
Cascaded Light Propagation Volumes for Real-Time Indirect Illumination

Anton Kaplanyan∗

Crytek GmbH
Carsten Dachsbacher†

VISUS / University Stuttgart

Figure 1: Real-time rendering (58fps on a NVIDIA GTX285 at 1280× 720 resolution) of the “Crytek Sponza” scene (262k triangles, available
at http://www.crytek.com/downloads/technology/) using our method for indirect illumination with 3 cascades of light propagation volumes
(LPVs, with 50, 25 and 12.5 meters grid spacing; the scene extend is about 37 × 15 × 22m3). Lights, camera, and geometry can be fully
dynamic. The time required for the computation of the indirect illumination is about 10 milliseconds only. Right: We add participating media
(single-scattering) effects rendering at 34 fps by ray marching through the LPV. The overhead for ray marching is about 18ms.

Abstract

This paper introduces a new scalable technique for approximating
indirect illumination in fully dynamic scenes for real-time applica-
tions, such as video games. We use lattices and spherical harmonics
to represent the spatial and angular distribution of light in the scene.
Our technique does not require any precomputation and handles
large scenes with nested lattices. It is primarily targeted at render-
ing single-bounce indirect illumination with occlusion, but can be
extended to handle multiple bounces and participating media. We
demonstrate that our method produces plausible results even when
running on current game console hardware with a budget of only a
few milliseconds for performing all computation steps for indirect
lighting. We evaluate our technique and show it in combination with
a variety of popular real-time rendering techniques.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Shading

Keywords: global illumination, real-time rendering

1 Introduction

Many recent papers introducing methods for computing global illu-
mination state that this is a hard problem for interactive applications
– surely a valid statement due to the inherent complexity of light
transport. Despite significant advances in recent years, rendering
indirect illumination in real-time, without trade-offs or precompu-
tation, is still an elusive goal. Since indirect illumination is known
to be perceptually important, many attempts have been made to
coarsely approximate it, with as little computation time as possible.
There is consensus that an accurate computation thereof is often not
necessary [Yu et al. 2009]. Recent work exploits this fact, for ex-
ample, by using interpolated visibility [Křivanek and Colbert 2008],

∗e-mail: antonk@crytek.de
†e-mail: dachsbacher@visus.uni-stuttgart.de

c©ACM, 2010. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in the Proceed-
ings of the 2010 Symposium on Interactive 3D Graphics and Games.
http://doi.acm.org/10.1145/1507149.1507176

imperfect visibility [Ritschel et al. 2008], or by using screen-space
techniques [Ritschel et al. 2009b].

In this paper, we present a novel method for rendering plausible
indirect lighting for fully dynamic scenes where no precomputation
is feasible. It has been designed having strict real-time requirements
in mind and targets a computation time of only a few milliseconds
per frame on contemporary graphics hardware for PCs and consoles.
When adjusting the parameters of previous methods to meet these
requirements, the approximate solutions usually exhibit disturbing
artifacts such as a splotchy appearance with methods based on instant
radiosity [Keller 1997], or apparent patches in radiosity methods,
such as [Dachsbacher et al. 2007]. Even screen-space techniques,
e.g. [Dachsbacher and Stamminger 2005; Ritschel et al. 2009b] that
compute subsets of light transport paths, exhibit noise or banding
when limiting the computation time, and typically introduce further
trade-offs such as short-distance indirect light only.

Our method, which is a further development of the basic technique
presented in the SIGGRAPH’09 course program [Tatarchuk et al.
2009], does not share these problems and produces plausible, visu-
ally pleasing results without flickering and high temporal coherence
even with very limited computation time. We achieve this by using
a lattice storing the light and the geometry in a scene. The direc-
tional distribution of light is represented using low-order spherical
harmonics. We sample the surfaces using reflective shadow maps
and use this information to initialize the lattice from scratch every
frame. Based on this representation, we developed a data-parallel
light propagation scheme that allows us to quickly, and plausibly,
approximate low-frequency direct and indirect lighting including
fuzzy occlusion for indirect light. Our propagation scheme is de-
rived from the Discrete Ordinates Method [Chandrasekhar 1950]
and we show that a simplified, more local, scheme is sufficient for
plausible indirect lighting. Direct lighting from point lights, or small
area lights, is computed using standard techniques such as shadow
mapping. Our method has been integrated into the CryENGINE R©

3, and handles large, fully dynamic scenes through nested lattices
of different resolutions. We focus on plausible approximations for
real-time applications rather than on physically-correct rendering of
indirect illumination. Our method is best suited for low-frequency
indirect lighting from diffuse surfaces; we discuss the limitations
arising from spatial discretization, low-order spherical harmonics,
and the propagation scheme.



2 Previous Work
A tremendous amount of research has been conducted in the field of
global illumination (GI). We focus on previous work that has been
presented in the context of interactive rendering. For a more compre-
hensive overview of non-interactive methods we refer to [Dutré et al.
2006]. We roughly classify the methods for interactive applications
into five categories.

Classic methods Huge progress has been made in the field of
ray tracing. Although recent work achieves interactive performance
with complex lighting effects [Wang et al. 2009], these methods are
still not applicable to real-time applications with complex scenes.
Recently, variants of radiosity methods tailored for graphics hard-
ware have also been introduced. Dong et al. [2007] achieves in-
teractive global illumination for small scenes, where visibility was
evaluated directly on the hierarchical link mesh. Explicit visibility
computations can be replaced by an iterative process using anti-
radiance [Dachsbacher et al. 2007]. Although interactive GI in
moderately complex scenes becomes possible, the use of dynamic
objects is restricted. Bunnell [2005] coarsely approximates indirect
illumination and ambient occlusion using a finite element technique
allowing for deforming objects.

