. The lightweight visibility data saves significant
space at high supersampling resolutions, and note that the footprint
of shading samples becomes negligible (we also plotted the space
used for storing visibility refereences only). The Sponza scene was
rendered at 1280×720 pixels.

In this section we limit our measurements to the global method,
and we believe that in the future the performance of our multi-pass
sampling can be improved by using a different caching strategy, or
by integrating it into a tile-based sort middle architecture.

We analyzed of memory consumption of our method in comparion
with supersampled deferred shading. We save storage by essen-
tially deduplicating shading data in the G-buffer. However, this
only takes effect at higher sample counts, as we need to store ad-
ditional information, which existing techniques do not require. We
assume that the ground truth supersampled deferred method uses
12 bytes per subsample in the G-buffer: 32 bits for depth-stencil,
2× RGBA8 textures for normals and material information. In fact,
state-of-the-art deferred rendering engines use even more.

The memory footprint of the CG-buffer can be divided into per vis-
ibility and per shading sample costs. In the former we need to store
an integer ssID besides the depth-stencil. As we have multiple ref-
erences from the framebuffer to the same shading sample, the depth
value is not enough to reconstruct the view space position of a sur-
face. Therefore we are forced to store the view space position on
additional 8 bytes (16 bits for x − y and 32 bits for z). The total
consumption is then 8 bytes per visibility sample and 16 bytes per
shading sample.

If the shading rate is 1, and there is no multisampling, our method
uses twice as much memory as conventional techniques. However,
the number of shading samples does not scale with the supersam-
pling resolution. At 4×MSAA the expected footprint of our method
is 48 bytes per pixel, the same as with standard deferred shading.
Above this sample count, our method saves significant amount of
storage.

For our benchmark, we have used the Sponza scene, and filled the
entire screen with geometry to make our comparison fair (The scene
shown in Figure 8). We have used stochastic rasterization with
varying sample counts. Figure 9 shows our results. We could fur-
ther decrease the required storage when using adaptive shading.

9 Conclusion and Future Work

In this paper we presented decoupled deferred shading, which uses
a compact geometry buffer to store shading samples independently
from visibility samples. This enables reusing of shading compu-
tation using the capabilities of the currently available GPUs. We
demonstrated that above a certain amount of shader complexity,
i.e. with high-quality rendering, our method can outperform stan-
dard deferred shading approaches. We expect that the major syn-
chronization bottleneck of our method will disappear on future ar-
chitectures, where more efficient cache management can be imple-
mented due to hardware support or flexible software rasterization.

We have assumed that the shaded color of surfaces does not change
relevantly in a single frame, over the lens or in the shutter inter-
val. This might cause artifacts on fast-moving surfaces, causing
smeared highlights and shadows on the screen. In the future, we
will support interpolation among multiple shading samples, and in-
crease the dimensionality of the shading domain.

An interesting direction is to extend the ssID generation to provide
temporarily coherent IDs and thus reuse shading samples across
multiple frames. We also plan to investigate better caching strate-
gies for our tile-based method to increase its overall performance.

Acknowledgements

We would like to thank Anton Kaplanyan and Balázs Tóth for the
helpful discussions and the anonymous reviewers for their valu-
able suggestions. The first author of this paper is funded by Crytek
GmbH.

References

AKENINE-MÖLLER, T., MUNKBERG, J., AND HASSELGREN, J.
2007. Stochastic rasterization using time-continuous triangles.
In Proc. of Symposium on Graphics Hardware, 7–16.

BURNS, C. A., FATAHALIAN, K., AND MARK, W. R. 2010. A
lazy object-space shading architecture with decoupled sampling.
In Proc. of High Performance Graphics, 19–28.

CHAJDAS, M. G., MCGUIRE, M., AND LUEBKE, D. 2011. Sub-
pixel reconstruction antialiasing for deferred shading. In Proc.
of Symposium on Interactive 3D Graphics and Games, 15–22.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. Computer Graphics (Proc. of SIGGRAPH)
18, 3, 137–145.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proc. of Symposium on Interactive 3D Graph-
ics and Games, 203–231.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND
HUNT, N. 1988. The triangle processor and normal vector
shader: a vlsi system for high performance graphics. Computer
Graphics (Proc. of SIGGRAPH) 22, 4, 21–30.

EGAN, K. T., TSENG, Y.-T., HOLZSCHUCH, N., DURAND, F.,
AND RAMAMOORTHI, R. 2009. Frequency analysis and sheared
reconstruction for rendering motion blur. ACM Transactions on
Graphics (Proc. of SIGGRAPH) 28(3), 3, 93:1–93:13.

ENDERTON, E., SINTORN, E., SHIRLEY, P., AND LUEBKE, D.
2010. Stochastic transparency. In I3D ’10: Proceedings of the
2010 symposium on Interactive 3D graphics and games, 157–
164.

FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K.,
MARK, W. R., MORETON, H., AND HANRAHAN, P. 2010.
Reducing shading on gpus using quad-fragment merging. ACM
Transaction on Graphics 29, 4, 67:1–67:8.

HOBEROCK, J., LU, V., JIA, Y., AND HART, J. C. 2009. Stream
compaction for deferred shading. In Proc. of High Performance
Graphics, 173–180.

MCGUIRE, M., ENDERTON, E., SHIRLEY, P., AND LUEBKE, D.
2010. Real-time stochastic rasterization on conventional gpu ar-
chitectures. In Proc. of High Performance Graphics, 173–182.

MOLNAR, S., COX, M., ELLSWORTH, D., AND FUCHS, H. 1994.
A sorting classification of parallel rendering. IEEE Computer
Graphics and Application 14, 4, 23–32.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H.,
HOBEROCK, J., LUEBKE, D., MCALLISTER, D., MCGUIRE,
M., MORLEY, K., ROBISON, A., AND STICH, M. 2010. Op-
tix: a general purpose ray tracing engine. ACM Transactions on
Graphics 29 (July), 66:1–66:13.

RAGAN-KELLEY, J., KILPATRICK, C., SMITH, B. W., EPPS, D.,
GREEN, P., HERY, C., AND DURAND, F. 2007. The lightspeed
automatic interactive lighting preview system. ACM Transac-
tions on Graphics (Proc. of SIGGRAPH) 26, 3.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled sampling for real-time
graphics pipelines. ACM Transactions on Graphics 30, 3.

RESHETOV, A. 2009. Morphological antialiasing. In Proc. of the
Conference on High Performance Graphics, 109–116.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-d shapes. Computer Graphics (Proc. of SIGGRAPH) 24, 4,
197–206.

SOLER, C., SUBR, K., DURAND, F., HOLZSCHUCH, N., AND
SILLION, F. 2009. Fourier depth of field. ACM Transactions on
Graphics 28, 2, 18:1–18:12.

YANG, J. C., HENSLEY, J., GRN, H., AND THIBIEROZ, N. 2010.
Real-time concurrent linked list construction on the gpu. Com-
puter Graphics Forum 29, 4, 1297–1304.