Precomputed and low-frequency radiance transfer Many
techniques for real-time GI precompute the light transport includ-
ing all visibility information which entails restrictions such as
static [Sloan et al. 2002] or semi-static scenes [Iwasaki et al. 2007].
Hašan et al. [2007] approximate GI by many point lights and present
a scalable GPU-technique for high-quality images targeting render-
ing times of few seconds. The radiance transfer is often represented
in spherical harmonics (SH) basis. Recently, the limitations of these
methods have been eased, e.g. Sloan et al. [2007] demonstrate real-
time indirect illumination for low-frequency incident lighting and
visibility when these are represented with a small number of SH.

Screen-space methods In recent years, GPU-friendly tech-
niques operating in image space became popular, and are presently
widely used. As any standard shadow map, the reflective shadow
map (RSM) [Dachsbacher and Stamminger 2005] captures directly
lit surfaces, but stores additional information that is required to com-
pute the indirect illumination from these surfaces such that each
pixel can be seen as a small light source. Rendering indirect illu-
mination from the RSM can be implemented via sampling a subset
of the pixel lights. Screen space ambient occlusion [Mittring 2007;
Bavoil et al. 2008] is part of almost any real-time rendering engine
nowadays. Recently, Ritschel et al. [2009b] extended these methods
by accounting for directional lighting and show colored shadows and
indirect illumination. Note that these techniques compute light trans-
port over small distances (in image space) only, and typically require
post-processing to reduce sampling artifacts. Image Space Photon
Mapping recasts the initial and final photon bounces of traditional
photon mapping as image-space operations on the GPU [McGuire
and Luebke 2009], and achieves interactive to real-time frame rates
for complex scenes. Ritschel et al. [2009a] accellerate final gathering
with a parallel micro-rendering technique running on the GPU. They
support BRDF importance sampling and report interactive frame
rates for complex scenes.

Instant radiosity methods The entire lighting in a scene can be
approximated by a set of virtual point lights (VPLs) [Keller 1997],
and techniques based on this instant radiosity idea have gained much
attention in recent years. RSMs can be used to create VPLs for one
bounce of indirect light, and their contribution can be accumulated
in screen space using splatting [Dachsbacher and Stamminger 2006],
or multi-resolution splatting [Nichols and Wyman 2009]. The latter
computes the indirect lighting at a lower resolution for smooth sur-

faces, and more accurately where geometric detail is present. This
idea has been further improved with smart clustering of the RSM’s
pixels [Nichols et al. 2009]. Note that all aforementioned methods
compute one-bounce indirect illumination without occlusion only.
Ritschel et al. [2008] present an efficient method to quickly generate
hundreds of imperfect shadow maps. These allow the approximation
of the indirect illumination from VPLs with sufficient quality. How-
ever, in order to avoid flickering and to provide temporal coherence a
large number of VPLs is required (typically hundreds to thousands),
and obviously this takes a toll on performance and prevents high
frame rates in dynamic scenes.

Lattice-based methods The Discrete Ordinates Method
(DOM) [Chandrasekhar 1950] discretizes the quantities in the
radiative transfer equation (RTE) in space and orientation (DOMs
are typically used for computing radiative transfer in participating
media). These discrete values are used to approximate the different
terms in the RTE: the radiance distribution is stored in a 3D grid,
and light is exchanged between neighboring volume elements,
reducing the computation to local interactions only. A variant
of these methods postulates a simple photon transport model
that describes a diffusion process to compute light transport in
participating media based on the lattice-Boltzmann method [Geist
et al. 2004]. Recently, Fattal [2009] presented an improvement of
DOMs to reduce light smearing (due to repeated interpolation) and
ray effects (due to discretized directions). Note that although these
methods are efficient, and (potentially) highly parallel, they do not
run at interactive frame rates.

3 Light Propagation Volumes

Our work is inspired by the discrete ordinate methods and the Lattice-
Boltzmann lighting technique (as such there is a conceptual similar-
ity to volume grid radiosity and grid-based fluid advection methods).
Similar to these approaches, we represent the lighting in a scene
sampled on a lattice. This allows us to model the light transport
using simple, local operations that in turn can be easily parallelized.
We base our computation on intensity stored in each cell of this lat-
tice. Our contributions include a fast initialization of the lattices for
light propagation that can be computed from scratch for every frame,
a novel propagation scheme that propagates along the main axial
directions (opposed to 26 directions in other schemes) while still
providing good results for low-frequency lighting, and a hierarchical
approach for handling large scenes.

It is well known that grid based methods suffer from two major
errors. The so-called ray effect stems from the discretization of the
directions in which light can travel and causes distracting beams
of light. Repeated averaging during the propagation itself further
causes light smearing in space. It is evident that such methods –
which are typically applied in the domain of participating media –
are not well suited for high-frequency (direct) lighting. For these
reasons we follow the idea of Ramankutty and Crosbie’s modified
DOM [1997], and use the grid-based lighting for low-frequency light
only, where these errors are tolerable, especially in the real-time
rendering context of our target applications.

In the following we describe the basic steps of our method. For
this we assume that our scene is embedded into a 3D grid of a fixed
resolution (we remove this limitation by introducing cascaded grids
in Sect. 4). We have two grids, one storing the intensity that is ini-
tialized from the surfaces causing indirect lighting or low-frequency
direct lighting; and a second grid that stores a volumetric approxi-
mation of the scene geometry and is used for fuzzy blocking as the
light travels through the scene. Both grids store a spherical func-
tion represented as low-frequency SH approximation. We discuss
difficulties arising from coarse light propagation volumes in Sect. 7.



Computing the indirect lighting with our technique consists of four
subsequent steps:

• Initialization of the light propagation volume (LPV) with the
surfaces causing indirect lighting and low-frequency direct
light (area light sources).

• Sampling of the scene’s surfaces using depth peeling from the
camera, and multiple reflective shadow maps. This information
is used to create a coarse volumetric representation of blocker
geometry.

• Light propagation starting from the initial LPV and accumu-
lating the intermediate results (yielding the final light distribu-
tion).

• Lighting the scene geometry using the propagated light. In ad-
dition to directly applying the LPV for diffuse lighting, we also
present plausible approximations to glossy indirect lighting
and participating media.

3.1 LPV Initialization

We use the light propagation volume (LPV) to compute the low-
frequency lighting in a scene only, i.e. mainly the indirect light. The
first step is to transform the surfaces causing that lighting into the di-
rectional intensity representation and initialize the LPV accordingly.
Strong direct lighting and shadowing from point or directional light
sources is computed using traditional techniques such as shadow
mapping.

The initialization is based on the idea that one can convert the low-
frequency lighting into a set of virtual point lights (VPLs), in the
spirit of [Keller 1997]. However, we use a significantly larger num-
ber of VPLs than typical instant radiosity methods, since we do
not compute their contribution individually, but only use them to
initialize the LPV.

Indirect light We first create VPLs accounting for indirect lighting
by rendering a reflective shadow map (RSM) [Dachsbacher and
Stamminger 2005] for every light source. A RSM is an extended
shadow map that can be quickly created in a single render pass on the
GPU. It captures the directly lit surfaces that cause the first-bounce
indirect lighting. Each texel of a RSM can be interpreted as a small
area light source with a spectral and directional intensity distribution,
Ip(ω), determined by the orientation np of the texel and its reflected
flux Φp:

Ip(ω) = Φp 〈np|ω〉+ ,

where 〈.|.〉+ denotes the dot product with negative values clamped
to zero; we omit spectral dependence here for simplicity. The next
step is to transform all VPLs into the SH representation and store
their contributions in the LPV cells. We can easily determine the
cell in which the VPL resides. However, if the VPL points away
from that cell’s center, we do not want to add its contribution to this
cell, but rather to the next cell in order to avoid self lighting and
shadowing. For this, we virtually move each VPL by half the cell
spacing in the direction of its normal, before determining the cell. In
that cell, we only take the orientation of the VPL into consideration,
i.e. we ignore its exact positioning inside that cell.

We use SH to represent the directional distribution of intensity. Using
n bands of SH yields n2 coefficients, cl,m, for the basis functions,
yl,m(ω), both indexed by the band l and degreemwith−l ≤ m ≤ l.
We can easily derive analytical expressions for the SH coefficients
of a clamped cosine-lobe centered around a given direction vector,
the VPL normal np is this case. A clamped cosine oriented along
the z-axis can be expressed in zonal harmonics [Ramamoorthi and

Hanrahan 2001], and rotated to the direction np [Sloan 2008]. We
scale these coefficients by the flux to obtain the SH coefficients for
a VPL.

Note that the flux of a VPL already accounts for the area of the
pixel from which a VPL has been created. Thus there is no further
scaling required, and we can accumulate the intensities, i.e. the
coefficients of the SH approximation, in the grid cells. In fact, we
use 3 coefficient vectors to represent RGB data; however, for the
explanation of our method we shown only one component.

Every VPL is treated in this way and then “injected” into the LPV.
After determining the grid cell we simply accumulate the SH coeffi-
cients. Note that this process introduces spatial discretization of the
lighting and inherently assumes that the surfaces causing indirect
lighting do not occlude each other inside a single cell.

Low-frequency direct light The second kind of VPL accounts for
low-frequency direct lighting from area lights, environment maps
and larger groups of point lights, such as those stemming from
particle systems. Again, we create a dense sampling, i.e. several
hundreds to thousands of VPLs for these light sources, and inject
them into the LPV in exactly the same way as those created from
RSMs. VPLs from environment maps are injected into the outer
layer of the LPV cells; other VPLs outside the grid are omitted.

The result of the LPV initialization pass is a grid of initial intensity
distributions that is used to compute the light propagation in the
scene. In order to reduce the number of injected VPLs, we also
examined clustering similar to the light cuts method [Walter et al.
2005]. However, the injection pass proved to be very cheap and
clustering mostly did not amortize in our experiments.

3.2 Scene Geometry Injection

In addition to the initial intensity distribution we create a volumetric
representation of the scene’s surfaces. This coarse approximation of
the geometry is used for blocking the light during propagation and
thus for computing indirect shadows.

We aim at fully dynamic scenes without precomputation and conse-
quently this information has to be created on the fly as well. To this
end, we re-use the sampling of the scene’s surfaces that is stored in
the depth and normal buffers of the camera view (using a deferred
renderer) and in the RSMs. Note that we typically created RSMs for
numerous light sources and thus have a dense sampling of a large
portion of the scene’s surfaces. If required, we can gather more
information by adding depth-peeling passes for the RSMs or the
camera view. It is also possible to use a precomputed point sampling
of the surfaces, similar to [Ritschel et al. 2008], but this implies
additional storage and transformation costs.

Fuzzy occlusion Each sample represents a small surface element
(surfel) with a given location, orientation, and size. We model the
occlusion in spirit of [Sillion 1995], and assume that we can use
the accumulated blocking potential of surfels in a grid cell as a
probability for blocking light from a certain direction going through
that cell. By this, we can render soft shadows, but surfaes smaller
than the grid size, e.g. foliage, do not produce resolved shadows.

The amount of blocking by one of these surfels depends on its
size, and on the cosine of the angle between its normal and the
light direction in question. The blocking probability of a single
surfel with area As, and normal ns in a cell of grid size s is thus
B(ω) = Ass

−2〈ns|ω〉+. Note that we assume that scene objects
are closed surfaces and thus use a clamped cosine lobe for the



source cell destination cell

ωc

propagation along
axial directions

source cell

V(ω)

Face f
nl

Il(ω)

reprojection of the flux
into a point light

I(ω)

cell centers
of geometry volume

interpolated 
blocking
potential

Figure 2: Left: Each cell of the LPV stores the directional intensity used to compute the light that is propagated from a source cell to its 6 (4 in
2D) neighbors. Center: We compute the flux onto the faces of the destination cell to preserve directional information. Right: We account for
fuzzy occlusion by storing a volumetric representation of the scene in a second grid.

blocking probability. This is also because a low-order SH projection
of an absolute cosine degrades to a near isotropic function.

Injection Similar to the VPL injection we accumulate the SH
projections of the blocking potential into the geometry volume (GV).
This accumulation process is correct if there is only one surface
intersecting a grid cell as the mutual occlusion of surface samples
within a cell cannot be resolved (this is ameliorated by the use of
screen-space ambient occlusion; see Sect. 7). The GV has the same
resolution as the LPV, but is shifted by half a cell, such that its cell
centers are located at the corners of the LPV cells to achieve better
interpolation of the blocking potential during light propagation.

A surface might be sampled in the camera view and one or more
RSMs, and we need to ensure that its blocking is not accumulated
multiple times. For this, each buffer is accumulated into a separate
GV and after injection the GVs are merged into one using a maxi-
mum operation on the SH-vectors. As an optimization we can also
reuse the surface samples from previous frames (for static geome-
try), which reduces the cases where surfaces are not captured by the
current view or RSMs.

3.3 Propagation Scheme

The inherent idea of grid-based methods, such as DOM, is that light
propagation through the scene is computed using successive local
iteration steps. In this regard, our method is no exception, but the
propagation scheme itself differs and is detailed in this section.

Intensity propagation The input for the first iteration step is the
initial LPV from the injection stage; subsequent iterations take
the LPV from the previous iteration as input. Each cell stores the
intensity as a SH-vector and the light is then propagated to its 6
neighbors along the axial directions (Fig. 2, left, shows the 2D case
with 4 axial directions). In the following, we describe the propaga-
tion from one source to one destination cell only; the propagations
along the other directions are computed analogously. Let us de-
note the SH-approximation of the intensity of the source cell as
I(ω) ≈

∑
l,m

cl,myl,m(ω). Next we compute the flux onto each
of the faces of the adjacent destination cell. For this we define the
visibility function, V (ω), of a face f with respect to the source
cell’s center. V (ω) = 1 if a ray starting at the source cell center in
direction ω intersects the face, otherwise V (ω) = 0. Fig. 2 (center)
shows V (ω) for the top face of the destination cell. The total flux
reaching the face can be computed by integrating over directions
using V (ω) as Φf =

∫
Ω
I(ω)V (ω)dω.

The faces’ visibility functions can be projected into SH yielding a
coefficient vector vl,m with V (ω) ≈

∑
l,m

vl,myl,m(ω). The inte-
gral over intensity times visibility can then be easily computed using

the dot product of the SH-vectors cl,m and vl,m. These “transfer
vectors” vl,m can be precomputed once and stored for the propaga-
tion scheme. The problem, however, is that the integral value can
be very inaccurate for low-order SH approximations, and thus we
propose using a different strategy for this case. Instead of a transfer
vector we compute the solid angle ∆ωf =

∫
Ω
V (ω)dω of each face

in the destination cell, and determine the central direction ωc of
the visibility cone. The flux reaching the face is then computed as
∆ωf/(4π) · I(ωc). Effectively this means that we take the intensity
in direction ωc as average intensity over the solid angle.

Reprojection Using this propagation we obtain the incident flux
for each face of a destination cell and then transform it into outgoing
intensity for the subsequent propagation again. For this we compute
the intensity of a new point light source (with the same emission
characteristics as our VPLs) at the destination cell’s center pointing
towards the face and causing exactly as much flux as the face received
due to the propagation. That is, the flux on the face, Φf , is equal
to the total emitted flux of the point light: Φf =

∫
Ω

Φl〈nl, ω〉+dω,
and thus Φl = Φf/π. Similar to the light injection stage, we scale
the clamped cosine lobe by Φl and accumulate the SH coefficients,
for the new point light located at the cell’s center, in the destination
cell for the next iteration.

The propagation is computed for each source cell and each of its
adjacent cell’s faces (shown yellow in Fig. 2). Note that this process
conserves energy that is expected from light propagation in vacuum.
However, the propagation together with the reprojection introduces
spatial and directional discretization. Note that this is common to all
lattice-based methods, and we compare our propagation scheme in
flatland to a reference solution and DOMs in Sect. 5.

Blocking We also need to integrate the blocking of light due to
scene geometry into the propagation step. In the geometry injection
stage we computed the GV from the surfaces in the scene that stores
anisotropic occlusion probabilities for exactly this purpose. The GV
is displaced by half the grid size with respect to the LPV. By this, a
cell center of the GV resides on a corner of an LPV cell. Whenever
we propagate from a source to a destination cell, we bi-linearly
interpolate the GV’s SH-coefficients at the center of the face through
which we propagate, and evaluate the occlusion for the propagation
direction to attenuate the intensity. Note that we do not consider this
occlusion in the very first propagation step after injection in order to
prevent self-shadowing.

Iterations The result after computing all propagations in the LPV
is accumulated in a separate 3D grid after each iteration: the sum
of all intermediate results is the final light distribution in the scene.
The number of required iterations depend on the resolution of the
grid. Similar to [Geist et al. 2004] we use two times the longest



n

n

Figure 3: Such intensity distributions can result from blockers be-
tween cells (indicated by dashed lines). We detect the discontinuity
in the intensity by computing its gradient in normal direction n.

side of the LPV iterations as a heuristic for the scheme as described
above. Obviously this is not feasible for our real-time requirements
for reasonably sized LPVs. The multi-resolution scheme introduced
in Sect. 4 yields similar results with less iterations.

Obviously there is inherently strong blurring caused by the propaga-
tion scheme. However, since we use this method for indirect light
only, the results – especially for low-band SH approximations that
we use for real-time rendering – are of sufficient quality and can be
computed very efficiently (discussed in Sect. 5 and 7).

3.4 Using the Light Propagation Volume for Rendering

The accumulated results of all iterations represent the light distri-
bution in the scene. In the simplest form we query the intensity by
a tri-linearly interpolated lookup of the SH coefficients. We then
evaluate the intensity function for the negative orientation of the
surface, similar to irradiance volumes [Greger et al. 1998; Oat 2006].
However, since we store intensity we need to convert it into incident
radiance and due to spatial discretization we assume that the distance
between the cell’s center (where the intensity is assumed to be), and
the surface to be lit is half the grid size s.

One problem of coarse volumes paired with low-frequency approxi-
mations of the lighting is self-illumination and light-bleeding. We
found that a dampening factor based on the directional derivative
of the intensity distribution greatly reduces these artifacts. For a
surface location x and normal n, we determine the tri-linearly inter-
polated SH coefficients cl,m and the directional derivative in normal
direction ∇ncl,m (computed via differencing). Whenever the the
derivative is large, and cl,m and∇ncl,m are deviating, we dampen
cl,m before computing the lighting (Fig. 3 shows two such typical
situations).

4 Cascaded Light Propagation Volumes

Using a single LPV to compute the light propagation in an entire
scene (with acceptable resolution) would require a very large grid.
Instead we use a set of nested grids moving with the viewer (Fig. 4),
similar to geometry clipmaps [Losasso and Hoppe 2004] but in 3D.
The grids are not exactly centered around the viewer, but displaced
into the view direction. This provides high spatial resolution in parts
of the scene close to the camera, and also covers distant parts with
lower resolution. The nested grid approach allows us to use grids
of smaller size (typically 323 cells) and thus reduce the number of
required propagation iterations.

4.1 Nested Grid Propagation

Our method as described in Sect. 3 remains largely unchanged. VPLs
and geometry are injected into all nested grids at the same time.
However, if the size of an object (determined using its bounding
box) is smaller than the cell size of a grid, we do not create VPLs

Figure 4: We use a set of nested, or cascaded, LPV and GV grids to
represent large scenes with fine resolution close to the camera, and
coarse resolution further away.

from this object by not rendering it to the RSM. This is to prevent
aliasing artifacts (see next section).

Light propagation is computed for all grids independently. Note
that VPLs in a fine grid have also been injected into the coarser
grids (green cells in Fig. 4). This ensures that indirect light from
nearby objects bleeds into distant parts of the scene. When using
the LPVs for lighting, we look up the finest grid at the respective
location. At the boundary of a fine grid we create a smooth transition
to the next-coarser grid by interpolation between both levels (similar
to [Losasso and Hoppe 2004]). Note that the indirect light due
to VPLs that have been injected into a coarser grid (but not into
finer grids) is cut-off due to that blending. We did not, however,
experience distracting or even visible artifacts from this cut-off.

4.2 Coherent Solutions in Dynamic Scenes

Providing a stable solution under object, camera, and light movement
is very important for interactive applications. The primary cause
for potentially inconsistent light propagation stems from the spatial
discretization in the LPV. To prevent this, we snap the cascaded
LPVs – that move with the camera – to multiples of the grid size.
By this “one-cell grid snapping” we maintain a consistent VPL and
geometry injection under camera movement.

The second source of inconsistency – in other algorithms often
causing flickering – is the sampling of light emitting and reflecting
surfaces. As we can afford to excessively sample these surfaces and
inject a huge number of VPLs (several hundred thousand), there
is a high redundancy of light emitters in the LPV. In contrast to
other methods, such as instant radiosity based methods, this redun-
dancy allows the rendering of indirect illumination from moving and
complex, detailed objects, even such as foliage, without flickering.

However, we noticed that small moving objects – if their size is
below the grid cell size – can cause artifacts in the form of unsteady
moving indirect lighting. In this case the spatial discretization of the
LPVs becomes noticeable. As an ad-hoc solution, we fade out the
VPLs from such objects. This solution seems tolerable as the lower
grid resolutions are further away from the camera.

5 Qualitative Evaluation of the Propagation

We show flatland (2D) scenes to discuss the deviations and approx-
imation errors due to our propagation scheme. Fig. 5 plots light
propagation in two simple settings with 1 and 2 area light sources
computed analytically (gray), using the standard DOM propagation
to all 8 neighbor cells (DOM8, green), and our method (LPV, red).
For comparison, we also include a modified DOM scheme (DOM4,
blue) that propagates to the main axial directions only, similar to
ours, to demonstrate the effectiveness of computing the flux per face
compared to a center-to-center transfer.



DOM8, 2SH DOM4, 2SH LPV, 2SH DOM8, 8SH DOM4, 8SH LPV, 8SH

Figure 5: Two simple settings in flatland (top row: 1 area light source, bottom row: 2 area lights in L-shape): for comparison we plot the
intensity for each grid cell computed using DOMs with 8 and 4 propagation directions (green, blue), our propagation scheme (red), and
analytically (grey).

We observe that for few SH bands, all three yield comparable results
with expectedly blurred intensity distributions. Our LPV scheme
preserves the main intensity directions better than DOM4, e.g. light
leaving at grazing angles (highlighted cells in top row), but obviously
is blurry as well. For more SH bands, DOM4 produces very strong
ray effects, whereas LPV produces no such artifacts (highlighted in
bottom row). However, DOM8 preserves distribution much better.
This leads us to the conclusion that our scheme is well-suited for few
SH bands (2 to 4) and large light sources (larger than 1 cell). In these
cases it yields good approximations, preserves the main direction of
light transport well, and only requires 4 (6 in 3D) neighbor cells for
propagation compared to 8 (26 in 3D) for DOM8.

6 Implementation Details

Our method has been integrated into the CryENGINE R© 3: a multi-
platform (DirectX 9 and 10 on PC, Sony PS3 R© and Microsoft Xbox
360 R©) real-time rendering engine. Due to the performance require-
ments the implementation uses only 2 SH-bands (4 coefficients) per
color channel for the LPV. The cascade consists of 3 grids, each
stored as three RGBA 16-bit floating point textures of size 323

(QUVW8 format, i.e. 8-bit signed integer per component, on con-
soles). The geometry volume is of the same format and resolution
as the LPV (but with only one texture and no spectral data), and the
surfels are created from the depth and normal buffers of the camera
view and RSMs. High-resolution buffers, e.g. the camera view, are
down-sampled prior to the surfel injection.

The RSMs store a depth buffer (32-bit float), and normals and flux
(RGBA 8-bit each) of size 2562 (1282 for consoles). This amounts
to 216, or 214, VPLs per primary light source. The VPLs are injected
into the LPV cascade using point rendering. This requires either
vertex texture fetches (used for DirectX 9/10, and Xbox 360), or
rendering to vertex buffer (faster on the PS3).

For the light propagation we perform a GPU-friendly gathering
procedure with ping-pong rendering: for every cell (in every cascade)
we look up the intensity distributions of the 6 neighbor cells. We then
compute the flux onto the faces, reproject the flux and accumulate
the output in a render target. In most scenes 8 iterations provided
visually pleasing results. Note that this limits the distance of light
propagation and might produce artifacts in large, sparse scenes (see
Fig. 12). The GPU memory required for our method (including ping-

pong render targets) is 323 × (2× 4)× 3× (#cascades+ 2) =
3.75MB for the LPV and 323×(2×4)×#cascades = 0.75MB for
the GV (for the consoles the memory is halved due to the QUVW8
format). Note that storing spectral reflectivity would triple the GV
memory and bandwidth; in our examples with multiple bounces we
used monochromatic reflection for further bounces only. Table 1
shows detailed timings.

LPV, 3 cascades each 323 photon mapping (PBRT)

diff. LPV–photon mapping Imperfect Shadow Maps

Figure 6: Top left: rendering the Crytek Sponza (untextured for
comparison) with LPVs, 3 cascades each 323, at 60fps. Top right:
ground-truth solution rendered with photon mapping and PBRT
(single-bounce indirect light only, 200000 photons, 1024 final gather
samples, approx. 45 minutes). Bottom left: difference image of the
LPV rendering and the ground-truth solution; green regions are too
bright with LPVs, red regions too dark. Bottom right: rendering
with Imperfect Shadow Maps [Ritschel et al. 2008] at 15.6fps with
256 VPLs.



7 Results and Discussion

Obviously our method computes a low-frequency approximation
to the indirect lighting in a scene only. All high-frequency vari-
ations, i.e. surface details, are achieved using bump mapping and
screen-space ambient occlusion. The results indicate that our method
produces plausible renderings (the indirect light is exaggerated for
illustration purposes) in many scenarios. Fig. 6 shows a comparison
to ground-truth for the diffuse Crytek Sponza scene. Note that the
images overall compare well, however, occlusion from nearby geom-
etry in the LPV rendering is approximated by ambient occlusion and
shows differences to the photon mapping image. All LPV renderings
have been captured at 1280x720 resolution on a NVIDIA GTX285.
In this section we describe further rendering techniques using the
LPV, followed by a discussion of benefits and limitations.

Multiple indirect bounces We can easily modify the propagation
step to account for (coarsely approximated) multiple diffuse bounces
of indirect light (Fig. 7). When propagating from a source to a
destination cell, we perform an additional lookup into the GV with
an offset of one cell into propagation direction (Fig. 8, left). This
yields a blocker approximation B(ω) that we use to immediately
reflect the light that is propagated to the destination cell. We can
estimate the diffuse illumination of the blocker geometry asB(−ωc)
(effectively computing the dot product of the incident light direction
−ωc and the surface normal), scaled by the propagated intensity and
the reflectivity of the blocker geometry. The reflected light has the
same directional distribution as the diffuse blocker geometry, and
thus we scale B(ω) by the reflected intensity and inject it into the
destination cell. Note that we only need to modify the propagation
step causing an additional cost of approximately 0.3ms on a NVIDIA
GeForce GTX 285 for a 323 LPV and 8 iterations; all other steps
remain unchanged.

Glossy reflections Obviously our propagation scheme causes
strong blurring of the propagated light. However, we can use the
LPVs to gather incident light for rendering glossy surfaces (Fig. 8
right, and 9). The idea is to compute the incident light from the
reflection direction r by marching through the LPV and averaging
the intensity I(−r) of all cells, divided by the squared distance to the
cell that we pass through; in practice 4 cells proved to be sufficient.
This procedure can be interpreted as going back in propagation time
(because we sample light that has not been propagated thus far),
and look up the intensity distributions before they get smeared out
further. The lookup into multiple cells smooths the estimate and
prevents artifacts, such as discontinuities, in the glossy reflections.

Stage GTX285 Xbox 360 PS3
RSM rendering 0.16 0.5 0.8
VPL Injection 0.05 0.2 0.4
GV Injection 0.02 0.15 0.15
Propagation 0.8 / 1.1 / 1.4 0.8 / 1.1 / 1.5 0.7 / 1.1 / 1.5
LPV Lookup 2.4 2.0 1.5
Total 3.4 / 3.7 / 4.0 3.5 / 3.8 / 4.2 3.4 / 3.8 / 4.2

Table 1: Detailed timings for the Crytek Sponza scene (see teaser)
in milliseconds for the individual stages (for one 323 LPV grid and
8 iterations). The three timings for the propagation step refer to:
no occlusion, fuzzy occlusion, fuzzy occlusion and multiple bounces.
Note that only the cost of the RSM rendering depends on the scene
complexity. All measurements at 1280x720 resolution (no MSAA),
and RSM size of 2562 (=number of injected VPLs) for NVIDIA
GTX285 and 1282 for consoles.

Figure 7: Indirect lighting without and with fuzzy occlusion (top
left 130fps, and right 90fps), and multiple bounces (bottom, 85fps)
rendered using one LPVs at 323. 2562 VPLs from the RSM have
been injected into the LPV; 2× 2562 surfels have been created from
the RSM and the camera view (downsampled) for the GV.

Participating media We can also use the LPVs to render plausible
effects of single-scattering participating media (see teaser). For this
we perform a final render pass and ray march through the cascade
of LPVs and accumulate the inscattered light assuming an isotropic
phase function. Strictly speaking, adding inscattered light generates
energy, and we need to attenuate light during propagation. The step
size is proportional to the grids’ cell size, i.e. we use larger steps
in coarse volumes, and smaller steps close to the camera. In the
teaser we show an example rendering with homogeneous media; the
rendering cost increased by 18ms for the ray marching with a ray
marching step size equal to the LPV grid cell size. Note that we can
also plausibly render non-homogeneous media when using a volume
texture to store scattering coefficients.

Discussion The main advantages of our method are the low cost
and that it produces stable and flicker-free renderings. The latter
is achieved with the high sampling of the surfaces using RSMs
and the VPL injection. An insufficient RSM resolution can cause
flickering (see accompanying video), fortunately, creating RSMs and
injection make up a small fraction of the rendering cost only. Thus
our method can be used to handle fully dynamic scenes including
those with “intricate” geometry, such as foliage and fences (Fig. 10).
The limitations of our method are obvious as well: first, the spatial
discretization might be visible as light bleeding (Fig. 11, left); this
is somewhat reduced by the cascaded approach. Second, due to
the SH representation of the intensity and the propagation, the light
strongly diffuses and is not propagated strictly straight ahead, and
there is no reasonable chance of handling glossy surfaces during
propagation. The impact of the number of propagation iterations is
shown in Fig. 12; the cascaded approach reduces the computation

source cell destination cell

cell centers of
geometry volume

interpolated 
blocking
potential

reflecting
blocker

approximation

B(ω)
ωc

camera
rn

Figure 8: Left: we use the GV to approximate more bounces of
indirect illumination. Right: we can light glossy surfaces using ray
marching in the LPV.



Figure 9: We ray march the LPVs along the reflection direction of
specular surfaces to render plausible glossy materials (rendered
at 1280 × 720 with 110fps on GTX285 using one LPV at 323, no
secondary occlusion; the scene consists of 265k triangles).

cost in large scenes which would require high resolution grids (the
cost is linear in the number of iterations and grid cells). Lastly,
we have to exercise caution to make sure that geometry causing
indirect light or blocking is sampled by RSMs or the camera view to
inject the respective data into the grids (Fig. 11, right). Please see
the accompanying video for further demonstration of benefits and
limitations.

8 Conclusion and Future Work

We presented an efficient method for the rendering of plausible in-
direct lighting in fully dynamic, complex scenes in real-time that
uses volumetric representations of the light and geometry in a scene.
We demonstrated our method in various scenes in combination with
wide-spread real-time rendering techniques. In the future we would
like to reduce the limitations of our method, e.g. by following
Fattal’s [2009] ideas, and by investigating non-rectangular grid struc-
tures which might also be a promising research direction.

References

BAVOIL, L., SAINZ, M., AND DIMITROV, R., 2008. Image-space
horizon-based ambient occlusion. ACM SIGGRAPH 2008 talks.

Figure 10: LPVs render flicker-free indirect illumination (shown
exaggerated) from complex geometry such as foliage; rendering at
50fps on a GTX285 (no fuzzy occlusion, one-bounce indirect).

Figure 11: Left: light bleeding from the right wall through the shelf
due to low spatial discretization in the LPV and GV. Right: the
shadow of the backmost box is missing – it is not captured in the
RSM, and only a fraction is visible in the camera image; thus too
few surfels are injected into the GV when not using depth peeling.

Figure 12: Top row: the approximation of indirect light using a
single LPV (30, 60, 80, and 100 meters grid spacing). Note that the
cascaded approach is required to capture medium and long distance
light transport with few iterations; short distance light transport
is approximated with screen-space techniques. Bottom row: using
a single LPV (no GV) with 1, 4, 8, and 16 propagation iterations;
too few iterations limit the distance that the light travels. Typically,
8 iterations produce visually pleasing results, in particular with
cascaded LPVs.

BUNNELL, M. 2005. GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation.
Addison-Wesley Professional, ch. Dynamic Ambient Occlusion
and Indirect Lighting, 636–648.

CHANDRASEKHAR, S. 1950. Radiative Transfer. Dover Pubn Inc.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proc. of the Symposium on Interactive 3D
Graphics and Games, 203–213.

DACHSBACHER, C., AND STAMMINGER, M. 2006. Splatting
Indirect Illumination. In Proc. of the Symposium on Interactive
3D Graphics and Games, 93–100.

DACHSBACHER, C., STAMMINGER, M., DRETTAKIS, G., AND
DURAND, F. 2007. Implicit visibility and antiradiance for inter-
active global illumination. ACM Transactions on Graphics (Proc.
of SIGGRAPH 2007) 26, 3.

DONG, Z., KAUTZ, J., THEOBALT, C., AND SEIDEL, H.-P. 2007.
Interactive Global Illumination Using Implicit Visibility. In Pa-
cific Graphics, 77–86.

DUTRÉ, P., BALA, K., AND BEKAERT, P. 2006. Advanced Global
Illumination. AK Peters.

FATTAL, R. 2009. Participating media illumination using light
propagation maps. ACM Transaction on Graphics 28, 1, 1–11.

GEIST, R., RASCHE, K., WESTALL, J., AND SCHALKOFF, R. J.
2004. Lattice-boltzmann lighting. In Rendering Techniques 2004
(Proc. of the Eurographics Symposium on Rendering, 355–362.



GREGER, G., SHIRLEY, P., HUBBARD, P. M., AND GREENBERG,
D. P. 1998. The irradiance volume. IEEE Computer Graphics
Applications 18, 2, 32–43.

HAŠAN, M., PELLACINI, F., AND BALA, K. 2007. Matrix row-
column sampling for the many-light problem. ACM Trans. Graph.
26, 3, 26.

IWASAKI, K., DOBASHI, Y., YOSHIMOTO, F., AND NISHITA, T.
2007. Precomputed radiance transfer for dynamic scenes taking
into account light interreflection. In Rendering Techniques 2007
(Proc. of the Eurographics Symposium on Rendering), 35–44.

KELLER, A. 1997. Instant radiosity. In SIGGRAPH ’97: Proceed-
ings of the 24th annual conference on Computer graphics and
interactive techniques, 49–56.

KŘIVANEK, J., AND COLBERT, M. 2008. Real-time shading with
filtered importance sampling. Computer Graphics Forum 27, 4,
1147–1154.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain
rendering using nested regular grids. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, 769–776.

MCGUIRE, M., AND LUEBKE, D. 2009. Hardware-accelerated
global illumination by image space photon mapping. In HPG ’09:
Proceedings of the Conference on High Performance Graphics
2009, 77–89.

MITTRING, M. 2007. Finding Next-Gen: CryEngine 2. In SIG-
GRAPH’07: ACM SIGGRAPH 2007 courses.

NICHOLS, G., AND WYMAN, C. 2009. Multiresolution splatting
for indirect illumination. In I3D ’09: Proceedings of the 2009
symposium on Interactive 3D graphics and games, 83–90.

NICHOLS, G., SHOPF, J., AND WYMAN, C. 2009. Hierarchical
image-space radiosity for interactive global illumination. Com-
puter Graphics Forum 28, 4, 1141–1149.

OAT, C. 2006. Irradiance volumes for real-time rendering. ShaderX
5: Advanced Rendering Techniques.

RAMAMOORTHI, R., AND HANRAHAN, P. 2001. On the relation-
ship between radiance and irradiance: determining the illumina-
tion from images of a convex lambertian object. J. Opt. Soc. Am.
A 18, 10, 2448–2459.

RAMANKUTTY, M. A., AND CROSBIE, A. L. 1997. Modified dis-
crete ordinates solution of radiative transfer in two-dimensional
rectangular enclosures. J. Quantitative Spectroscopy Radiative
Transfer 57, 107–140.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHS-
BACHER, C., AND KAUTZ, J. 2008. Imperfect shadow maps for
efficient computation of indirect illumination. ACM Transactions
on Graphics (Proc. of SIGGRAPH Asia) 27, 5.

RITSCHEL, T., ENGELHARDT, T., GROSCH, T., SEIDEL, H.-P.,
KAUTZ, J., AND DACHSBACHER, C. 2009. Micro-rendering
for scalable, parallel final gathering. ACM Trans. Graph. (Proc.
SIGGRAPH Asia 2009) 28, 5.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approxi-
mating dynamic global illumination in image space. In I3D ’09:
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, 75–82.

SILLION, F. 1995. A Unified Hierarchical Algorithm for Global
Illumination with Scattering Volumes and Object Clusters. IEEE
Trans. on Visualization and Computer Graphics 1, 3, 240–254.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed ra-
diance transfer for real-time rendering in dynamic, low-frequency
lighting environments. ACM Transactions on Graphics (Proc. of
SIGGRAPH 2002) 21, 3, 527–536.

SLOAN, P.-P., GOVINDARAJU, N., NOWROUZEZAHRAI, D., AND
SNYDER, J. 2007. Image-based proxy accumulation for real-time
soft global illumination. In Pacific Graphics, 97–105.

SLOAN, P.-P., 2008. Stupid spherical harmonics tricks. Presentation,
Game Developer Conference (GDC2008), San Francisco, CA,
http://www.ppsloan.org/publications/StupidSH35.pdf.

TATARCHUK, N., CHEN, H., EVANS, A., KAPLANYAN, A.,
MOORE, J., JEFFRIES, D., YANG, J., AND ENGEL, W. 2009.
Advances in Real-Time Rendering in 3D Graphics and Games.
In SIGGRAPH’09: ACM SIGGRAPH 2009 courses.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts: A
scalable approach to illumination. ACM Transactions on Graphics
(Proc. of SIGGRAPH 2005) 24, 3, 1098–1107.

WANG, R., WANG, R., ZHOU, K., PAN, M., AND BAO, H. 2009.
An efficient gpu-based approach for interactive global illumina-
tion. ACM Transactions on Graphics (Proc. of SIGGRAPH 2009)
28, 3, 1–8.

YU, I., COX, A., KIM, M. H., RITSCHEL, T., GROSCH, T.,
DACHSBACHER, C., AND KAUTZ, J. 2009. Perceptual in-
fluence of approximate visibility in indirect illumination. ACM
Transactions on Applied Perception 6, 4, 1–14.


